메뉴 건너뛰기




Volumn 73, Issue , 2018, Pages 1-15

Methods for interpreting and understanding deep neural networks

Author keywords

Activation maximization; Deep neural networks; Layer wise relevance propagation; Sensitivity analysis; Taylor decomposition

Indexed keywords

ACTIVATION ANALYSIS; NETWORK LAYERS; SENSITIVITY ANALYSIS;

EID: 85033371689     PISSN: 10512004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dsp.2017.10.011     Document Type: Review
Times cited : (2227)

References (77)
  • 1
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33:8 (Jul 2015), 831–838.
    • (2015) Nat. Biotechnol. , vol.33 , Issue.8 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 3
    • 85027142265 scopus 로고    scopus 로고
    • “What is relevant in a text document?”: an interpretable machine learning approach
    • Arras, L., Horn, F., Montavon, G., Müller, K.-R., Samek, W., “What is relevant in a text document?”: an interpretable machine learning approach. PLoS ONE, 12(8), 2017, e0181142.
    • (2017) PLoS ONE , vol.12 , Issue.8
    • Arras, L.1    Horn, F.2    Montavon, G.3    Müller, K.-R.4    Samek, W.5
  • 5
    • 84940560152 scopus 로고    scopus 로고
    • On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
    • Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W., On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE, 10(7), 2015, e0130140.
    • (2015) PLoS ONE , vol.10 , Issue.7
    • Bach, S.1    Binder, A.2    Montavon, G.3    Klauschen, F.4    Müller, K.-R.5    Samek, W.6
  • 8
    • 85033379573 scopus 로고    scopus 로고
    • Network dissection: quantifying interpretability of deep visual representations
    • arXiv:1704.05796 CoRR
    • Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A., Network dissection: quantifying interpretability of deep visual representations. CoRR arXiv:1704.05796, 2017.
    • (2017)
    • Bau, D.1    Zhou, B.2    Khosla, A.3    Oliva, A.4    Torralba, A.5
  • 9
    • 84991359662 scopus 로고    scopus 로고
    • The Taylor Decomposition: A Unified Generalization of the Oaxaca Method to Nonlinear Models
    • Working papers HAL
    • Bazen, S., Joutard, X., The Taylor Decomposition: A Unified Generalization of the Oaxaca Method to Nonlinear Models. Working papers, 2013, HAL.
    • (2013)
    • Bazen, S.1    Joutard, X.2
  • 10
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • second edition
    • Bengio, Y., Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade, second edition, 2012, 437–478.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1
  • 11
    • 33745930513 scopus 로고    scopus 로고
    • On the analysis and interpretation of inhomogeneous quadratic forms as receptive fields
    • Berkes, P., Wiskott, L., On the analysis and interpretation of inhomogeneous quadratic forms as receptive fields. Neural Comput. 18:8 (2006), 1868–1895.
    • (2006) Neural Comput. , vol.18 , Issue.8 , pp. 1868-1895
    • Berkes, P.1    Wiskott, L.2
  • 13
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press, Inc. New York, NY, USA
    • Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford University Press, Inc., New York, NY, USA.
    • (1995)
    • Bishop, C.M.1
  • 14
    • 79955024787 scopus 로고    scopus 로고
    • Single-trial analysis and classification of ERP components — A tutorial
    • Blankertz, B., Lemm, S., Treder, M.S., Haufe, S., Müller, K.-R., Single-trial analysis and classification of ERP components — A tutorial. NeuroImage 56:2 (2011), 814–825.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 814-825
    • Blankertz, B.1    Lemm, S.2    Treder, M.S.3    Haufe, S.4    Müller, K.-R.5
  • 16
    • 85031945039 scopus 로고    scopus 로고
    • Explaining how a deep neural network trained with end-to-end learning steers a car
    • arXiv:1704.07911 CoRR
    • Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L.D., Muller, U., Explaining how a deep neural network trained with end-to-end learning steers a car. CoRR arXiv:1704.07911, 2017.
    • (2017)
    • Bojarski, M.1    Yeres, P.2    Choromanska, A.3    Choromanski, K.4    Firner, B.5    Jackel, L.D.6    Muller, U.7
  • 19
    • 77949524387 scopus 로고    scopus 로고
    • Visualizing Higher-Layer Features of a Deep Network
    • Tech. Rep. 1341 University of Montreal also presented at the ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada
    • Erhan, D., Bengio, Y., Courville, A., Vincent, P., Visualizing Higher-Layer Features of a Deep Network. Tech. Rep. 1341, Jun. 2009, University of Montreal also presented at the ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.
    • (2009)
