-
1
-
-
84862276328
-
Structure, function and diversity of the healthy human microbiome
-
Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome. Nature 486 (2012), 207–214.
-
(2012)
Nature
, vol.486
, pp. 207-214
-
-
Human Microbiome Project Consortium1
-
2
-
-
84968901892
-
Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity
-
Zhernakova, A., et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352 (2016), 565–569.
-
(2016)
Science
, vol.352
, pp. 565-569
-
-
Zhernakova, A.1
-
3
-
-
84968918909
-
Population-level analysis of gut microbiome variation
-
Falony, G., et al. Population-level analysis of gut microbiome variation. Science 352 (2016), 560–564.
-
(2016)
Science
, vol.352
, pp. 560-564
-
-
Falony, G.1
-
4
-
-
84925002456
-
Social networks predict gut microbiome composition in wild baboons
-
Tung, J., et al. Social networks predict gut microbiome composition in wild baboons. Elife, 4, 2015, e05224.
-
(2015)
Elife
, vol.4
-
-
Tung, J.1
-
5
-
-
84907190237
-
Longitudinal analysis of microbial interaction between humans and the indoor environment
-
Lax, S., et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345 (2014), 1048–1052.
-
(2014)
Science
, vol.345
, pp. 1048-1052
-
-
Lax, S.1
-
6
-
-
84960468261
-
Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns
-
Gomez, A., et al. Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 14 (2016), 2142–2153.
-
(2016)
Cell Rep.
, vol.14
, pp. 2142-2153
-
-
Gomez, A.1
-
7
-
-
84929300450
-
Antibiotics, pediatric dysbiosis, and disease
-
Vangay, P., et al. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17 (2015), 553–564.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 553-564
-
-
Vangay, P.1
-
8
-
-
84949256787
-
Variation in rural African Gut microbiota is strongly correlated with colonization by Entamoeba and subsistence
-
Morton, E.R., et al. Variation in rural African Gut microbiota is strongly correlated with colonization by Entamoeba and subsistence. PLoS Genet., 11, 2015, e1005658.
-
(2015)
PLoS Genet.
, vol.11
-
-
Morton, E.R.1
-
9
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David, L.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (2014), 559–563.
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
-
10
-
-
84975064151
-
Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability
-
343ra81
-
Yassour, M., et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med., 8, 2016 343ra81.
-
(2016)
Sci. Transl. Med.
, vol.8
-
-
Yassour, M.1
-
11
-
-
84965013978
-
Cross-species comparisons of host genetic associations with the microbiome
-
Goodrich, J.K., et al. Cross-species comparisons of host genetic associations with the microbiome. Science 352 (2016), 532–535.
-
(2016)
Science
, vol.352
, pp. 532-535
-
-
Goodrich, J.K.1
-
12
-
-
85016260961
-
Persistent microbiome alterations modulate the rate of post-dieting weight regain
-
Thaiss, C.A., et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540 (2016), 544–551.
-
(2016)
Nature
, vol.540
, pp. 544-551
-
-
Thaiss, C.A.1
-
13
-
-
84898809123
-
The microbiome in inflammatory bowel disease: current status and the future ahead
-
Kostic, A.D., et al. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146 (2014), 1489–1499.
-
(2014)
Gastroenterology
, vol.146
, pp. 1489-1499
-
-
Kostic, A.D.1
-
14
-
-
84936941938
-
Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment
-
Burns, M.B., et al. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med., 7, 2015, 55.
-
(2015)
Genome Med.
, vol.7
, pp. 55
-
-
Burns, M.B.1
-
15
-
-
84924040920
-
Structure of the gut microbiome following colonization with human feces determines colonic tumor burden
-
Baxter, N.T., et al. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome, 2, 2014, 20.
-
(2014)
Microbiome
, vol.2
, pp. 20
-
-
Baxter, N.T.1
-
16
-
-
84867074831
-
A metagenome-wide association study of gut microbiota in type 2 diabetes
-
Qin, J., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 (2012), 55–60.
