메뉴 건너뛰기




Volumn 3, Issue 5, 2017, Pages

Machine learning of accurate energy-conserving molecular force fields

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CALCULATIONS; LEARNING SYSTEMS; MOLECULAR DYNAMICS; MOLECULES; NAPHTHALENE; POTENTIAL ENERGY; QUANTUM CHEMISTRY; QUANTUM THEORY; VECTOR SPACES; VECTORS;

EID: 85041381183     PISSN: None     EISSN: 23752548     Source Type: Journal    
DOI: 10.1126/sciadv.1603015     Document Type: Article
Times cited : (1284)

References (36)
  • 1
    • 34047127421 scopus 로고    scopus 로고
    • Generalized neural-network representation of high-dimensional potential-energy surfaces
    • J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
    • (2007) Phys. Rev. Lett , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 2
    • 34547842566 scopus 로고    scopus 로고
    • Representing molecule-surface interactions with symmetryadapted neural networks
    • J. Behler, S. Lorenz, K. Reuter, Representing molecule-surface interactions with symmetryadapted neural networks. J. Chem. Phys. 127, 014705 (2007).
    • (2007) J. Chem. Phys , vol.127 , pp. 014705
    • Behler, J.1    Lorenz, S.2    Reuter, K.3
  • 3
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
    • A. P. Bartók, M. C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
    • (2010) Phys. Rev. Lett , vol.104 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 4
    • 79953856961 scopus 로고    scopus 로고
    • Atom-centered symmetry functions for constructing high-dimensional neural network potentials
    • J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
    • (2011) J. Chem. Phys , vol.134 , pp. 074106
    • Behler, J.1
  • 5
    • 80053512754 scopus 로고    scopus 로고
    • Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
    • J. Behler, Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930-17955 (2011).
    • (2011) Phys. Chem. Chem. Phys , vol.13 , pp. 17930-17955
    • Behler, J.1
  • 6
    • 84861702414 scopus 로고    scopus 로고
    • Construction of high-dimensional neural network potentials using environment-dependent atom pairs
    • K. V. J. Jose, N. Artrith, J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J. Chem. Phys. 136, 194111 (2011).
    • (2011) J. Chem. Phys , vol.136 , pp. 194111
    • Jose, K.V.J.1    Artrith, N.2    Behler, J.3
  • 7
    • 84878571921 scopus 로고    scopus 로고
    • On representing chemical environments
    • A. P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
    • (2013) Phys. Rev. B , vol.87 , pp. 184115
    • Bartók, A.P.1    Kondor, R.2    Csányi, G.3
  • 8
    • 84936845597 scopus 로고    scopus 로고
    • Gaussian approximation potentials: A brief tutorial introduction
    • A. P. Bartók, G. Csányi, Gaussian approximation potentials: A brief tutorial introduction. Int. J. Quantum Chem. 115, 1051-1057 (2015).
    • (2015) Int. J. Quantum Chem , vol.115 , pp. 1051-1057
    • Bartók, A.P.1    Csányi, G.2
  • 9
    • 84969944517 scopus 로고    scopus 로고
    • Comparing molecules and solids across structural and alchemical space
    • S. De, A. P. Bartók, G. Csányi, M. Ceriotti, Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18, 13754-13769 (2016).
    • (2016) Phys. Chem. Chem. Phys , vol.18 , pp. 13754-13769
    • Bartók, A.P.1    Csányi, G.2    Ceriotti, M.3
  • 10
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • M. Rupp, A. Tkatchenko, K.-R. Müller, O. A. von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
    • (2012) Phys. Rev. Lett , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    Von Lilienfeld, O.A.4
  • 14
    • 84939857092 scopus 로고    scopus 로고
    • Machine learning for quantum mechanical properties of atoms in molecules
    • M. Rupp, R. Ramakrishnan, O. A. von Lilienfeld, Machine learning for quantum mechanical properties of atoms in molecules. J. Phys. Chem. Lett. 6, 3309-3313 (2015).