    • Erhan, D.1    Bengio, Y.2    Courville, A.3    Vincent, P.4
  • 20
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey, M., Dimopoulos, I., Lek, S., Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160:3 (Feb 2003), 249–264.
    • (2003) Ecol. Model. , vol.160 , Issue.3 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 22
    • 80052913976 scopus 로고    scopus 로고
    • Visual interpretation of kernel-based prediction models
    • Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., Müller, K.-R., Visual interpretation of kernel-based prediction models. Mol. Inform. 30:9 (Sep 2011), 817–826.
    • (2011) Mol. Inform. , vol.30 , Issue.9 , pp. 817-826
    • Hansen, K.1    Baehrens, D.2    Schroeter, T.3    Rupp, M.4    Müller, K.-R.5
  • 25
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • second edition
    • Hinton, G.E., A practical guide to training restricted Boltzmann machines. Neural Networks: Tricks of the Trade, second edition, 2012, 599–619.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.E.1
  • 30
    • 85033387068 scopus 로고    scopus 로고
    • PatternNet and patternLRP – improving the interpretability of neural networks
    • arXiv:1705.05598 CoRR
    • Kindermans, P.-J., Schütt, K.T., Alber, M., Müller, K.-R., Dähne, S., PatternNet and patternLRP – improving the interpretability of neural networks. CoRR arXiv:1705.05598, 2017.
    • (2017)
    • Kindermans, P.-J.1    Schütt, K.T.2    Alber, M.3    Müller, K.-R.4    Dähne, S.5
  • 32
    • 0032708870 scopus 로고    scopus 로고
    • Extracting decision trees from trained neural networks
    • Krishnan, R., Sivakumar, G., Bhattacharya, P., Extracting decision trees from trained neural networks. Pattern Recognit. 32:12 (1999), 1999–2009.
    • (1999) Pattern Recognit. , vol.32 , Issue.12 , pp. 1999-2009
    • Krishnan, R.1    Sivakumar, G.2    Bhattacharya, P.3
  • 36
    • 84989211382 scopus 로고    scopus 로고
    • The layer-wise relevance propagation toolbox for artificial neural networks
    • Lapuschkin, S., Binder, A., Montavon, G., Müller, K.-R., Samek, W., The layer-wise relevance propagation toolbox for artificial neural networks. J. Mach. Learn. Res. 17:114 (2016), 1–5.
    • (2016) J. Mach. Learn. Res. , vol.17 , Issue.114 , pp. 1-5
    • Lapuschkin, S.1    Binder, A.2    Montavon, G.3    Müller, K.-R.4    Samek, W.5
  • 37
  • 40
    • 79954990666 scopus 로고    scopus 로고
    • Introduction to machine learning for brain imaging
    • Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.-R., Introduction to machine learning for brain imaging. NeuroImage 56:2 (2011), 387–399.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 387-399
    • Lemm, S.1    Blankertz, B.2    Dickhaus, T.3    Müller, K.-R.4
  • 41
    • 84946593219 scopus 로고    scopus 로고
    • Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model
    • Letham, B., Rudin, C., McCormick, T.H., Madigan, D., Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9:3 (Sep 2015), 1350–1371.
    • (2015) Ann. Appl. Stat. , vol.9 , Issue.3 , pp. 1350-1371
    • Letham, B.1    Rudin, C.2    McCormick, T.H.3    Madigan, D.4
  • 43
    • 85011863244 scopus 로고    scopus 로고
    • The mythos of model interpretability
    • arXiv:1606.03490 CoRR
    • Lipton, Z.C., The mythos of model interpretability. CoRR arXiv:1606.03490, 2016.
    • (2016)
    • Lipton, Z.C.1
  • 46
    • 85010676902 scopus 로고    scopus 로고
    • Explaining nonlinear classification decisions with deep Taylor decomposition
    • Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.-R., Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognit. 65 (2017), 211–222.
    • (2017) Pattern Recognit. , vol.65 , pp. 211-222
    • Montavon, G.1    Lapuschkin, S.2    Binder, A.3    Samek, W.4    Müller, K.-R.5
  • 47
    • 0004135065 scopus 로고    scopus 로고
    • Neural Networks: Tricks of the Trade
    • 2nd edition Springer Publishing Company, Inc.
    • Montavon, G., Orr, G., Müller, K.-R., Neural Networks: Tricks of the Trade. 2nd edition, 2012, Springer Publishing Company, Inc.
    • (2012)
    • Montavon, G.1    Orr, G.2    Müller, K.-R.3
  • 50
    • 84971369765 scopus 로고    scopus 로고
    • Inceptionism: going deeper into neural networks
    • Mordvintsev, A., Olah, C., Tyka, M., Inceptionism: going deeper into neural networks. http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html, Jun. 2015.
    • (2015)
    • Mordvintsev, A.1    Olah, C.2    Tyka, M.3
  • 52
    • 85014057902 scopus 로고    scopus 로고
    • Plug & play generative networks: conditional iterative generation of images in latent space
    • arXiv:1612.00005 CoRR
