메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 3319-3327

Network dissection: Quantifying interpretability of deep visual representations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SEMANTICS;

EID: 85033379573     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.354     Document Type: Conference Paper
Times cited : (1239)

References (43)
  • 2
    • 84973389608 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Agrawal, P.1    Girshick, R.2    Malik, J.3
  • 6
    • 84911421600 scopus 로고    scopus 로고
    • Detect what you can: Detecting and representing objects using holistic models and body parts
    • X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Chen, X.1    Mottaghi, R.2    Liu, X.3    Fidler, S.4    Urtasun, R.5    Yuille, A.6
  • 8
    • 28444434801 scopus 로고    scopus 로고
    • What is a random matrix?
    • P. Diaconis. What is a random matrix? Notices of the AMS, 52(11):1348-1349, 2005.
    • (2005) Notices of the AMS , vol.52 , Issue.11 , pp. 1348-1349
    • Diaconis, P.1
  • 9
    • 84961986174 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 12
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 14
    • 84973897623 scopus 로고    scopus 로고
    • Learning image representations tied to ego-motion
    • D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Jayaraman, D.1    Grauman, K.2
  • 17
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 18
    • 85044260103 scopus 로고    scopus 로고
    • Shuffle and learn: Unsupervised learning using temporal order verification
    • I. Mikjjsra, C. L. Zitnick, and M. Hebert. Shuffle and learn: unsupervised learning using temporal order verification. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Mikjjsra, I.1    Zitnick, C.L.2    Hebert, M.3
  • 21
    • 84986287885 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations by solving jigsaw puzzles
    • M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Noroozi, M.1    Favaro, P.2
  • 23
    • 21344435992 scopus 로고    scopus 로고
    • Invariant visual representation by single neurons in the human brain
    • R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation by single neurons in the human brain. Nature, 435(7045):1102-1107, 2005.
    • (2005) Nature , vol.435 , Issue.7045 , pp. 1102-1107
    • Quiroga, R.Q.1    Reddy, L.2    Kreiman, G.3    Koch, C.4    Fried, I.5
  • 33
    • 84965180823 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Wang, X.1    Gupta, A.2
  • 34
  • 37
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 39
    • 85044323260 scopus 로고    scopus 로고
    • Split-brain autoencoders: Unsupervised learning by cross-channel prediction
    • R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In Proc. CVPR, 2017.
    • (2017) Proc. CVPR
    • Zhang, R.1    Isola, P.2    Efros, A.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.