-
1
-
-
84940560152
-
On pixel-wise explanations for nonlinear classifier decisions by layer-wise relevance propagation
-
S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On pixel-wise explanations for nonlinear classifier decisions by layer-wise relevance propagation. PLOS ONE, 10(7):e0130140, 2015.
-
(2015)
PLOS ONE
, vol.10
, Issue.7
, pp. e0130140
-
-
Bach, S.1
Binder, A.2
Montavon, G.3
Klauschen, F.4
Müller, K.-R.5
Samek, W.6
-
2
-
-
77954665728
-
How to explain individual classification decisions
-
D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Müller. How to explain individual classification decisions. JMLR, 11:1803-1831, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1803-1831
-
-
Baehrens, D.1
Schroeter, T.2
Harmeling, S.3
Kawanabe, M.4
Hansen, K.5
Müller, K.-R.6
-
3
-
-
84898420173
-
The devil is in the details: An evaluation of recent feature encoding methods
-
K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, page 8, 2011.
-
(2011)
BMVC
, pp. 8
-
-
Chatfield, K.1
Lempitsky, V.S.2
Vedaldi, A.3
Zisserman, A.4
-
4
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
-
(2014)
BMVC
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
5
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
6
-
-
84921069139
-
The pascal visual object classes challenge: A retrospective
-
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. IJCV, 111(1):98-136, 2015.
-
(2015)
IJCV
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.V.3
Williams, C.K.I.4
Winn, J.M.5
Zisserman, A.6
-
8
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
-
(2014)
CVPR
, pp. 580-587
-
-
Girshick, R.B.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
10
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proc. of the ACM Int. Conf. on Multimedia, pages 675-678, 2014.
-
(2014)
Proc. of the ACM Int. Conf. on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
11
-
-
84937843643
-
Deep fragment embeddings for bidirectional image sentence mapping
-
A. Karpathy, A. Joulin, and F. Li. Deep fragment embeddings for bidirectional image sentence mapping. In Adv. in NIPS, pages 1889-1897, 2014.
-
(2014)
Adv. in NIPS
, pp. 1889-1897
-
-
Karpathy, A.1
Joulin, A.2
Li, F.3
-
12
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li. Large-scale video classification with convolutional neural networks. In CVPR, pages 1725-1732, 2014.
-
(2014)
CVPR
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Li, F.6
-
13
-
-
84883060087
-
Evolving large-scale neural networks for vision-based reinforcement learning
-
J. Koutnk, G. Cuccu, J. Schmidhuber, and F. J. Gomez. Evolving large-scale neural networks for vision-based reinforcement learning. In GECCO, pages 1061-1068, 2013.
-
(2013)
GECCO
, pp. 1061-1068
-
-
Koutnk, J.1
Cuccu, G.2
Schmidhuber, J.3
Gomez, F.J.4
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Adv. in NIPS, pages 1106-1114, 2012.
-
(2012)
Adv. in NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
84959210421
-
Understanding image representations by measuring their equivariance and equivalence
-
K. Lenc and A. Vedaldi. Understanding image representations by measuring their equivariance and equivalence. In CVPR, pages 991-999, 2015.
-
(2015)
CVPR
, pp. 991-999
-
-
Lenc, K.1
Vedaldi, A.2
-
16
-
-
84866641721
-
What has my classifier learned? Visualizing the classification rules of bag-of-feature model by support region detection
-
IEEE
-
L. Liu and L. Wang. What has my classifier learned? visualizing the classification rules of bag-of-feature model by support region detection. In CVPR, pages 3586-3593. IEEE, 2012.
-
(2012)
CVPR
, pp. 3586-3593
-
-
Liu, L.1
Wang, L.2
-
17
-
-
84959213675
-
Understanding deep image representations by inverting them
-
A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, pages 5188-5196, 2015.
-
(2015)
CVPR
, pp. 5188-5196
-
-
Mahendran, A.1
Vedaldi, A.2
-
18
-
-
84959138050
-
-
arXiv preprint arXiv:1512.02479
-
G. Montavon, S. Bach, A. Binder, W. Samek, and K.-R. Müller. Explaining nonlinear classification decisions with deep taylor decomposition. arXiv preprint arXiv:1512.02479, 2015.
-
(2015)
Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition
-
-
Montavon, G.1
Bach, S.2
Binder, A.3
Samek, W.4
Müller, K.-R.5
-
19
-
-
85009929459
-
Understanding the fisher vector: A multimodal part model
-
abs/1504.04763
-
D. Novotný, D. Larlus, F. Perronnin, and A. Vedaldi. Understanding the fisher vector: a multimodal part model. CoRR, abs/1504.04763, 2015.
-
(2015)
CoRR
-
-
Novotný, D.1
Larlus, D.2
Perronnin, F.3
Vedaldi, A.4
-
20
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, pages 1717-1724, 2014.
-
(2014)
CVPR
, pp. 1717-1724
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
21
-
-
78149348137
-
Improving the fisher kernel for large-scale image classification
-
Springer
-
F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In Computer Vision-ECCV 2010, pages 143-156. Springer, 2010.
-
(2010)
Computer Vision-ECCV 2010
, pp. 143-156
-
-
Perronnin, F.1
Sánchez, J.2
Mensink, T.3
-
22
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
April
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, pages 1-42, April 2015.
-
(2015)
IJCV
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
23
-
-
84989177241
-
Evaluating the visualization of what a deep neural network has learned
-
abs/1509.06321
-
W. Samek, A. Binder, G. Montavon, S. Bach, and K. Müller. Evaluating the visualization of what a deep neural network has learned. CoRR, abs/1509.06321, 2015.
-
(2015)
CoRR
-
-
Samek, W.1
Binder, A.2
Montavon, G.3
Bach, S.4
Müller, K.5
-
24
-
-
84883487458
-
Image classification with the fisher vector: Theory and practice
-
J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector: Theory and practice. IJCV, 105(3):222-245, 2013.
-
(2013)
IJCV
, vol.105
, Issue.3
, pp. 222-245
-
-
Sánchez, J.1
Perronnin, F.2
Mensink, T.3
Verbeek, J.4
-
25
-
-
85083953896
-
Deep inside convolutional networks: Visualising image classification models and saliency maps
-
K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR Workshop, 2014.
-
(2014)
ICLR Workshop
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
26
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Av. in NIPS, pages 3104-3112, 2014.
-
(2014)
Av. in NIPS
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
27
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, pages 1-9, 2015.
-
(2015)
CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
29
-
-
77955988947
-
Sun database: Large-scale scene recognition from abbey to zoo
-
J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba, et al. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, pages 3485-3492, 2010.
-
(2010)
CVPR
, pp. 3485-3492
-
-
Xiao, J.1
Hays, J.2
Ehinger, K.3
Oliva, A.4
Torralba, A.5
-
30
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833, 2014.
-
(2014)
ECCV
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
31
-
-
84906514027
-
Partbased r-cnns for fine-grained category detection
-
N. Zhang, J. Donahue, R. B. Girshick, and T. Darrell. Partbased r-cnns for fine-grained category detection. In Computer Vision-ECCV, pages 834-849, 2014.
-
(2014)
Computer Vision-ECCV
, pp. 834-849
-
-
Zhang, N.1
Donahue, J.2
Girshick, R.B.3
Darrell, T.4
-
32
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In Adv. in NIPS, pages 487-495, 2014.
-
(2014)
Adv. in NIPS
, pp. 487-495
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|