-
1
-
-
34047127421
-
Generalized neural-network representation of high-dimensional potential-energy surfaces
-
J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
-
(2007)
Phys. Rev. Lett
, vol.98
, pp. 146401
-
-
Behler, J.1
Parrinello, M.2
-
2
-
-
34547842566
-
Representing molecule-surface interactions with symmetryadapted neural networks
-
J. Behler, S. Lorenz, K. Reuter, Representing molecule-surface interactions with symmetryadapted neural networks. J. Chem. Phys. 127, 014705 (2007).
-
(2007)
J. Chem. Phys
, vol.127
, pp. 014705
-
-
Behler, J.1
Lorenz, S.2
Reuter, K.3
-
3
-
-
77950441864
-
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
-
A. P. Bartók, M. C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
-
(2010)
Phys. Rev. Lett
, vol.104
, pp. 136403
-
-
Bartók, A.P.1
Payne, M.C.2
Kondor, R.3
Csányi, G.4
-
4
-
-
79953856961
-
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
-
J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
-
(2011)
J. Chem. Phys
, vol.134
, pp. 074106
-
-
Behler, J.1
-
5
-
-
80053512754
-
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
-
J. Behler, Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930-17955 (2011).
-
(2011)
Phys. Chem. Chem. Phys
, vol.13
, pp. 17930-17955
-
-
Behler, J.1
-
6
-
-
84861702414
-
Construction of high-dimensional neural network potentials using environment-dependent atom pairs
-
K. V. J. Jose, N. Artrith, J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J. Chem. Phys. 136, 194111 (2011).
-
(2011)
J. Chem. Phys
, vol.136
, pp. 194111
-
-
Jose, K.V.J.1
Artrith, N.2
Behler, J.3
-
7
-
-
84878571921
-
On representing chemical environments
-
A. P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
-
(2013)
Phys. Rev. B
, vol.87
, pp. 184115
-
-
Bartók, A.P.1
Kondor, R.2
Csányi, G.3
-
8
-
-
84936845597
-
Gaussian approximation potentials: A brief tutorial introduction
-
A. P. Bartók, G. Csányi, Gaussian approximation potentials: A brief tutorial introduction. Int. J. Quantum Chem. 115, 1051-1057 (2015).
-
(2015)
Int. J. Quantum Chem
, vol.115
, pp. 1051-1057
-
-
Bartók, A.P.1
Csányi, G.2
-
9
-
-
84969944517
-
Comparing molecules and solids across structural and alchemical space
-
S. De, A. P. Bartók, G. Csányi, M. Ceriotti, Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18, 13754-13769 (2016).
-
(2016)
Phys. Chem. Chem. Phys
, vol.18
, pp. 13754-13769
-
-
Bartók, A.P.1
Csányi, G.2
Ceriotti, M.3
-
10
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
M. Rupp, A. Tkatchenko, K.-R. Müller, O. A. von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
-
(2012)
Phys. Rev. Lett
, vol.108
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Müller, K.-R.3
Von Lilienfeld, O.A.4
-
11
-
-
84885045537
-
Machine learning of molecular electronic properties in chemical compound space
-
G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Müller, O. A. von Lilienfeld, Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 095003 (2013).
-
(2013)
New J. Phys
, vol.15
, pp. 095003
-
-
Montavon, G.1
Rupp, M.2
Gobre, V.3
Vazquez-Mayagoitia, A.4
Hansen, K.5
Tkatchenko, A.6
Müller, K.-R.7
Von Lilienfeld, O.A.8
-
12
-
-
84882415695
-
Assessment and validation of machine learning methods for predicting molecular atomization energies
-
K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A. von Lilienfeld, A. Tkatchenko, K.-R. Müller, Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404-3419 (2013).
-
(2013)
J. Chem. Theory Comput
, vol.9
, pp. 3404-3419
-
-
Hansen, K.1
Montavon, G.2
Biegler, F.3
Fazli, S.4
Rupp, M.5
Scheffler, M.6
Von Lilienfeld, O.A.7
Tkatchenko, A.8
Müller, K.-R.9
-
13
-
-
84935014439
-
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
-
K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. von Lilienfeld, K.-R. Müller, A. Tkatchenko, Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326-2331 (2015).
-
(2015)
J. Phys. Chem. Lett
, vol.6
, pp. 2326-2331
-
-
Hansen, K.1
Biegler, F.2
Ramakrishnan, R.3
Pronobis, W.4
Von Lilienfeld, O.A.5
Müller, K.-R.6
Tkatchenko, A.7
-
14
-
-
84939857092
-
Machine learning for quantum mechanical properties of atoms in molecules
-
M. Rupp, R. Ramakrishnan, O. A. von Lilienfeld, Machine learning for quantum mechanical properties of atoms in molecules. J. Phys. Chem. Lett. 6, 3309-3313 (2015).
-
(2015)
J. Phys. Chem. Lett
, vol.6
, pp. 3309-3313
-
-
Rupp, M.1
Ramakrishnan, R.2
Von Lilienfeld, O.A.3
-
15
-
-
84943744240
-
Learning scheme to predict atomic forces and accelerate materials simulations
-
V. Botu, R. Ramprasad, Learning scheme to predict atomic forces and accelerate materials simulations. Phys. Rev. B 92, 094306 (2015).
