-
1
-
-
62249143548
-
Battery materials for ultrafast charging and discharging
-
Kang, B., & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190-193 (2009).
-
(2009)
Nature
, vol.458
, pp. 190-193
-
-
Kang, B.1
Ceder, G.2
-
2
-
-
65949117593
-
Towards the computational design of solid catalysts
-
Nørskov, J. K., Bligaard, T., Rossmeisl, J., & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37-46 (2009).
-
(2009)
Nat. Chem.
, vol.1
, pp. 37-46
-
-
Nørskov, J.K.1
Bligaard, T.2
Rossmeisl, J.3
Christensen, C.H.4
-
3
-
-
80052378200
-
The Harvard clean energy project: Large-scale computational screening and design of organic photo-voltaics on the world community grid
-
Hachmann, J., et al. The Harvard clean energy project: large-scale computational screening and design of organic photo-voltaics on the world community grid. J. Phys. Chem. Lett. 2, 2241-2251 (2011).
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 2241-2251
-
-
Hachmann, J.1
-
4
-
-
84942318635
-
What is high-Throughput virtual screening? A perspective from organic materials discovery
-
Pyzer-Knapp, E. O., Suh, C., Gomez-Bombarelli, R., Aguilera-Iparraguirre, J., & Aspuru-Guzik, A. What is high-Throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res. 45, 195-216 (2015).
-
(2015)
Annu. Rev. Mater. Res.
, vol.45
, pp. 195-216
-
-
Pyzer-Knapp, E.O.1
Suh, C.2
Gomez-Bombarelli, R.3
Aguilera-Iparraguirre, J.4
Aspuru-Guzik, A.5
-
5
-
-
84875458397
-
The high-Throughput highway to computational materials design
-
Curtarolo, S., et al. The high-Throughput highway to computational materials design. Nat. Mater. 12, 191-201 (2013).
-
(2013)
Nat. Mater.
, vol.12
, pp. 191-201
-
-
Curtarolo, S.1
-
6
-
-
84862560607
-
Finding density functionals with machine learning
-
Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R., & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 253002
-
-
Snyder, J.C.1
Rupp, M.2
Hansen, K.3
Müller, K.-R.4
Burke, K.5
-
7
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
Rupp, M., Tkatchenko, A., Muller, K.-R., & Von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Muller, K.-R.3
Von Lilienfeld, O.A.4
-
8
-
-
84929331654
-
Big data meets quantum chemistry approximations: The D-machine learning approach
-
Ramakrishnan, R., Dral, P. O., Rupp, M., & von Lilienfeld, O. A. Big data meets quantum chemistry approximations: the D-machine learning approach. J. Chem. Theory Comput. 11, 2087-2096 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 2087-2096
-
-
Ramakrishnan, R.1
Dral, P.O.2
Rupp, M.3
Von Lilienfeld, O.A.4
-
10
-
-
84925425769
-
Big data of materials science: Critical role of the descriptor
-
Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C., & Scheffler, M. Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 105503
-
-
Ghiringhelli, L.M.1
Vybiral, J.2
Levchenko, S.V.3
Draxl, C.4
Scheffler, M.5
-
11
-
-
84901440781
-
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
-
Schütt, K., et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 205118
-
-
Schütt, K.1
-
12
-
-
84885045537
-
Machine learning of molecular electronic properties in chemical compound space
-
Montavon, G., et al. Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 095003 (2013).
-
(2013)
New J. Phys.
, vol.15
, pp. 095003
-
-
Montavon, G.1
-
13
-
-
84882415695
-
Assessment and validation of machine learning methods for predicting molecular atomization energies
-
Hansen, K., et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404-3419 (2013).
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 3404-3419
-
-
Hansen, K.1
-
15
-
-
84935014439
-
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
-
Hansen, K., et al. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326 (2015).
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 2326
-
-
Hansen, K.1
-
16
-
-
84878571921
-
On representing chemical environments
-
Bartók, A. P., Kondor, R., & Csanyi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
-
(2013)
Phys. Rev. B
, vol.87
, pp. 184115
-
-
Bartók, A.P.1
Kondor, R.2
Csanyi, G.3
-
17
-
-
77950441864
-
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
-
Bartók, A. P., Payne, M. C., Kondor, R., & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 136403
-
-
Bartók, A.P.1
Payne, M.C.2
Kondor, R.3
Csanyi, G.4
-
18
-
-
79953856961
-
Atom-centered symmetry functions for constructing highdimensional neural network potentials
-
Behler, J. Atom-centered symmetry functions for constructing highdimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 074106
-
-
Behler, J.1
-
19
-
-
80053512754
-
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
-
Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930-17955 (2011).