-
(2012)
Nature
, vol.490
, pp. 55-60
-
-
Qin, J.1
-
17
-
-
84896092821
-
The treatment-naive microbiome in new-onset Crohn's disease
-
Gevers, D., et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15 (2014), 382–392.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 382-392
-
-
Gevers, D.1
-
18
-
-
84908234204
-
Reprogramming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism
-
Tong, M., et al. Reprogramming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J. 8 (2014), 2193–2206.
-
(2014)
ISME J.
, vol.8
, pp. 2193-2206
-
-
Tong, M.1
-
19
-
-
51849086745
-
Predominant role of host genetics in controlling the composition of gut microbiota
-
Khachatryan, Z.A., et al. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One, 3, 2008, e3064.
-
(2008)
PLoS One
, vol.3
-
-
Khachatryan, Z.A.1
-
20
-
-
84994131233
-
The gut microbiome – an emerging complex trait
-
Benson, A.K., The gut microbiome – an emerging complex trait. Nat. Genet. 48 (2016), 1301–1302.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1301-1302
-
-
Benson, A.K.1
-
21
-
-
84996479950
-
Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice
-
Leamy, L.J., et al. Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biol., 15, 2014, 552.
-
(2014)
Genome Biol.
, vol.15
, pp. 552
-
-
Leamy, L.J.1
-
22
-
-
84920909558
-
Diet dominates host genotype in shaping the murine gut microbiota
-
Carmody, R.N., et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17 (2015), 72–84.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 72-84
-
-
Carmody, R.N.1
-
23
-
-
78449296237
-
Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors
-
Benson, A.K., et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 18933–18938.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 18933-18938
-
-
Benson, A.K.1
-
24
-
-
84862491799
-
Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits
-
McKnite, A.M., et al. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One, 7, 2012, e39191.
-
(2012)
PLoS One
, vol.7
-
-
McKnite, A.M.1
-
25
-
-
84942846589
-
Genetic and environmental control of host–gut microbiota interactions
-
Org, E., et al. Genetic and environmental control of host–gut microbiota interactions. Genome Res. 25 (2015), 1558–1569.
-
(2015)
Genome Res.
, vol.25
, pp. 1558-1569
-
-
Org, E.1
-
26
-
-
84942436915
-
MICROBIOME. Rethinking heritability of the microbiome
-
van Opstal, E.J., Bordenstein, S.R., MICROBIOME. Rethinking heritability of the microbiome. Science 349 (2015), 1172–1173.
-
(2015)
Science
, vol.349
, pp. 1172-1173
-
-
van Opstal, E.J.1
Bordenstein, S.R.2
-
27
-
-
84910096224
-
Human genetics shape the gut microbiome
-
Goodrich, J.K., et al. Human genetics shape the gut microbiome. Cell 159 (2014), 789–799.
-
(2014)
Cell
, vol.159
, pp. 789-799
-
-
Goodrich, J.K.1
-
28
-
-
84925541323
-
Complex host genetics influence the microbiome in inflammatory bowel disease
-
Knights, D., et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med., 6, 2014, 107.
-
(2014)
Genome Med.
, vol.6
, pp. 107
-
-
Knights, D.1
-
29
-
-
84862286169
-
-
(2012) A framework for human microbiome research. Nature
-
A framework for human microbiome research. Nature 486, 215–221.
-
, vol.486
, pp. 215-221
-
-
-
30
-
-
84941647822
-
Host genetic variation impacts microbiome composition across human body sites
-
Blekhman, R., et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol., 16, 2015, 191.
-
(2015)
Genome Biol.
, vol.16
, pp. 191
-
-
Blekhman, R.1
-
31
-
-
84950978760
-
Genome-wide association studies of the human gut microbiota
-
Davenport, E.R., et al. Genome-wide association studies of the human gut microbiota. PLoS One, 10, 2015, e0140301.
-
(2015)
PLoS One
, vol.10
-
-
Davenport, E.R.1
-
32
-
-
85015984059
-
Host genetic variation in mucosal immunity pathways influences the upper airway microbiome
-
Igartua, C., et al. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. Microbiome, 5, 2017, 16.
