메뉴 건너뛰기




Volumn 6, Issue 12, 2015, Pages 2326-2331

Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

Author keywords

atomization energies; chemical compound space; machine learning; many body potentials; molecular properties

Indexed keywords

ARTIFICIAL INTELLIGENCE; ATOMIZATION; CHEMICAL COMPOUNDS; DENSITY FUNCTIONAL THEORY; ELECTRONIC PROPERTIES; FORECASTING; LEARNING SYSTEMS; MOLECULES;

EID: 84935014439     PISSN: None     EISSN: 19487185     Source Type: Journal    
DOI: 10.1021/acs.jpclett.5b00831     Document Type: Article
Times cited : (807)

References (23)
  • 2
    • 77950503976 scopus 로고    scopus 로고
    • Virtual Screening: An Endless Staircase?
    • Schneider, G. Virtual Screening: An Endless Staircase? Nat. Rev. 2010, 9, 273
    • (2010) Nat. Rev. , vol.9 , pp. 273
    • Schneider, G.1
  • 4
    • 33845324128 scopus 로고    scopus 로고
    • Using Neural Networks to Represent Potential Surfaces as Sums of Products
    • Manzhos, S.; Carrington, T. Using Neural Networks to Represent Potential Surfaces as Sums of Products J. Chem. Phys. 2006, 125, 194105
    • (2006) J. Chem. Phys. , vol.125 , pp. 194105
    • Manzhos, S.1    Carrington, T.2
  • 5
    • 34047127421 scopus 로고    scopus 로고
    • Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
    • Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces Phys. Rev. Lett. 2007, 98, 146401
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 6
    • 79953856961 scopus 로고    scopus 로고
    • Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Networks Potentials
    • Behler, J. Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Networks Potentials J. Chem. Phys. 2011, 134, 074106
    • (2011) J. Chem. Phys. , vol.134 , pp. 074106
    • Behler, J.1
  • 7
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    • Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons Phys. Rev. Lett. 2010, 104, 136403
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 8
    • 84907208731 scopus 로고    scopus 로고
    • Prediction of Intramolecular Polarization of Aromatic Amino Acids using Kriging Machine Learning
    • Fletcher, T. L.; Davie, S. J.; Popelier, P. L. Prediction of Intramolecular Polarization of Aromatic Amino Acids using Kriging Machine Learning J. Chem. Theory Comput. 2014, 10, 3708-3719
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 3708-3719
    • Fletcher, T.L.1    Davie, S.J.2    Popelier, P.L.3
  • 9
    • 16244388286 scopus 로고    scopus 로고
    • Virtual Exploration of the Small-Molecule Chemical Universe below 160 da
    • Fink, T.; Bruggesser, H.; Reymond, J.-L. Virtual Exploration of the Small-Molecule Chemical Universe Below 160 Da Angew. Chem., Int. Ed. 2005, 44, 1504
    • (2005) Angew. Chem., Int. Ed. , vol.44 , pp. 1504
    • Fink, T.1    Bruggesser, H.2    Reymond, J.-L.3
  • 10
    • 34247194965 scopus 로고    scopus 로고
    • Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery
    • Fink, T.; Reymond, J.-L. Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery J. Chem. Inf. Model. 2007, 47, 342
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 342
    • Fink, T.1    Reymond, J.-L.2
  • 12
    • 4243943295 scopus 로고    scopus 로고
    • Generalized Gradient Approximation Made Simple
    • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 14
    • 0001322105 scopus 로고    scopus 로고
    • Rationale for Mixing Exact Exchange with Density Functional Approximations
    • Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for Mixing Exact Exchange with Density Functional Approximations J. Chem. Phys. 1996, 105, 9982
    • (1996) J. Chem. Phys. , vol.105 , pp. 9982
    • Perdew, J.P.1    Ernzerhof, M.2    Burke, K.3
  • 15
    • 0038390449 scopus 로고    scopus 로고
    • Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical
    • Lynch, B. J.; Truhlar, D. G. Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical J. Phys. Chem. A 2003, 107, 3898
    • (2003) J. Phys. Chem. A , vol.107 , pp. 3898
    • Lynch, B.J.1    Truhlar, D.G.2
  • 17
    • 84856512353 scopus 로고    scopus 로고
    • Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
    • Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning Phys. Rev. Lett. 2012, 108, 058301
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    Von Lilienfeld, O.A.4
  • 18
    • 33947483256 scopus 로고
    • Bond Energies
    • Benson, S. W., III. Bond Energies J. Chem. Educ. 1965, 42, 502
    • (1965) J. Chem. Educ. , vol.42 , pp. 502
    • Benson, S.W.1
  • 19
    • 2942731012 scopus 로고    scopus 로고
    • An Extensive Empirical Study of Feature Selection Metrics for Text Classification
    • Forman, G. An Extensive Empirical Study of Feature Selection Metrics for Text Classification J. Mach. Learn. Res. 2003, 3, 1289
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289
    • Forman, G.1
  • 20
    • 84957069814 scopus 로고    scopus 로고
    • Text Categorization with Support Vector Machines: Learning with Many Relevant Features
    • Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features ECML '98 Proc. 10th Eur. Conf. Mach. Learn. 1998, 137-142
    • (1998) ECML '98 Proc. 10th Eur. Conf. Mach. Learn. , pp. 137-142
    • Joachims, T.1
  • 21
    • 0039224938 scopus 로고
    • Homometric Structures
    • Patterson, A. L. Homometric Structures Nature 1939, 143, 939
    • (1939) Nature , vol.143 , pp. 939
    • Patterson, A.L.1
  • 23
    • 84938679411 scopus 로고    scopus 로고
    • Quantum Chemistry Structures and Properties of 134 Kilo Molecules
    • Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum Chemistry Structures and Properties of 134 Kilo Molecules Sci. Data 2014, 1, 140022
    • (2014) Sci. Data , vol.1 , pp. 140022
    • Ramakrishnan, R.1    Dral, P.O.2    Rupp, M.3    Von Lilienfeld, O.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.