메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Quantum-chemical insights from deep tensor neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOINFORMATICS; CHEMICAL ANALYSIS; MACHINE LEARNING; MOLECULAR ANALYSIS; NUMERICAL MODEL; QUANTUM MECHANICS;

EID: 85009110385     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms13890     Document Type: Article
Times cited : (1468)

References (54)
  • 1
    • 62249143548 scopus 로고    scopus 로고
    • Battery materials for ultrafast charging and discharging
    • Kang, B., & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190-193 (2009).
    • (2009) Nature , vol.458 , pp. 190-193
    • Kang, B.1    Ceder, G.2
  • 3
    • 80052378200 scopus 로고    scopus 로고
    • The Harvard clean energy project: Large-scale computational screening and design of organic photo-voltaics on the world community grid
    • Hachmann, J., et al. The Harvard clean energy project: large-scale computational screening and design of organic photo-voltaics on the world community grid. J. Phys. Chem. Lett. 2, 2241-2251 (2011).
    • (2011) J. Phys. Chem. Lett. , vol.2 , pp. 2241-2251
    • Hachmann, J.1
  • 5
    • 84875458397 scopus 로고    scopus 로고
    • The high-Throughput highway to computational materials design
    • Curtarolo, S., et al. The high-Throughput highway to computational materials design. Nat. Mater. 12, 191-201 (2013).
    • (2013) Nat. Mater. , vol.12 , pp. 191-201
    • Curtarolo, S.1
  • 7
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • Rupp, M., Tkatchenko, A., Muller, K.-R., & Von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Muller, K.-R.3    Von Lilienfeld, O.A.4
  • 8
    • 84929331654 scopus 로고    scopus 로고
    • Big data meets quantum chemistry approximations: The D-machine learning approach
    • Ramakrishnan, R., Dral, P. O., Rupp, M., & von Lilienfeld, O. A. Big data meets quantum chemistry approximations: the D-machine learning approach. J. Chem. Theory Comput. 11, 2087-2096 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 2087-2096
    • Ramakrishnan, R.1    Dral, P.O.2    Rupp, M.3    Von Lilienfeld, O.A.4
  • 11
    • 84901440781 scopus 로고    scopus 로고
    • How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
    • Schütt, K., et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 205118
    • Schütt, K.1
  • 12
    • 84885045537 scopus 로고    scopus 로고
    • Machine learning of molecular electronic properties in chemical compound space
    • Montavon, G., et al. Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 095003 (2013).
    • (2013) New J. Phys. , vol.15 , pp. 095003
    • Montavon, G.1
  • 13
    • 84882415695 scopus 로고    scopus 로고
    • Assessment and validation of machine learning methods for predicting molecular atomization energies
    • Hansen, K., et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404-3419 (2013).
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 3404-3419
    • Hansen, K.1
  • 15
    • 84935014439 scopus 로고    scopus 로고
    • Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
    • Hansen, K., et al. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 2326
    • Hansen, K.1
  • 16
    • 84878571921 scopus 로고    scopus 로고
    • On representing chemical environments
    • Bartók, A. P., Kondor, R., & Csanyi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
    • (2013) Phys. Rev. B , vol.87 , pp. 184115
    • Bartók, A.P.1    Kondor, R.2    Csanyi, G.3
  • 17
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
    • Bartók, A. P., Payne, M. C., Kondor, R., & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csanyi, G.4
  • 18
    • 79953856961 scopus 로고    scopus 로고
    • Atom-centered symmetry functions for constructing highdimensional neural network potentials
    • Behler, J. Atom-centered symmetry functions for constructing highdimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
    • (2011) J. Chem. Phys. , vol.134 , pp. 074106
    • Behler, J.1
  • 19
    • 80053512754 scopus 로고    scopus 로고
    • Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
    • Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930-17955 (2011).
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 17930-17955
    • Behler, J.1
  • 25
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G., et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82-97 (2012).
    • (2012) IEEE Signal Process. Mag. , vol.29 , pp. 82-97
    • Hinton, G.1
  • 26
    • 84922343800 scopus 로고    scopus 로고
    • Deep convolutional neural networks for large-scale speech tasks
    • Sainath, T. N., et al. Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39-48 (2015).
    • (2015) Neural Netw. , vol.64 , pp. 39-48
    • Sainath, T.N.1
  • 27
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Collobert, R., & Weston, J. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proc. 25th International Conference on Machine Learning. 160-167 (2008).
    • (2008) Proc 25th International Conference on Machine Learning. , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 30
    • 84965159799 scopus 로고    scopus 로고
    • Convolutional networks on graphs for learning molecular fingerprints
    • Duvenaud, D. K., et al. Convolutional networks on graphs for learning molecular fingerprints. In Proc. Advances in Neural Information Processing Systems. 28, 2224-2232 (2015).
    • (2015) Proc. Advances in Neural Information Processing Systems. , vol.28 , pp. 2224-2232
    • Duvenaud, D.K.1
  • 35
    • 67649619336 scopus 로고    scopus 로고
    • 970 million druglike small molecules for virtual screening in the chemical universe database gdb-13
    • Blum, L. C., & Reymond, J.-L. 970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009).
    • (2009) J. Am Chem. Soc. , vol.131 , pp. 8732
    • Blum, L.C.1    Reymond, J.-L.2
  • 36
    • 84925393362 scopus 로고    scopus 로고
    • The chemical space project
    • Reymond, J.-L. The chemical space project. Acc. Chem. Res. 48, 722-730 (2015).
