메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2912-2920

Analyzing Classifiers: Fisher Vectors and Deep Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTER VISION; LINEAR TRANSFORMATIONS; MATHEMATICAL TRANSFORMATIONS;

EID: 84986268738     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.318     Document Type: Conference Paper
Times cited : (207)

References (32)
  • 1
    • 84940560152 scopus 로고    scopus 로고
    • On pixel-wise explanations for nonlinear classifier decisions by layer-wise relevance propagation
    • S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On pixel-wise explanations for nonlinear classifier decisions by layer-wise relevance propagation. PLOS ONE, 10(7):e0130140, 2015.
    • (2015) PLOS ONE , vol.10 , Issue.7 , pp. e0130140
    • Bach, S.1    Binder, A.2    Montavon, G.3    Klauschen, F.4    Müller, K.-R.5    Samek, W.6
  • 3
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, page 8, 2011.
    • (2011) BMVC , pp. 8
    • Chatfield, K.1    Lempitsky, V.S.2    Vedaldi, A.3    Zisserman, A.4
  • 4
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
    • (2014) CVPR , pp. 580-587
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 84937843643 scopus 로고    scopus 로고
    • Deep fragment embeddings for bidirectional image sentence mapping
    • A. Karpathy, A. Joulin, and F. Li. Deep fragment embeddings for bidirectional image sentence mapping. In Adv. in NIPS, pages 1889-1897, 2014.
    • (2014) Adv. in NIPS , pp. 1889-1897
    • Karpathy, A.1    Joulin, A.2    Li, F.3
  • 12
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li. Large-scale video classification with convolutional neural networks. In CVPR, pages 1725-1732, 2014.
    • (2014) CVPR , pp. 1725-1732
    • Karpathy, A.1    Toderici, G.2    Shetty, S.3    Leung, T.4    Sukthankar, R.5    Li, F.6
  • 13
    • 84883060087 scopus 로고    scopus 로고
    • Evolving large-scale neural networks for vision-based reinforcement learning
    • J. Koutnk, G. Cuccu, J. Schmidhuber, and F. J. Gomez. Evolving large-scale neural networks for vision-based reinforcement learning. In GECCO, pages 1061-1068, 2013.
    • (2013) GECCO , pp. 1061-1068
    • Koutnk, J.1    Cuccu, G.2    Schmidhuber, J.3    Gomez, F.J.4
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Adv. in NIPS, pages 1106-1114, 2012.
    • (2012) Adv. in NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 84959210421 scopus 로고    scopus 로고
    • Understanding image representations by measuring their equivariance and equivalence
    • K. Lenc and A. Vedaldi. Understanding image representations by measuring their equivariance and equivalence. In CVPR, pages 991-999, 2015.
    • (2015) CVPR , pp. 991-999
    • Lenc, K.1    Vedaldi, A.2
  • 16
    • 84866641721 scopus 로고    scopus 로고
    • What has my classifier learned? Visualizing the classification rules of bag-of-feature model by support region detection
    • IEEE
    • L. Liu and L. Wang. What has my classifier learned? visualizing the classification rules of bag-of-feature model by support region detection. In CVPR, pages 3586-3593. IEEE, 2012.
    • (2012) CVPR , pp. 3586-3593
    • Liu, L.1    Wang, L.2
  • 17
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, pages 5188-5196, 2015.
    • (2015) CVPR , pp. 5188-5196
    • Mahendran, A.1    Vedaldi, A.2
  • 19
    • 85009929459 scopus 로고    scopus 로고
    • Understanding the fisher vector: A multimodal part model
    • abs/1504.04763
    • D. Novotný, D. Larlus, F. Perronnin, and A. Vedaldi. Understanding the fisher vector: a multimodal part model. CoRR, abs/1504.04763, 2015.
    • (2015) CoRR
    • Novotný, D.1    Larlus, D.2    Perronnin, F.3    Vedaldi, A.4
  • 20
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, pages 1717-1724, 2014.
    • (2014) CVPR , pp. 1717-1724
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 21
    • 78149348137 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • Springer
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In Computer Vision-ECCV 2010, pages 143-156. Springer, 2010.
    • (2010) Computer Vision-ECCV 2010 , pp. 143-156
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 23
    • 84989177241 scopus 로고    scopus 로고
    • Evaluating the visualization of what a deep neural network has learned
    • abs/1509.06321
    • W. Samek, A. Binder, G. Montavon, S. Bach, and K. Müller. Evaluating the visualization of what a deep neural network has learned. CoRR, abs/1509.06321, 2015.
    • (2015) CoRR
    • Samek, W.1    Binder, A.2    Montavon, G.3    Bach, S.4    Müller, K.5
  • 24
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector: Theory and practice. IJCV, 105(3):222-245, 2013.
    • (2013) IJCV , vol.105 , Issue.3 , pp. 222-245
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 25
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR Workshop, 2014.
    • (2014) ICLR Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 26
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Av. in NIPS, pages 3104-3112, 2014.
    • (2014) Av. in NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 29
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba, et al. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, pages 3485-3492, 2010.
    • (2010) CVPR , pp. 3485-3492
    • Xiao, J.1    Hays, J.2    Ehinger, K.3    Oliva, A.4    Torralba, A.5
  • 30
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833, 2014.
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 32
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In Adv. in NIPS, pages 487-495, 2014.
    • (2014) Adv. in NIPS , pp. 487-495
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.