-
(2017)
Microbiome
, vol.5
, pp. 16
-
-
Igartua, C.1
-
33
-
-
84989943149
-
Association of host genome with intestinal microbial composition in a large healthy cohort
-
Turpin, W., et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48 (2016), 1413–1417.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1413-1417
-
-
Turpin, W.1
-
34
-
-
84989832355
-
The effect of host genetics on the gut microbiome
-
Bonder, M.J., et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48 (2016), 1407–1412.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1407-1412
-
-
Bonder, M.J.1
-
35
-
-
84990998440
-
Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota
-
Wang, J., et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48 (2016), 1396–1406.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1396-1406
-
-
Wang, J.1
-
36
-
-
84949772416
-
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
-
Forslund, K., et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 (2015), 262–266.
-
(2015)
Nature
, vol.528
, pp. 262-266
-
-
Forslund, K.1
-
37
-
-
84873372079
-
NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer
-
Couturier-Maillard, A., et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123 (2013), 700–711.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 700-711
-
-
Couturier-Maillard, A.1
-
38
-
-
84939163442
-
Site-specific programming of the host epithelial transcriptome by the gut microbiota
-
Sommer, F., et al. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol., 16, 2015, 62.
-
(2015)
Genome Biol.
, vol.16
, pp. 62
-
-
Sommer, F.1
-
39
-
-
84907204435
-
Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape
-
Camp, J.G., et al. Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape. Genome Res. 24 (2014), 1504–1516.
-
(2014)
Genome Res.
, vol.24
, pp. 1504-1516
-
-
Camp, J.G.1
-
40
-
-
85023759286
-
Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor hepatocyte nuclear factor 4 alpha
-
Davison, J.M., et al. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor hepatocyte nuclear factor 4 alpha. Genome Res. 27 (2017), 1195–1206.
-
(2017)
Genome Res.
, vol.27
, pp. 1195-1206
-
-
Davison, J.M.1
-
41
-
-
85032157815
-
Host genotype and microbiota contribute asymmetrically to transcriptional variation in the threespine stickleback gut
-
Small, C.M., et al. Host genotype and microbiota contribute asymmetrically to transcriptional variation in the threespine stickleback gut. Genome Biol. Evol. 9 (2017), 504–520.
-
(2017)
Genome Biol. Evol.
, vol.9
, pp. 504-520
-
-
Small, C.M.1
-
42
-
-
84997509307
-
The Drosophila transcriptional network is structured by microbiota
-
Dobson, A.J., et al. The Drosophila transcriptional network is structured by microbiota. BMC Genomics, 17, 2016, 975.
-
(2016)
BMC Genomics
, vol.17
, pp. 975
-
-
Dobson, A.J.1
-
43
-
-
84929001104
-
The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans
-
GTEx Consortium, The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348 (2015), 648–660.
-
(2015)
Science
, vol.348
, pp. 648-660
-
-
GTEx Consortium1
-
44
-
-
84925541323
-
Complex host genetics influence the microbiome in inflammatory bowel disease
-
Knights, D., et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med., 6, 2014, 107.
-
(2014)
Genome Med.
, vol.6
, pp. 107
-
-
Knights, D.1
-
45
-
-
84911972606
-
Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics
-
O'Connor, A., et al. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm. Genome 25 (2014), 583–599.
-
(2014)
Mamm. Genome
, vol.25
, pp. 583-599
-
-
O'Connor, A.1
-
46
-
-
85017487720
-
Population-specific genome-wide mapping of expression quantitative trait loci in the colon of Chinese Han people
-
Guo, C., et al. Population-specific genome-wide mapping of expression quantitative trait loci in the colon of Chinese Han people. J. Dig. Dis. 17 (2016), 600–609.
-
(2016)
J. Dig. Dis.
, vol.17
, pp. 600-609
-
-
Guo, C.1
-
47
-
-
84975841277
-
Identification of susceptibility loci and genes for colorectal cancer risk
-
Zeng, C., et al. Identification of susceptibility loci and genes for colorectal cancer risk. Gastroenterology 150 (2016), 1633–1645.