    • (2015) Acc. Chem. Res. , vol.48 , pp. 722-730
    • Reymond, J.-L.1
  • 37
    • 84938679411 scopus 로고    scopus 로고
    • Quantum chemistry structures and properties of 134 kilo molecules
    • Ramakrishnan, R., Dral, P. O., Rupp, M., & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).
    • (2014) Sci. Data , vol.1 , pp. 140022
    • Ramakrishnan, R.1    Dral, P.O.2    Rupp, M.3    Von Lilienfeld, O.A.4
  • 38
    • 84877579003 scopus 로고    scopus 로고
    • First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
    • von Lilienfeld, O. A. First principles view on chemical compound space: gaining rigorous atomistic control of molecular properties. Int. J. Quantum Chem. 113, 1676-1689 (2013).
    • (2013) Int. J. Quantum Chem. , vol.113 , pp. 1676-1689
    • Von Lilienfeld, A.O.1
  • 39
    • 84969944517 scopus 로고    scopus 로고
    • Comparing molecules and solids across structural and alchemical space
    • De, S., Bartok, A. P., Csanyi, G., & Ceriotti, M. Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18, 13754-13769 (2016).
    • (2016) Phys. Chem. Chem. Phys. , vol.18 , pp. 13754-13769
    • De, S.1    Bartok, A.P.2    Csanyi, G.3    Ceriotti, M.4
  • 40
    • 67249096678 scopus 로고    scopus 로고
    • Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations
    • Malshe, M., et al. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations. J. Chem. Phys. 130, 184102 (2009).
    • (2009) J. Chem. Phys. , vol.130 , pp. 184102
    • Malshe, M.1
  • 41
    • 33748257982 scopus 로고    scopus 로고
    • A random-sampling high dimensional model representation neural network for building potential energy surfaces
    • Manzhos, S., & Carrington, Jr. T. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys. 125, 084109 (2006).
    • (2006) J. Chem Phys. , vol.125 , pp. 084109
    • Manzhos, S.1    Carrington, T.2
  • 42
    • 57649225620 scopus 로고    scopus 로고
    • Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface
    • Manzhos, S., & Carrington, Jr. T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. J. Chem. Phys. 129, 224104 (2008).
    • (2008) J. Chem. Phys. , vol.129 , pp. 224104
    • Manzhos, S.1    Carrington, T.2
  • 43
    • 34047127421 scopus 로고    scopus 로고
    • Generalized neural-network representation of high-dimensional potential-energy surfaces
    • Behler, J., & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 44
    • 10644250257 scopus 로고
    • Inhomogeneous electron gas
    • Hohenberg, P., & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864-B871 (1964).
    • (1964) Phys. Rev. , vol.136 , pp. B864-B871
    • Hohenberg, P.1    Kohn, W.2
  • 45
    • 0001322105 scopus 로고    scopus 로고
    • Rationale for mixing exact exchange with density functional approximations
    • Perdew, J. P., Ernzerhof, M., & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982-9985 (1996).
    • (1996) J. Chem. Phys. , vol.105 , pp. 9982-9985
    • Perdew, J.P.1    Ernzerhof, M.2    Burke, K.3
  • 46
    • 4243553426 scopus 로고
    • Density-functional exchange-energy approximation with correct asymptotic behavior
    • Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098-3100 (1988).
    • (1988) Phys. Rev. A , vol.38 , pp. 3098-3100
    • Becke, A.D.1
  • 47
    • 0345491105 scopus 로고
    • Development of the Colle-Salvetti correlationenergy formula into a functional ofthe electron density
    • Lee, C., Yang, W., & Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional ofthe electron density. Phys. Rev. B 37, 785-789 (1988).
    • (1988) Phys. Rev. B , vol.37 , pp. 785-789
    • Lee, C.1    Yang, W.2    Parr, R.G.3
  • 48
    • 0000216001 scopus 로고
    • Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
    • Vosko, S. H., Wilk, L., & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200-1211 (1980).
    • (1980) Can. J. Phys. , vol.58 , pp. 1200-1211
    • Vosko, S.H.1    Wilk, L.2    Nusair, M.3
  • 49
    • 33751157732 scopus 로고
    • Ab initio calculation of vibrational absorption and circular dichro-ism spectra using density functional force fields
    • Stephens, P., Devlin, F., Chabalowski, C., & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichro-ism spectra using density functional force fields. J. Phys. Chem. 98, 11623-11627 (1994).
    • (1994) J. Phys. Chem. , vol.98 , pp. 11623-11627
    • Stephens, P.1    Devlin, F.2    Chabalowski, C.3    Frisch, M.J.4
  • 50
    • 0000842304 scopus 로고
    • Beckes 3 parameter functional combined with the non-local correlation LYP
    • Becke, A. d. Beckes 3 parameter functional combined with the non-local correlation LYP. J. Chem. Phys. 98, 5648 (1993).
    • (1993) J. Chem. Phys. , vol.98 , pp. 5648
    • Becke, A.D.1
  • 51
    • 4243943295 scopus 로고    scopus 로고
    • Generalized gradient approximation made simple
    • Perdew, J. P., Burke, K., & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 54
    • 79952580566 scopus 로고    scopus 로고
    • Mayavi: 3D visualization of scientific data
    • Ramachandran, P., & Varoquaux, G. Mayavi: 3D visualization of scientific data. Comput. Sci. Eng. 13, 40-51 (2011).
    • (2011) Comput. Sci. Eng. , vol.13 , pp. 40-51
    • Ramachandran, P.1    Varoquaux, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.