    • (2015) J. Phys. Chem. Lett , vol.6 , pp. 3309-3313
    • Rupp, M.1    Ramakrishnan, R.2    Von Lilienfeld, O.A.3
  • 15
    • 84943744240 scopus 로고    scopus 로고
    • Learning scheme to predict atomic forces and accelerate materials simulations
    • V. Botu, R. Ramprasad, Learning scheme to predict atomic forces and accelerate materials simulations. Phys. Rev. B 92, 094306 (2015).
    • (2015) Phys. Rev. B , vol.92 , pp. 094306
    • Botu, V.1    Ramprasad, R.2
  • 16
    • 85041401248 scopus 로고    scopus 로고
    • Quantum energy regression using scattering transforms
    • M. Hirn, N. Poilvert, S. Mallat, Quantum energy regression using scattering transforms. CoRR arXiv:1502.02077 (2015).
    • (2015) CoRR
    • Hirn, M.1    Poilvert, N.2    Mallat, S.3
  • 17
    • 84994339676 scopus 로고    scopus 로고
    • Perspective: Machine learning potentials for atomistic simulations
    • J. Behler, Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).
    • (2016) J. Chem. Phys , vol.145 , pp. 170901
    • Behler, J.1
  • 18
    • 84924365603 scopus 로고    scopus 로고
    • Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
    • Z. Li, J. R. Kermode, A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).
    • (2015) Phys. Rev. Lett , vol.114 , pp. 096405
    • Li, Z.1    Kermode, J.R.2    De Vita, A.3
  • 19
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • C. A. Micchelli, M. A. Pontil, On learning vector-valued functions. Neural Comput. 17, 177-204 (2005).
    • (2005) Neural Comput , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.A.2
  • 24
    • 78649437871 scopus 로고    scopus 로고
    • Matérn cross-covariance functions for multivariate random fields
    • T. Gneiting, W. Kleiber, M. Schlather, Matérn cross-covariance functions for multivariate random fields. J. Am. Stat. Assoc. 105, 1167-1177 (2010).
    • (2010) J. Am. Stat. Assoc , vol.105 , pp. 1167-1177
    • Gneiting, T.1    Kleiber, W.2    Schlather, M.3
  • 27
    • 4243943295 scopus 로고    scopus 로고
    • Generalized gradient approximation made simple
    • J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
    • (1996) Phys. Rev. Lett , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 28
    • 61349180195 scopus 로고    scopus 로고
    • Accurate molecular van derwaals interactions from ground-state electron density and free-atom reference data
    • A. Tkatchenko,M. Scheffler, Accurate molecular Van DerWaals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).
    • (2009) Phys. Rev. Lett , vol.102 , pp. 073005
    • Scheffler, A.1
  • 29
    • 84893737295 scopus 로고    scopus 로고
    • I-pi: A python interface for ab initio path integral molecular dynamics simulations
    • M. Ceriotti, J. More, D. E. Manolopoulos, i-PI: A Python interface for ab initio path integral molecular dynamics simulations. Comput. Phys. Commun. 185, 1019-1026 (2014).
    • (2014) Comput. Phys. Commun , vol.185 , pp. 1019-1026
    • Ceriotti, M.1    More, J.2    Manolopoulos, D.E.3
  • 30
    • 84961291029 scopus 로고    scopus 로고
    • Modeling quantum nuclei with perturbed path integral molecular dynamics
    • I. Poltavsky, A. Tkatchenko, Modeling quantum nuclei with perturbed path integral molecular dynamics. Chem. Sci. 7, 1368-1372 (2016).
    • (2016) Chem. Sci , vol.7 , pp. 1368-1372
    • Poltavsky, I.1    Tkatchenko, A.2
  • 33
    • 84936751541 scopus 로고    scopus 로고
    • Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives
    • J. C. Snyder, M. Rupp, K.-R. Müller, K. Burke, Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives. Int. J. Quantum Chem. 115, 1102-1114 (2015).
    • (2015) Int. J. Quantum Chem , vol.115 , pp. 1102-1114
    • Snyder, J.C.1    Rupp, M.2    Müller, K.-R.3    Burke, K.4
  • 34
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299 (1998).
    • (1998) Neural Comput , vol.10 , pp. 1299
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.