-
(2016)
Gastroenterology
, vol.150
, pp. 1633-1645
-
-
Zeng, C.1
-
48
-
-
85010897486
-
O-002 genes in IBD-associated risk loci demonstrate genotype-, tissue-, and inflammation-specific patterns of expression in terminal ileum and colon mucosal tissue
-
Peloquin, J., et al. O-002 genes in IBD-associated risk loci demonstrate genotype-, tissue-, and inflammation-specific patterns of expression in terminal ileum and colon mucosal tissue. Inflamm. Bowel Dis., 22(Suppl. 1), 2016, S1.
-
(2016)
Inflamm. Bowel Dis.
, vol.22
, pp. S1
-
-
Peloquin, J.1
-
49
-
-
84928751590
-
Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci
-
Hulur, I., et al. Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci. BMC Genomics, 16, 2015, 138.
-
(2015)
BMC Genomics
, vol.16
, pp. 138
-
-
Hulur, I.1
-
50
-
-
84927716096
-
Characterization of expression quantitative trait loci in the human colon
-
Singh, T., et al. Characterization of expression quantitative trait loci in the human colon. Inflamm. Bowel Dis. 21 (2015), 251–256.
-
(2015)
Inflamm. Bowel Dis.
, vol.21
, pp. 251-256
-
-
Singh, T.1
-
51
-
-
84905581513
-
Putative cis-regulatory drivers in colorectal cancer
-
Ongen, H., et al. Putative cis-regulatory drivers in colorectal cancer. Nature 512 (2014), 87–90.
-
(2014)
Nature
, vol.512
, pp. 87-90
-
-
Ongen, H.1
-
52
-
-
84964315018
-
Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types
-
Li, Q., et al. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Hum. Mol. Genet. 23 (2014), 5294–5302.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5294-5302
-
-
Li, Q.1
-
53
-
-
84906836832
-
Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis
-
Closa, A., et al. Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis. Carcinogenesis 35 (2014), 2039–2046.
-
(2014)
Carcinogenesis
, vol.35
, pp. 2039-2046
-
-
Closa, A.1
-
54
-
-
84857174735
-
cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue
-
Loo, L.W.M., et al. cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PLoS One, 7, 2012, e30477.
-
(2012)
PLoS One
, vol.7
-
-
Loo, L.W.M.1
-
55
-
-
84856387609
-
Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection
-
Barreiro, L.B., et al. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 1204–1209.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 1204-1209
-
-
Barreiro, L.B.1
-
56
-
-
84896742056
-
Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression
-
1246949
-
Fairfax, B.P., et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science, 343, 2014 1246949.
-
(2014)
Science
, vol.343
-
-
Fairfax, B.P.1
-
57
-
-
84992381901
-
Genetic ancestry and natural selection drive population differences in immune responses to pathogens
-
657–669.e21
-
Nédélec, Y., et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell, 167, 2016 657–669.e21.
-
(2016)
Cell
, vol.167
-
-
Nédélec, Y.1
-
58
-
-
84930336482
-
Host genetic variation influences gene expression response to rhinovirus infection
-
Çalışkan, M., et al. Host genetic variation influences gene expression response to rhinovirus infection. PLoS Genet., 11, 2015, e1005111.
-
(2015)
PLoS Genet.
, vol.11
-
-
Çalışkan, M.1
-
59
-
-
84867745001
-
Host genetic and environmental effects on mouse intestinal microbiota
-
Campbell, J.H., et al. Host genetic and environmental effects on mouse intestinal microbiota. ISME J. 6 (2012), 2033–2044.
-
(2012)
ISME J.
, vol.6
, pp. 2033-2044
-
-
Campbell, J.H.1
-
60
-
-
79952749581
-
Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways
-
van Baarlen, P., et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc. Natl. Acad. Sci. U. S. A. 108:Suppl. 1 (2011), 4562–4569.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 4562-4569
-
-
van Baarlen, P.1
-
61
-
-
83855165652
-
Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa
-
Bron, P.A., et al. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 10 (2011), 66–78.
