-
2
-
-
84973389608
-
Analyzing the performance of multilayer neural networks for object recognition
-
P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Agrawal, P.1
Girshick, R.2
Malik, J.3
-
5
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798-1828, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
6
-
-
84911421600
-
Detect what you can: Detecting and representing objects using holistic models and body parts
-
X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Chen, X.1
Mottaghi, R.2
Liu, X.3
Fidler, S.4
Urtasun, R.5
Yuille, A.6
-
7
-
-
84911453074
-
Describing textures in the wild
-
M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Cimpoi, M.1
Maji, S.2
Kokkinos, I.3
Mohamed, S.4
Vedaldi, A.5
-
8
-
-
28444434801
-
What is a random matrix?
-
P. Diaconis. What is a random matrix? Notices of the AMS, 52(11):1348-1349, 2005.
-
(2005)
Notices of the AMS
, vol.52
, Issue.11
, pp. 1348-1349
-
-
Diaconis, P.1
-
9
-
-
84961986174
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
12
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
84973897623
-
Learning image representations tied to ego-motion
-
D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
16
-
-
85041135844
-
-
Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do different neural networks learn the same representations? arXiv:1511.07543, 2015.
-
(2015)
Convergent Learning: Do Different Neural Networks Learn the Same Representations?
-
-
Li, Y.1
Yosinski, J.2
Clune, J.3
Lipson, H.4
Hopcroft, J.5
-
17
-
-
84959213675
-
Understanding deep image representations by inverting them
-
A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Mahendran, A.1
Vedaldi, A.2
-
18
-
-
85044260103
-
Shuffle and learn: Unsupervised learning using temporal order verification
-
I. Mikjjsra, C. L. Zitnick, and M. Hebert. Shuffle and learn: unsupervised learning using temporal order verification. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Mikjjsra, I.1
Zitnick, C.L.2
Hebert, M.3
-
19
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
Yuille, A.8
-
20
-
-
85019234593
-
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
-
A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In Advances in Neural Information Processing Systems, 2016.
-
(2016)
Advances in Neural Information Processing Systems
-
-
Nguyen, A.1
Dosovitskiy, A.2
Yosinski, J.3
Brox, T.4
Clune, J.5
-
21
-
-
84986287885
-
Unsupervised learning of visual representations by solving jigsaw puzzles
-
M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Noroozi, M.1
Favaro, P.2
-
22
-
-
84990069019
-
Ambient sound provides supervision for visual learning
-
A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba. Ambient sound provides supervision for visual learning. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Owens, A.1
Wu, J.2
McDermott, J.H.3
Freeman, W.T.4
Torralba, A.5
-
23
-
-
21344435992
-
Invariant visual representation by single neurons in the human brain
-
R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation by single neurons in the human brain. Nature, 435(7045):1102-1107, 2005.
-
(2005)
Nature
, vol.435
, Issue.7045
, pp. 1102-1107
-
-
Quiroga, R.Q.1
Reddy, L.2
Kreiman, G.3
Koch, C.4
Fried, I.5
-
25
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. Int'l Journal of Computer Vision, 2015.
-
(2015)
Int'l Journal of Computer Vision
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
28
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929- 1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
29
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
30
-
-
84925331214
-
-
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. arXiv:1312.6199, 2013.
-
(2013)
Intriguing Properties of Neural Networks
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
31
-
-
67649842409
-
Learning color names for real-world applications
-
J. Van De Weijer, C. Schmid, J. Verbeek, and D. Larlus. Learning color names for real-world applications. IEEE Transactions on Image Processing, 18(7):1512-1523, 2009.
-
(2009)
IEEE Transactions on Image Processing
, vol.18
, Issue.7
, pp. 1512-1523
-
-
Weijer De JVan1
Schmid, C.2
Verbeek, J.3
Larlus, D.4
-
33
-
-
84965180823
-
Unsupervised learning of visual representations using videos
-
X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Wang, X.1
Gupta, A.2
-
34
-
-
84856672971
-
Human action recognition by learning bases of action attributes and parts
-
B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by learning bases of action attributes and parts. In Proc. ICCV, 2011.
-
(2011)
Proc. ICCV
-
-
Yao, B.1
Jiang, X.2
Khosla, A.3
Lin, A.L.4
Guibas, L.5
Fei-Fei, L.6
-
37
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
39
-
-
85044323260
-
Split-brain autoencoders: Unsupervised learning by cross-channel prediction
-
R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In Proc. CVPR, 2017.
-
(2017)
Proc. CVPR
-
-
Zhang, R.1
Isola, P.2
Efros, A.A.3
-
40
-
-
85083952996
-
Object detectors emerge in deep scene cnns
-
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep scene cnns. International Conference on Learning Representations, 2015.
-
(2015)
International Conference on Learning Representations
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
41
-
-
85006390452
-
-
B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva. Places: An image database for deep scene understanding. arXiv:1610.02055, 2016.
-
(2016)
Places: An Image Database for Deep Scene Understanding
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Torralba, A.4
Oliva, A.5
-
42
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In Advances in Neural Information Processing Systems, 2014.
-
(2014)
Advances in Neural Information Processing Systems
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
-
43
-
-
85041896881
-
Scene parsing through ade20k dataset
-
B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ade20k dataset. Proc. CVPR, 2017.
-
(2017)
Proc. CVPR
-
-
Zhou, B.1
Zhao, H.2
Puig, X.3
Fidler, S.4
Barriuso, A.5
Torralba, A.6
|