메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3395-3403

Synthesizing the preferred inputs for neurons in neural networks via deep generator networks

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ACTIVATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; NEURONS; PATTERN RECOGNITION;

EID: 85019234593     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (751)

References (28)
  • 1
    • 21344435992 scopus 로고    scopus 로고
    • Invariant visual representation by single neurons in the human brain
    • R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation by single neurons in the human brain. Nature, 435(7045): 1102-1107, 2005.
    • (2005) Nature , vol.435 , Issue.7045 , pp. 1102-1107
    • Quiroga, R.Q.1    Reddy, L.2    Kreiman, G.3    Koch, C.4    Fried, I.5
  • 2
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer Vision-ECCV 2014, pages 818-833. Springer, 2014.
    • (2014) Computer Vision-ECCV 2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 5
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. ICLR workshop, 2014.
    • (2014) ICLR Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 9
    • 84988351612 scopus 로고    scopus 로고
    • Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks
    • A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. In Visualization for Deep Learning Workshop, ICML conference, 2016.
    • (2016) Visualization for Deep Learning Workshop, ICML Conference
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 10
    • 84970981476 scopus 로고    scopus 로고
    • Inceptionism: Going deeper into neural networks
    • Retrieved June, 20, 2015
    • A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper into neural networks. Google Research Blog. Retrieved June, 20, 2015.
    • Google Research Blog
    • Mordvintsev, A.1    Olah, C.2    Tyka, M.3
  • 11
    • 85019269786 scopus 로고    scopus 로고
    • Generating images with perceptual similarity metrics based on deep networks
    • A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016.
    • (2016) NIPS
    • Dosovitskiy, A.1    Brox, T.2
  • 12
    • 85083950260 scopus 로고    scopus 로고
    • A note on the evaluation of generative models
    • L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR, 2016.
    • (2016) ICLR
    • Theis, L.1    Van Den Oord, A.2    Bethge, M.3
  • 14
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 16
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 18
    • 84919754597 scopus 로고    scopus 로고
    • What regularized auto-encoders learn from the data-generating distribution
    • G. Alain and Y. Bengio. What regularized auto-encoders learn from the data-generating distribution. The Journal of Machine Learning Research, 15(1): 3563-3593, 2014.
    • (2014) The Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 3563-3593
    • Alain, G.1    Bengio, Y.2
  • 19
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • O. Russakovsky et al. Imagenet large scale visual recognition challenge. IJCV, 115(3): 211-252, 2015.
    • (2015) IJCV , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 23
    • 72249100259 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • J. Deng et al. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
    • (2009) CVPR
    • Deng, J.1
  • 25
    • 84986250533 scopus 로고    scopus 로고
    • Inverting visual representations with convolutional networks
    • A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks. In CVPR, 2016.
    • (2016) CVPR
    • Dosovitskiy, A.1    Brox, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.