-
(2011)
Nat. Rev. Microbiol.
, vol.10
, pp. 66-78
-
-
Bron, P.A.1
-
62
-
-
85000472416
-
Bile acid: a potential inducer of colon cancer stem cells
-
Farhana, L., et al. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res. Ther., 7, 2016, 181.
-
(2016)
Stem Cell Res. Ther.
, vol.7
, pp. 181
-
-
Farhana, L.1
-
63
-
-
84927614562
-
Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells
-
Tsai, C.-C., et al. Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells. World J. Gastroenterol. 21 (2015), 4169–4177.
-
(2015)
World J. Gastroenterol.
, vol.21
, pp. 4169-4177
-
-
Tsai, C.-C.1
-
64
-
-
85006224611
-
Role of cancer stem cells in racial disparity in colorectal cancer
-
Farhana, L., et al. Role of cancer stem cells in racial disparity in colorectal cancer. Cancer Med. 5 (2016), 1268–1278.
-
(2016)
Cancer Med.
, vol.5
, pp. 1268-1278
-
-
Farhana, L.1
-
65
-
-
84902664242
-
Moguntinones – new selective inhibitors for the treatment of human colorectal cancer
-
Maderer, A., et al. Moguntinones – new selective inhibitors for the treatment of human colorectal cancer. Mol. Cancer Ther. 13 (2014), 1399–1409.
-
(2014)
Mol. Cancer Ther.
, vol.13
, pp. 1399-1409
-
-
Maderer, A.1
-
66
-
-
84885996161
-
Contribution of soft substrates to malignancy and tumor suppression during colon cancer cell division
-
Rabineau, M., et al. Contribution of soft substrates to malignancy and tumor suppression during colon cancer cell division. PLoS One, 8, 2013, e78468.
-
(2013)
PLoS One
, vol.8
-
-
Rabineau, M.1
-
67
-
-
84901803858
-
The HMI™ module: a new tool to study the Host–Microbiota Interaction in the human gastrointestinal tract in vitro
-
Marzorati, M., et al. The HMI™ module: a new tool to study the Host–Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol., 14, 2014, 133.
-
(2014)
BMC Microbiol.
, vol.14
, pp. 133
-
-
Marzorati, M.1
-
68
-
-
84953273098
-
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
-
Kim, H.J., et al. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E7–E15.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E7-E15
-
-
Kim, H.J.1
-
69
-
-
85021624640
-
Genetic and transcriptional analysis of human host response to healthy gut microbiota
-
Richards, A.L., et al. Genetic and transcriptional analysis of human host response to healthy gut microbiota. mSystems 1 (2016), e00067–16.
-
(2016)
mSystems
, vol.1
, pp. e00067-16
-
-
Richards, A.L.1
-
70
-
-
84979518893
-
Modeling human disease using organotypic cultures
-
Schweiger, P.J., Jensen, K.B., Modeling human disease using organotypic cultures. Curr. Opin. Cell Biol. 43 (2016), 22–29.
-
(2016)
Curr. Opin. Cell Biol.
, vol.43
, pp. 22-29
-
-
Schweiger, P.J.1
Jensen, K.B.2
-
71
-
-
84861578826
-
Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model
-
Tsilingiri, K., et al. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut 61 (2012), 1007–1015.
-
(2012)
Gut
, vol.61
, pp. 1007-1015
-
-
Tsilingiri, K.1
-
72
-
-
85012034974
-
2 vitamin D3 in African- and European-Americans
-
2 vitamin D3 in African- and European-Americans. J. Steroid Biochem. Mol. Biol. 168 (2017), 49–59.
-
(2017)
J. Steroid Biochem. Mol. Biol.
, vol.168
, pp. 49-59
-
-
Alleyne, D.1
-
73
-
-
84900795833
-
2 and 25(OH) vitamin D
-
2 and 25(OH) vitamin D. Physiol. Genomics 46 (2014), 302–308.