    • Nguyen, A., Yosinski, J., Bengio, Y., Dosovitskiy, A., Clune, J., Plug & play generative networks: conditional iterative generation of images in latent space. CoRR arXiv:1612.00005, 2016.
    • (2016)
    • Nguyen, A.1    Yosinski, J.2    Bengio, Y.3    Dosovitskiy, A.4    Clune, J.5
  • 53
    • 84988351612 scopus 로고    scopus 로고
    • Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks
    • arXiv:1602.03616 CoRR
    • Nguyen, A., Yosinski, J., Clune, J., Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. CoRR arXiv:1602.03616, 2016.
    • (2016)
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 56
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323:6088 (Oct 1986), 533–536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 59
    • 85027880264 scopus 로고    scopus 로고
    • Grad-CAM: why did you say that? Visual explanations from deep networks via gradient-based localization
    • arXiv:1610.02391 CoRR
    • Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D., Grad-CAM: why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR arXiv:1610.02391, 2016.
    • (2016)
    • Selvaraju, R.R.1    Das, A.2    Vedantam, R.3    Cogswell, M.4    Parikh, D.5    Batra, D.6
  • 60
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: visualising image classification models and saliency maps
    • arXiv:1312.6034 CoRR
    • Simonyan, K., Vedaldi, A., Zisserman, A., Deep inside convolutional networks: visualising image classification models and saliency maps. CoRR arXiv:1312.6034, 2013.
    • (2013)
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 62
    • 84903388909 scopus 로고    scopus 로고
    • Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation
    • Soneson, C., Gerster, S., Delorenzi, M., Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation. PLoS ONE, 9(6), 2014, e0100335.
    • (2014) PLoS ONE , vol.9 , Issue.6
    • Soneson, C.1    Gerster, S.2    Delorenzi, M.3
  • 63
    • 84962006941 scopus 로고    scopus 로고
    • Striving for simplicity: the all convolutional net
    • arXiv:1412.6806 CoRR
    • Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A., Striving for simplicity: the all convolutional net. CoRR arXiv:1412.6806, 2014.
    • (2014)
    • Springenberg, J.T.1    Dosovitskiy, A.2    Brox, T.3    Riedmiller, M.A.4
  • 65
    • 84993965279 scopus 로고    scopus 로고
    • Interpretable deep neural networks for single-trial EEG classification
    • Sturm, I., Lapuschkin, S., Samek, W., Müller, K.-R., Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274 (Dec 2016), 141–145.
    • (2016) J. Neurosci. Methods , vol.274 , pp. 141-145
    • Sturm, I.1    Lapuschkin, S.2    Samek, W.3    Müller, K.-R.4
  • 66
    • 0000671231 scopus 로고    scopus 로고
    • Ranking importance of input parameters of neural networks
    • Sung, A., Ranking importance of input parameters of neural networks. Expert Syst. Appl. 15 (1998), 405–411.
    • (1998) Expert Syst. Appl. , vol.15 , pp. 405-411
    • Sung, A.1
  • 68
    • 84892232800 scopus 로고    scopus 로고
    • Methods and Procedures for the Verification and Validation of Artificial Neural Networks
    • Springer-Verlag New York, Inc., Secaucus, NJ, USA
    • Taylor, B.J., Methods and Procedures for the Verification and Validation of Artificial Neural Networks. 2005, Springer-Verlag, New York, Inc., Secaucus, NJ, USA.
    • (2005)
    • Taylor, B.J.1
  • 70
    • 84867135944 scopus 로고    scopus 로고
    • A New Benchmark Dataset for Handwritten Character Recognition
    • Tech. Rep. TiCC TR 2009-002 Tilburg University
    • van der Maaten, L., A New Benchmark Dataset for Handwritten Character Recognition. Tech. Rep. TiCC TR 2009-002, 2009, Tilburg University.
    • (2009)
    • van der Maaten, L.1
  • 71
    • 85019397939 scopus 로고    scopus 로고
    • Feature importance measure for non-linear learning algorithms
    • arXiv:1611.07567 CoRR
    • Vidovic, M.M.-C., Görnitz, N., Müller, K.-R., Kloft, M., Feature importance measure for non-linear learning algorithms. CoRR arXiv:1611.07567, 2016.
    • (2016)
    • Vidovic, M.M.-C.1    Görnitz, N.2    Müller, K.-R.3    Kloft, M.4
  • 72
    • 85016431205 scopus 로고    scopus 로고
    • Ml2motif-reliable extraction of discriminative sequence motifs from learning machines
    • Vidovic, M.M.-C., Kloft, M., Müller, K.-R., Görnitz, N., Ml2motif-reliable extraction of discriminative sequence motifs from learning machines. PLoS ONE, 12(3), 2017, e0174392.
    • (2017) PLoS ONE , vol.12 , Issue.3
    • Vidovic, M.M.-C.1    Kloft, M.2    Müller, K.-R.3    Görnitz, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.