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 17930-17955
-
-
Behler, J.1
-
20
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
21
-
-
80555140085
-
Kernel analysis of deep networks
-
Montavon, G., Braun, M. L., & Müller, K.-R. Kernel analysis of deep networks. J. Mach. Learn. Res. 12, 2563-2581 (2011).
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2563-2581
-
-
Montavon, G.1
Braun, M.L.2
Müller, K.-R.3
-
23
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Proc. Advances in Neural Information Processing Systems. 25, 1097-1105 (2012).
-
(2012)
Proc. Advances in Neural Information Processing Systems.
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
84911453046
-
-
Arbib M.A.) (The MIT Press Cambridge, MA, USA
-
LeCun, Y., & Bengio, Y. in The Handbook of Brain Theory and Neural Networks (ed. Arbib M.A.) 255-257 (The MIT Press, Cambridge, MA, USA, 1995).
-
(1995)
The Handbook of Brain Theory and Neural Networks
, pp. 255-257
-
-
LeCun, Y.1
Bengio, Y.2
-
25
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, G., et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82-97 (2012).
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, pp. 82-97
-
-
Hinton, G.1
-
26
-
-
84922343800
-
Deep convolutional neural networks for large-scale speech tasks
-
Sainath, T. N., et al. Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39-48 (2015).
-
(2015)
Neural Netw.
, vol.64
, pp. 39-48
-
-
Sainath, T.N.1
-
27
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
Collobert, R., & Weston, J. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proc. 25th International Conference on Machine Learning. 160-167 (2008).
-
(2008)
Proc 25th International Conference on Machine Learning.
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
28
-
-
58649113008
-
The graph neural network model
-
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Mon-fardini, G. The graph neural network model. IEEE Trans. Neural Netw. 20, 61-80 (2009).
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, pp. 61-80
-
-
Scarselli, F.1
Gori, M.2
Tsoi, A.C.3
Hagenbuchner, M.4
Monfardini, G.5
-
29
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Mon-fardini, G. The graph neural network model. IEEE Trans. Neural Netw. 20, 61-80 (2009).
-
(2015)
Proc. Advances in Neural Information Processing Systems.
, vol.28
, pp. 2224-2232
-
-
Duvenaud, D.K.1
-
30
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
Duvenaud, D. K., et al. Convolutional networks on graphs for learning molecular fingerprints. In Proc. Advances in Neural Information Processing Systems. 28, 2224-2232 (2015).
-
(2015)
Proc. Advances in Neural Information Processing Systems.
, vol.28
, pp. 2224-2232
-
-
Duvenaud, D.K.1
-
33
-
-
84898956227
-
Reasoning with neural tensor networks for knowledge base completion
-
Socher, R., Chen, D., Manning, C. D., & Ng, A. Reasoning with neural tensor networks for knowledge base completion. In Proc. Advances in Neural Information Processing Systems. 26, 926-934 (2013).
-
(2013)
Proc. Advances in Neural Information Processing Systems.
, vol.26
, pp. 926-934
-
-
Socher, R.1
Chen, D.2
Manning, C.D.3
Ng, A.4
-
35
-
-
67649619336
-
970 million druglike small molecules for virtual screening in the chemical universe database gdb-13
-
Blum, L. C., & Reymond, J.-L. 970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009).
-
(2009)
J. Am Chem. Soc.
, vol.131
, pp. 8732
-
-
Blum, L.C.1
Reymond, J.-L.2
-
36
-
-
84925393362
-
The chemical space project
-
Reymond, J.-L. The chemical space project. Acc. Chem. Res. 48, 722-730 (2015).
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 722-730
-
-
Reymond, J.-L.1
-
37
-
-
84938679411
-
Quantum chemistry structures and properties of 134 kilo molecules
-
Ramakrishnan, R., Dral, P. O., Rupp, M., & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).
-
(2014)
Sci. Data
, vol.1
, pp. 140022
-
-
Ramakrishnan, R.1
Dral, P.O.2
Rupp, M.3
Von Lilienfeld, O.A.4
-
38
-
-
84877579003
-
First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
-
von Lilienfeld, O. A. First principles view on chemical compound space: gaining rigorous atomistic control of molecular properties. Int. J. Quantum Chem. 113, 1676-1689 (2013).