-
(2014)
Physiol. Genomics
, vol.46
, pp. 302-308
-
-
Mapes, B.1
-
74
-
-
67349123408
-
Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche
-
Sato, T., et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459 (2009), 262–265.
-
(2009)
Nature
, vol.459
, pp. 262-265
-
-
Sato, T.1
-
75
-
-
79551686425
-
Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro
-
Spence, J.R., et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470 (2011), 105–109.
-
(2011)
Nature
, vol.470
, pp. 105-109
-
-
Spence, J.R.1
-
76
-
-
84964317107
-
Organoid models of human gastrointestinal development and disease
-
Dedhia, P.H., et al. Organoid models of human gastrointestinal development and disease. Gastroenterology 150 (2016), 1098–1112.
-
(2016)
Gastroenterology
, vol.150
, pp. 1098-1112
-
-
Dedhia, P.H.1
-
77
-
-
84959091265
-
Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes
-
Nozaki, K., et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J. Gastroenterol. 51 (2016), 206–213.
-
(2016)
J. Gastroenterol.
, vol.51
, pp. 206-213
-
-
Nozaki, K.1
-
78
-
-
84990057354
-
Co-culture of gastric organoids and immortalized stomach mesenchymal cells
-
Bertaux-Skeirik, N., et al. Co-culture of gastric organoids and immortalized stomach mesenchymal cells. Methods Mol. Biol. 1422 (2016), 23–31.
-
(2016)
Methods Mol. Biol.
, vol.1422
, pp. 23-31
-
-
Bertaux-Skeirik, N.1
-
79
-
-
84930926224
-
Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo
-
Finkbeiner, S.R., et al. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Rep. 4 (2015), 1140–1155.
-
(2015)
Stem Cell Rep.
, vol.4
, pp. 1140-1155
-
-
Finkbeiner, S.R.1
-
80
-
-
84922753974
-
A small intestinal organoid model of non-invasive enteric pathogen–epithelial cell interactions
-
Wilson, S.S., et al. A small intestinal organoid model of non-invasive enteric pathogen–epithelial cell interactions. Mucosal Immunol. 8 (2015), 352–361.
-
(2015)
Mucosal Immunol.
, vol.8
, pp. 352-361
-
-
Wilson, S.S.1
-
81
-
-
84919478713
-
Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function
-
Leslie, J.L., et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83 (2015), 138–145.
-
(2015)
Infect. Immun.
, vol.83
, pp. 138-145
-
-
Leslie, J.L.1
-
82
-
-
85020914748
-
Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli
-
Karve, S.S., et al. Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. PLoS One, 12, 2017, e0178966.
-
(2017)
PLoS One
, vol.12
-
-
Karve, S.S.1
-
83
-
-
84908293710
-
Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids
-
Lukovac, S., et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5 (2014), e01438–14.
-
(2014)
MBio
, vol.5
, pp. e01438-14
-
-
Lukovac, S.1
-
84
-
-
84969492201
-
Genetic determinants of the gut microbiome in UK twins
-
Goodrich, J.K., et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19 (2016), 731–743.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 731-743
-
-
Goodrich, J.K.1
-
85
-
-
84938612863
-
Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease
-
Morgan, X.C., et al. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol., 16, 2015, 67.
-
(2015)
Genome Biol.
, vol.16
, pp. 67
-
-
Morgan, X.C.1
-
86
-
-
84940780615
-
A gene-based association method for mapping traits using reference transcriptome data
-
Gamazon, E.R., et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47 (2015), 1091–1098.
-
(2015)
Nat. Genet.
, vol.47
, pp. 1091-1098
-
-
Gamazon, E.R.1
-
87
-
-
84960332883
-
Immunity: How Elie Metchnikoff Changed the Course of Modern Medicine
-
Chicago Review Press
-
Vikhanski, L., Immunity: How Elie Metchnikoff Changed the Course of Modern Medicine. 2016, Chicago Review Press.