-
(2015)
Phys. Rev. B
, vol.92
, pp. 094306
-
-
Botu, V.1
Ramprasad, R.2
-
16
-
-
85041401248
-
Quantum energy regression using scattering transforms
-
M. Hirn, N. Poilvert, S. Mallat, Quantum energy regression using scattering transforms. CoRR arXiv:1502.02077 (2015).
-
(2015)
CoRR
-
-
Hirn, M.1
Poilvert, N.2
Mallat, S.3
-
17
-
-
84994339676
-
Perspective: Machine learning potentials for atomistic simulations
-
J. Behler, Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).
-
(2016)
J. Chem. Phys
, vol.145
, pp. 170901
-
-
Behler, J.1
-
18
-
-
84924365603
-
Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
-
Z. Li, J. R. Kermode, A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).
-
(2015)
Phys. Rev. Lett
, vol.114
, pp. 096405
-
-
Li, Z.1
Kermode, J.R.2
De Vita, A.3
-
19
-
-
14544299611
-
On learning vector-valued functions
-
C. A. Micchelli, M. A. Pontil, On learning vector-valued functions. Neural Comput. 17, 177-204 (2005).
-
(2005)
Neural Comput
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.A.2
-
20
-
-
48849098893
-
Universal multi-task kernels
-
A. Caponnetto, C. A. Micchelli, M. Pontil, Y. Ying, Universal multi-task kernels. J. Mach. Learn. Res. 9, 1615-1646 (2008).
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 1615-1646
-
-
Caponnetto, A.1
Micchelli, C.A.2
Pontil, M.3
Ying, Y.4
-
23
-
-
0003498504
-
-
D. Zwillinger, Eds. Academic Press, ed
-
I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, A. Jeffrey, D. Zwillinger, Eds. (Academic Press, ed. 7, 2007).
-
(2007)
Table of Integrals, Series, and Products, A. Jeffrey
, pp. 7
-
-
Gradshteyn, I.S.1
Ryzhik, I.M.2
-
24
-
-
78649437871
-
Matérn cross-covariance functions for multivariate random fields
-
T. Gneiting, W. Kleiber, M. Schlather, Matérn cross-covariance functions for multivariate random fields. J. Am. Stat. Assoc. 105, 1167-1177 (2010).
-
(2010)
J. Am. Stat. Assoc
, vol.105
, pp. 1167-1177
-
-
Gneiting, T.1
Kleiber, W.2
Schlather, M.3
-
26
-
-
0003474751
-
-
Cambridge Univ. Press, ed. 3
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge Univ. Press, ed. 3, 2007).
-
(2007)
Numerical Recipes: The Art of Scientific Computing
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
27
-
-
4243943295
-
Generalized gradient approximation made simple
-
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
-
(1996)
Phys. Rev. Lett
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
28
-
-
61349180195
-
Accurate molecular van derwaals interactions from ground-state electron density and free-atom reference data
-
A. Tkatchenko,M. Scheffler, Accurate molecular Van DerWaals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).
-
(2009)
Phys. Rev. Lett
, vol.102
, pp. 073005
-
-
Scheffler, A.1
-
29
-
-
84893737295
-
I-pi: A python interface for ab initio path integral molecular dynamics simulations
-
M. Ceriotti, J. More, D. E. Manolopoulos, i-PI: A Python interface for ab initio path integral molecular dynamics simulations. Comput. Phys. Commun. 185, 1019-1026 (2014).
-
(2014)
Comput. Phys. Commun
, vol.185
, pp. 1019-1026
-
-
Ceriotti, M.1
More, J.2
Manolopoulos, D.E.3
-
30
-
-
84961291029
-
Modeling quantum nuclei with perturbed path integral molecular dynamics
-
I. Poltavsky, A. Tkatchenko, Modeling quantum nuclei with perturbed path integral molecular dynamics. Chem. Sci. 7, 1368-1372 (2016).
-
(2016)
Chem. Sci
, vol.7
, pp. 1368-1372
-
-
Poltavsky, I.1
Tkatchenko, A.2
-
31
-
-
70449418439
-
Learning with kernels: Support vector machines
-
MIT Press
-
A. J. Smola, B. Schölkopf, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 2001).
-
(2001)
Regularization, Optimization, and beyond
-
-
Smola, A.J.1
Schölkopf, B.2
-
32
-
-
84862560607
-
Finding density functionals with machine learning
-
J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, K. Burke, Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).
-
(2012)
Phys. Rev. Lett
, vol.108
, pp. 253002
-
-
Snyder, J.C.1
Rupp, M.2
Hansen, K.3
Müller, K.-R.4
Burke, K.5
-
33
-
-
84936751541
-
Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives
-
J. C. Snyder, M. Rupp, K.-R. Müller, K. Burke, Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives. Int. J. Quantum Chem. 115, 1102-1114 (2015).
-
(2015)
Int. J. Quantum Chem
, vol.115
, pp. 1102-1114
-
-
Snyder, J.C.1
Rupp, M.2
Müller, K.-R.3
Burke, K.4
-
34
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299 (1998).
-
(1998)
Neural Comput
, vol.10
, pp. 1299
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
35
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Ratsch, A. J. Smola, Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. Learn. Syst. 10, 1000-1017 (1999).
-
(1999)
IEEE Trans. Neural Netw. Learn. Syst
, vol.10
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.-R.5
Ratsch, G.6
Smola, A.J.7
-
36
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. Learn. Syst. 12, 181-201 (2001).
-
(2001)
IEEE Trans. Neural Netw. Learn. Syst
, vol.12
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
|