-
(2013)
Int. J. Quantum Chem.
, vol.113
, pp. 1676-1689
-
-
Von Lilienfeld, A.O.1
-
39
-
-
84969944517
-
Comparing molecules and solids across structural and alchemical space
-
De, S., Bartok, A. P., Csanyi, G., & Ceriotti, M. Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18, 13754-13769 (2016).
-
(2016)
Phys. Chem. Chem. Phys.
, vol.18
, pp. 13754-13769
-
-
De, S.1
Bartok, A.P.2
Csanyi, G.3
Ceriotti, M.4
-
40
-
-
67249096678
-
Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations
-
Malshe, M., et al. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations. J. Chem. Phys. 130, 184102 (2009).
-
(2009)
J. Chem. Phys.
, vol.130
, pp. 184102
-
-
Malshe, M.1
-
41
-
-
33748257982
-
A random-sampling high dimensional model representation neural network for building potential energy surfaces
-
Manzhos, S., & Carrington, Jr. T. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys. 125, 084109 (2006).
-
(2006)
J. Chem Phys.
, vol.125
, pp. 084109
-
-
Manzhos, S.1
Carrington, T.2
-
42
-
-
57649225620
-
Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface
-
Manzhos, S., & Carrington, Jr. T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. J. Chem. Phys. 129, 224104 (2008).
-
(2008)
J. Chem. Phys.
, vol.129
, pp. 224104
-
-
Manzhos, S.1
Carrington, T.2
-
43
-
-
34047127421
-
Generalized neural-network representation of high-dimensional potential-energy surfaces
-
Behler, J., & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 146401
-
-
Behler, J.1
Parrinello, M.2
-
44
-
-
10644250257
-
Inhomogeneous electron gas
-
Hohenberg, P., & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864-B871 (1964).
-
(1964)
Phys. Rev.
, vol.136
, pp. B864-B871
-
-
Hohenberg, P.1
Kohn, W.2
-
45
-
-
0001322105
-
Rationale for mixing exact exchange with density functional approximations
-
Perdew, J. P., Ernzerhof, M., & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982-9985 (1996).
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 9982-9985
-
-
Perdew, J.P.1
Ernzerhof, M.2
Burke, K.3
-
46
-
-
4243553426
-
Density-functional exchange-energy approximation with correct asymptotic behavior
-
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098-3100 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 3098-3100
-
-
Becke, A.D.1
-
47
-
-
0345491105
-
Development of the Colle-Salvetti correlationenergy formula into a functional ofthe electron density
-
Lee, C., Yang, W., & Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional ofthe electron density. Phys. Rev. B 37, 785-789 (1988).
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
48
-
-
0000216001
-
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
-
Vosko, S. H., Wilk, L., & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200-1211 (1980).
-
(1980)
Can. J. Phys.
, vol.58
, pp. 1200-1211
-
-
Vosko, S.H.1
Wilk, L.2
Nusair, M.3
-
49
-
-
33751157732
-
Ab initio calculation of vibrational absorption and circular dichro-ism spectra using density functional force fields
-
Stephens, P., Devlin, F., Chabalowski, C., & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichro-ism spectra using density functional force fields. J. Phys. Chem. 98, 11623-11627 (1994).
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 11623-11627
-
-
Stephens, P.1
Devlin, F.2
Chabalowski, C.3
Frisch, M.J.4
-
50
-
-
0000842304
-
Beckes 3 parameter functional combined with the non-local correlation LYP
-
Becke, A. d. Beckes 3 parameter functional combined with the non-local correlation LYP. J. Chem. Phys. 98, 5648 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 5648
-
-
Becke, A.D.1
-
51
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P., Burke, K., & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
53
-
-
0004135065
-
-
Springer
-
LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-R. in Neural Networks: Tricks of the Trade 9-48 (Springer, 2012).
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 9-48
-
-
LeCun, Y.A.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
54
-
-
79952580566
-
Mayavi: 3D visualization of scientific data
-
Ramachandran, P., & Varoquaux, G. Mayavi: 3D visualization of scientific data. Comput. Sci. Eng. 13, 40-51 (2011).
-
(2011)
Comput. Sci. Eng.
, vol.13
, pp. 40-51
-
-
Ramachandran, P.1
Varoquaux, G.2
|