메뉴 건너뛰기




Volumn , Issue , 1997, Pages 473-479

LSTM can solve hard long time lag problems

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS;

EID: 0000370416     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (839)

References (20)
  • 1
    • 0000971250 scopus 로고
    • Credit assignment through time: Alternatives to backpropagation
    • J. D. Cowan, G. Tesauro, and J. Alspector, editors, San Mateo, CA: Morgan Kaufmann
    • Y. Bengio and P. Frasconi. Credit assignment through time: Alternatives to backpropagation. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6, pages 75-82. San Mateo, CA: Morgan Kaufmann, 1994.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 75-82
    • Bengio, Y.1    Frasconi, P.2
  • 2
    • 85153946439 scopus 로고
    • An input output hmm architecture
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge MA
    • Y. Bengio and P. Frasconi. An input output HMM architecture. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 427-434. MIT Press, Cambridge MA, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 427-434
    • Bengio, Y.1    Frasconi, P.2
  • 3
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 6
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation learning algorithm
    • R. P. Lipp-mann, J. E. Moody, and D. S. Touretzky, editors, San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman. The recurrent cascade-correlation learning algorithm. In R. P. Lipp-mann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 190-196. San Mateo, CA: Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 190-196
    • Fahlman, S.E.1
  • 7
    • 0003575034 scopus 로고
    • Diploma thesis, Institut fur Inform at ik, Lehrstuhl Prof. Brauer, Technische Universitat Munchen
    • J. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut fur Inform at ik, Lehrstuhl Prof. Brauer, Technische Universitat Munchen, 1991. See www7informatik.tu-muenchen.de/~hochrat.
    • (1991) Untersuchungen zu Dynamischen Neuronalen Netzen
    • Hochreiter, J.1
  • 8
    • 84886287164 scopus 로고
    • Long short-term memory
    • Fakultat fur Informatik, Technische Universitat Munchen
    • S. Hochreiter and J. Schmidhuber. Long short-term memory. Technical Report FKI-207-95, Fakultat fur Informatik, Technische Universitat Munchen, 1995. Revised 1996 (see www.idsia.ch/~juergen, www7informatik.tu-muenchen.de/ ~hochreit).
    • (1995) Technical Report FKI-207-95
    • Hochreiter, S.1    Schmidhuber, J.2
  • 9
    • 84890453272 scopus 로고
    • Learning long-term dependencies is not as difficult with narx recurrent neural networks
    • Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742
    • T. Lin, B. G. Home, P. Tino, and C. L. Giles. Learning long-term dependencies is not as difficult with NARX recurrent neural networks. Technical Report UMIACS-TR-95-78 and CS-TR-3500, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, 1995.
    • (1995) Technical Report UMIACS-TR-95-78 and CS-TR-3500
    • Lin, T.1    Home, B.G.2    Tino, P.3    Giles, C.L.4
  • 10
    • 0006311788 scopus 로고
    • First-order recurrent neural networks and deterministic finite state automata
    • P. Manolios and R. Fanelli. First-order recurrent neural networks and deterministic finite state automata. Neural Computation, 6:1155-1173, 1994.
    • (1994) Neural Computation , vol.6 , pp. 1155-1173
    • Manolios, P.1    Fanelli, R.2
  • 12
    • 0005316958 scopus 로고
    • Induction of multiscale temporal structure
    • J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, San Mateo, CA: Morgan Kaufmann
    • M. C. Mozer. Induction of multiscale temporal structure. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural Information Processing Systems 4, pages 275-282. San Mateo, CA: Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 275-282
    • Mozer, M.C.1
  • 13
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions on Neural Networks, 6(5):1212-1228, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 14
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • J. B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227-252, 1991.
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pollack, J.B.1
  • 15
    • 0003838146 scopus 로고
    • The utility driven dynamic error propagation network
    • Cambridge University Engineering Department
    • A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical Report CUED/F-INFENG/TR. 1, Cambridge University Engineering Department, 1987.
    • (1987) Technical Report CUED/F-INFENG/TR , vol.1
    • Robinson, A.J.1    Fallside, F.2
  • 16
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • J. H. Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2):234-242, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.H.1
  • 17
    • 0001274675 scopus 로고
    • Learning sequential structures with the real-time recurrent learning algorithm
    • A. W. Smith and D. Zipser. Learning sequential structures with the real-time recurrent learning algorithm. International Journal of Neural Systems, 1(2):125-131, 1989.
    • (1989) International Journal of Neural Systems , vol.1 , Issue.2 , pp. 125-131
    • Smith, A.W.1    Zipser, D.2
  • 18
    • 0001770758 scopus 로고
    • Dynamic construction of finite automata from examples using hill-climbing
    • Ann Arbor, MI
    • M. Tomita. Dynamic construction of finite automata from examples using hill-climbing. In Proceedings of the Fourth Annual Cognitive Science Conference, pages 105-108. Ann Arbor, MI, 1982.
    • (1982) Proceedings of the Fourth Annual Cognitive Science Conference , pp. 105-108
    • Tomita, M.1
  • 19
    • 0000032536 scopus 로고
    • Induction of finite-state automata using second-order recurrent networks
    • J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, San Mateo, CA: Morgan Kaufmann
    • R. L. Watrous and G. M. Kuhn. Induction of finite-state automata using second-order recurrent networks. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural Information Processing Systems 4, pages 309-316. San Mateo, CA: Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 309-316
    • Watrous, R.L.1    Kuhn, G.M.2
  • 20
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation, 4:491-501, 1990.
    • (1990) Neural Computation , vol.4 , pp. 491-501
    • Williams, R.J.1    Peng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.