-
(2016)
-
-
Vikhanski, L.1
-
88
-
-
77955709160
-
-
Probiotics: 100 years (1907–2007) after Elie Metchnikoff's observation. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology (Vol. 2) (Méndez-Vilas, A., ed.), Formatex
-
Anukam, K.C. and Reid, G. (2007) Probiotics: 100 years (1907–2007) after Elie Metchnikoff's observation. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology (Vol. 2) (Méndez-Vilas, A., ed.), pp. 466–473, Formatex.
-
(2007)
, pp. 466-473
-
-
Anukam, K.C.1
Reid, G.2
-
89
-
-
0001412472
-
Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis
-
Eiseman, B., et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44 (1958), 854–859.
-
(1958)
Surgery
, vol.44
, pp. 854-859
-
-
Eiseman, B.1
-
90
-
-
84910138842
-
Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates
-
Sonnenburg, E.D., Sonnenburg, J.L., Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20 (2014), 779–786.
-
(2014)
Cell Metab.
, vol.20
, pp. 779-786
-
-
Sonnenburg, E.D.1
Sonnenburg, J.L.2
-
91
-
-
84975292883
-
Understanding the mechanisms of faecal microbiota transplantation
-
Khoruts, A., Sadowsky, M.J., Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 13 (2016), 508–516.
-
(2016)
Nat. Rev. Gastroenterol. Hepatol.
, vol.13
, pp. 508-516
-
-
Khoruts, A.1
Sadowsky, M.J.2
-
92
-
-
84885864334
-
A statin-dependent QTL for GATM expression is associated with statin-induced myopathy
-
Mangravite, L.M., et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature 502 (2013), 377–380.
-
(2013)
Nature
, vol.502
, pp. 377-380
-
-
Mangravite, L.M.1
-
93
-
-
79960967243
-
Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes
-
Maranville, J.C., et al. Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet., 7, 2011, e1002162.
-
(2011)
PLoS Genet.
, vol.7
-
-
Maranville, J.C.1
-
94
-
-
84885303501
-
Genetic mapping with multiple levels of phenotypic information reveals determinants of lymphocyte glucocorticoid sensitivity
-
Maranville, J.C., et al. Genetic mapping with multiple levels of phenotypic information reveals determinants of lymphocyte glucocorticoid sensitivity. Am. J. Hum. Genet. 93 (2013), 735–743.
-
(2013)
Am. J. Hum. Genet.
, vol.93
, pp. 735-743
-
-
Maranville, J.C.1
-
95
-
-
84899827144
-
A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection
-
Siddle, K.J., et al. A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection. Genome Res. 24 (2014), 850–859.
-
(2014)
Genome Res.
, vol.24
, pp. 850-859
-
-
Siddle, K.J.1
-
96
-
-
77954763156
-
Genome-wide allele-specific analysis: insights into regulatory variation
-
Pastinen, T., Genome-wide allele-specific analysis: insights into regulatory variation. Nat. Rev. Genet. 11 (2010), 533–538.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 533-538
-
-
Pastinen, T.1
-
97
-
-
77950833803
-
Variation in transcription factor binding among humans
-
Kasowski, M., et al. Variation in transcription factor binding among humans. Science 328 (2010), 232–235.
-
(2010)
Science
, vol.328
, pp. 232-235
-
-
Kasowski, M.1
-
98
-
-
77950854479
-
Heritable individual-specific and allele-specific chromatin signatures in humans
-
McDaniell, R., et al. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328 (2010), 235–239.
-
(2010)
Science
, vol.328
, pp. 235-239
-
-
McDaniell, R.1
-
99
-
-
85027507858
-
Allele-specific expression reveals interactions between genetic variation and environment
-
Knowles, D.A., et al. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 14 (2017), 699–702.
-
(2017)
Nat. Methods
, vol.14
, pp. 699-702
-
-
Knowles, D.A.1
-
100
-
-
85002767455
-
High-throughput allele-specific expression across 250 environmental conditions
-
Moyerbrailean, G.A., et al. High-throughput allele-specific expression across 250 environmental conditions. Genome Res. 26 (2016), 1627–1638.
-
(2016)
Genome Res.
, vol.26
, pp. 1627-1638
-
-
Moyerbrailean, G.A.1
|