메뉴 건너뛰기




Volumn 1158, Issue , 2009, Pages 302-313

Inference of regulatory gene interactions from expression data using three-way mutual information

Author keywords

Computational methods; Regulatory networks

Indexed keywords

ALGORITHM; ARTICLE; CORRELATION ANALYSIS; DNA MICROARRAY; ESCHERICHIA COLI; GENE CONTROL; GENE EXPRESSION; GENE INTERACTION; GENE REGULATORY NETWORK; GENETIC ENGINEERING; GENETIC ENGINEERING AND GENE TECHNOLOGY; MATHEMATICAL COMPUTING; MATHEMATICAL GENETICS; MATHEMATICAL MODEL; MICROARRAY ANALYSIS; NONHUMAN; THREE WAY MUTUAL INFORMATION;

EID: 63849257557     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2008.03757.x     Document Type: Article
Times cited : (68)

References (25)
  • 1
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Bansal, M. et al. 2007. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3 : 78.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 78
    • Bansal, M.1
  • 2
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin, A.A. et al. 2006. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (Suppl 1 S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1 , pp. 7
    • Margolin, A.A.1
  • 3
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte, A.J. I.S. Kohane. 2000. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing 418 429.
    • (2000) Pacific Symposium on Biocomputing , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 5
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models. Science (New York, NY) 303 : 799 805.
    • (2004) Science (New York, NY) , vol.303 , pp. 799-805
    • Friedman, N.1
  • 6
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner, T.S. et al. 2003. Inferring genetic networks and identifying compound mode of action via expression profiling. Science (New York, NY) 301 : 102 105.
    • (2003) Science (New York, NY) , vol.301 , pp. 102-105
    • Gardner, T.S.1
  • 7
    • 0034570871 scopus 로고    scopus 로고
    • Correspondence analysis of genes and tissue types and finding genetic links from microarray data
    • Kishino, H. P.J. Waddell. 2000. Correspondence analysis of genes and tissue types and finding genetic links from microarray data. Genome Inform. 11 : 83 95.
    • (2000) Genome Inform. , vol.11 , pp. 83-95
    • Kishino, H.1    Waddell, P.J.2
  • 8
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer, J. K. Strimmer. 2005. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21 : 754 764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 10
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso, K. et al. 2005. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37 : 382 390.
    • (2005) Nat. Genet. , vol.37 , pp. 382-390
    • Basso, K.1
  • 11
    • 33750353888 scopus 로고    scopus 로고
    • Reverse engineering cellular networks
    • Margolin, A.A. et al. 2006. Reverse engineering cellular networks. Nat. Protocols 1 : 662 671.
    • (2006) Nat. Protocols , vol.1 , pp. 662-671
    • Margolin, A.A.1
  • 12
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith, J.J. et al. 2007. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5 : e8.
    • (2007) PLoS Biol. , vol.5 , pp. 8
    • Faith, J.J.1
  • 13
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • Schneidman, E. et al. 2006. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440 : 1007 1012.
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1
  • 14
    • 33745800831 scopus 로고    scopus 로고
    • Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes
    • In. A. Apostolico,*et al. Eds. Springer. Berlin/Heidelberg. pp.
    • Wang, K. et al. 2006. Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes. In RECOMB 2006, LNBI 3909. A. Apostolico, et al., Eds. Springer, Berlin/Heidelberg, pp. 348 362.
    • (2006) RECOMB 2006, LNBI 3909. , pp. 348-362
    • Wang, K.1
  • 15
    • 33847015674 scopus 로고    scopus 로고
    • Computational analysis of the synergy among multiple interacting genes
    • Anastassiou, D. 2007. Computational analysis of the synergy among multiple interacting genes. Mol. Syst. Biol. 3 : 83.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 83
    • Anastassiou, D.1
  • 16
    • 40149090339 scopus 로고    scopus 로고
    • Identification of gene interactions associated with disease from gene expression data using synergy networks
    • Highly accessed*Miller3rd.
    • Watkinson, J. et al. 2008. Identification of gene interactions associated with disease from gene expression data using synergy networks. BMC Syst. Biol. 2 : 10 Highly accessed Miller, 3rd. D. Anastassiou. 2006. Computational inference of the molecular logic for synaptic connectivity in C. elegans. Bioinformatics 22 : e497 e506.
    • (2006) BMC Syst. Biol. , vol.2 , pp. 10
    • Watkinson, J.1    Anastassiou, D.2
  • 17
    • 33644873438 scopus 로고    scopus 로고
    • RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions
    • Salgado, H. et al. 2006. RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 34 : D394 D397.
    • (2006) Nucleic Acids Res. , vol.34
    • Salgado, H.1
  • 18
    • 0033954767 scopus 로고    scopus 로고
    • Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase
    • Miller, S.P. et al. 2000. Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase. J. Biol. Chem. 275 : 833 839.
    • (2000) J. Biol. Chem. , vol.275 , pp. 833-839
    • Miller, S.P.1
  • 19
    • 0030925485 scopus 로고    scopus 로고
    • Surface signaling: Novel transcription initiation mechanism starting from the cell surface
    • Braun, V. 1997. Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch. Microbiol. 167 : 325 331.
    • (1997) Arch. Microbiol. , vol.167 , pp. 325-331
    • Braun, V.1
  • 20
    • 0022447734 scopus 로고
    • Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli
    • el-Mansi, E.M., H.G. Nimmo W.H. Holms. 1986. Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli. J. Gen. Microbiol. 132 : 797 806.
    • (1986) J. Gen. Microbiol. , vol.132 , pp. 797-806
    • El-Mansi, E.M.1    Nimmo, H.G.2    Holms, W.H.3
  • 21
    • 0032641874 scopus 로고    scopus 로고
    • Estimation of the information by an adaptive partitioning of the observation space
    • Darbellay, G.A. I. Vajda. 1999. Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans. Inform. Theory 45 : 1315 1321.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , pp. 1315-1321
    • Darbellay, G.A.1    Vajda, I.2
  • 22
    • 13244267007 scopus 로고    scopus 로고
    • Estimating mutual information using B-spline functions-an improved similarity measure for analysing gene expression data
    • Daub, C.O. et al. 2004. Estimating mutual information using B-spline functions-an improved similarity measure for analysing gene expression data. BMC Bioinform. 5 : 118.
    • (2004) BMC Bioinform. , vol.5 , pp. 118
    • Daub, C.O.1
  • 23
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau, R. et al. 2006. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7 : R36.
    • (2006) Genome Biol. , vol.7 , pp. 36
    • Bonneau, R.1
  • 24
    • 33847059639 scopus 로고    scopus 로고
    • Size matters: Network inference tackles the genome scale
    • Hayete, B., T.S. Gardner J.J. Collins. 2007. Size matters: network inference tackles the genome scale. Mol. Syst. Biol. 3 : 77.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 77
    • Hayete, B.1    Gardner, T.S.2    Collins, J.J.3
  • 25
    • 84996727238 scopus 로고    scopus 로고
    • The 'NetBuilder' project: Development of a tool for constructing, simulating, evolving, and analysing complex regulatory networks
    • Wegner, K. et al. 2007. The 'NetBuilder' project: development of a tool for constructing, simulating, evolving, and analysing complex regulatory networks. BMC Syst. Biol. 1 (Suppl 1 P72.
    • (2007) BMC Syst. Biol. , vol.1 , Issue.SUPPL. 1 , pp. 72
    • Wegner, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.