메뉴 건너뛰기




Volumn 11, Issue 91, 2014, Pages

Reverse engineering and identification in systems biology: Strategies, perspectives and challenges

Author keywords

Dynamic modelling; Identification; Inference; Reverse engineering; Systems biology

Indexed keywords

DYNAMIC MODELS; IDENTIFICATION (CONTROL SYSTEMS); INVERSE PROBLEMS; REVERSE ENGINEERING;

EID: 84891892050     PISSN: 17425689     EISSN: 17425662     Source Type: Journal    
DOI: 10.1098/rsif.2013.0505     Document Type: Article
Times cited : (203)

References (240)
  • 2
    • 0036500834 scopus 로고    scopus 로고
    • Reverse engineering of biological complexity
    • doi:10.1126/science.1069981
    • Csete ME, Doyle JC. 2002 Reverse engineering of biological complexity. Science 295, 1664-1669. (doi:10.1126/science.1069981)
    • (2002) Science , vol.295 , pp. 1664-1669
    • Csete, M.E.1    Doyle, J.C.2
  • 3
    • 0141484562 scopus 로고    scopus 로고
    • Biological networks: The tinkerer as an engineer
    • doi:10.1126/science.1089072
    • Alon U. 2003 Biological networks: the tinkerer as an engineer. Science 301, 1866-1867. (doi:10.1126/science.1089072)
    • (2003) Science , vol.301 , pp. 1866-1867
    • Alon, U.1
  • 4
    • 0037079050 scopus 로고    scopus 로고
    • Metabolic network structure determines key aspects of functionality and regulation
    • doi:10.1038/nature01166
    • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED. 2002 Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190-193. (doi:10.1038/nature01166)
    • (2002) Nature , vol.420 , pp. 190-193
    • Stelling, J.1    Klamt, S.2    Bettenbrock, K.3    Schuster, S.4    Gilles, E.D.5
  • 5
    • 33644807093 scopus 로고    scopus 로고
    • Feedback dynamics and cell function: Why systems biology is called systems biology
    • doi:10.1039/b502088n
    • Wolkenhauer O, Mesarović M. 2005 Feedback dynamics and cell function: why systems biology is called systems biology. Mol. Biosyst. 1, 14-16. (doi:10.1039/b502088n)
    • (2005) Mol. Biosyst. , vol.1 , pp. 14-16
    • Wolkenhauer, O.1    Mesarović, M.2
  • 6
    • 33750628424 scopus 로고    scopus 로고
    • Systems interface biology
    • doi:10.1098/rsif.2006.0143
    • Doyle FJ, Stelling J. 2006 Systems interface biology. J. R. Soc. Interface 3, 603-616. (doi:10.1098/rsif.2006.0143)
    • (2006) J. R. Soc. Interface , vol.3 , pp. 603-616
    • Doyle, F.J.1    Stelling, J.2
  • 7
    • 34047213964 scopus 로고    scopus 로고
    • Systems biology - An engineering perspective
    • doi:10.1016/j.jbiotec.2007.02.009
    • Kremling A, Saez-Rodriguez J. 2007 Systems biology - an engineering perspective. J. Biotechnol. 129, 329-351. (doi:10.1016/j.jbiotec.2007.02.009)
    • (2007) J. Biotechnol. , vol.129 , pp. 329-351
    • Kremling, A.1    Saez-Rodriguez, J.2
  • 8
    • 10444264607 scopus 로고    scopus 로고
    • Some new directions in control theory inspired by systems biology
    • doi:10.1049/sb:20045006
    • Sontag ED. 2004 Some new directions in control theory inspired by systems biology. Syst. Biol. 1, 9-18. (doi:10.1049/sb:20045006)
    • (2004) Syst. Biol. , vol.1 , pp. 9-18
    • Sontag, E.D.1
  • 9
    • 3442884234 scopus 로고    scopus 로고
    • Systems biology: From physiology to gene regulation
    • doi:10.1109/MCS.2004.1316654
    • Khammash M, El-Samad H. 2004 Systems biology: from physiology to gene regulation. IEEE Contr. Syst. 24, 62-76. (doi:10.1109/MCS.2004.1316654)
    • (2004) IEEE Contr. Syst. , vol.24 , pp. 62-76
    • Khammash, M.1    El-Samad, H.2
  • 11
    • 33044506498 scopus 로고    scopus 로고
    • Modelling biological complexity: A physical scientist's perspective
    • doi:10.1098/rsif.2005.0045
    • Coveney PV, Fowler PW. 2005 Modelling biological complexity: a physical scientist's perspective. J. R. Soc. Interface 2, 267-280. (doi:10.1098/rsif. 2005.0045)
    • (2005) J. R. Soc. Interface , vol.2 , pp. 267-280
    • Coveney, P.V.1    Fowler, P.W.2
  • 12
    • 0036499997 scopus 로고    scopus 로고
    • Modeling the heart - From genes to cells to the whole organ
    • doi:10.1126/science.1069881
    • Noble D. 2002 Modeling the heart - from genes to cells to the whole organ. Science 295, 1678-1682. (doi:10.1126/science.1069881)
    • (2002) Science , vol.295 , pp. 1678-1682
    • Noble, D.1
  • 13
    • 79951480475 scopus 로고    scopus 로고
    • Multi-scale modelling and simulation in systems biology
    • doi:10.1039/c0ib00075b
    • Dada JO, Mendes P. 2011 Multi-scale modelling and simulation in systems biology. Integr. Biol. 3, 86-96. (doi:10.1039/c0ib00075b)
    • (2011) Integr. Biol. , vol.3 , pp. 86-96
    • Dada, J.O.1    Mendes, P.2
  • 14
    • 33749506763 scopus 로고    scopus 로고
    • From in vivo to in silico biology and back
    • doi:10.1038/nature05127
    • Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L. 2006 From in vivo to in silico biology and back. Nature 443, 527-533. (doi:10.1038/ nature05127)
    • (2006) Nature , vol.443 , pp. 527-533
    • Di Ventura, B.1    Lemerle, C.2    Michalodimitrakis, K.3    Serrano, L.4
  • 15
    • 84866790417 scopus 로고    scopus 로고
    • Life's attractors
    • (ed. OS Soyer) Berlin, Germany: Springer
    • Jaeger J, Crombach A. 2012 Life's attractors. In (ed. OS Soyer) Evolutionary systems biology, pp. 93-119. Berlin, Germany: Springer.
    • (2012) Evolutionary Systems Biology , pp. 93-119
    • Jaeger, J.1    Crombach, A.2
  • 16
    • 84864582232 scopus 로고    scopus 로고
    • Efficient reverse-engineering of a developmental gene regulatory network
    • doi:10.1371/journal.pcbi.1002589
    • Crombach A, Wotton KR, Cicin-Sain D, Ashyraliyev M, Jaeger J. 2012 Efficient reverse-engineering of a developmental gene regulatory network. PLoS Comput. Biol. 8, e1002589. (doi:10.1371/journal.pcbi.1002589)
    • (2012) PLoS Comput. Biol. , vol.8
    • Crombach, A.1    Wotton, K.R.2    Cicin-Sain, D.3    Ashyraliyev, M.4    Jaeger, J.5
  • 17
    • 79952476417 scopus 로고    scopus 로고
    • Automatic design of digital synthetic gene circuits
    • doi:10.1371/journal.pcbi.1001083
    • Marchisio MA, Stelling J. 2011 Automatic design of digital synthetic gene circuits. PLoS Comput. Biol. 7, e1001083. (doi:10.1371/journal.pcbi.1001083)
    • (2011) PLoS Comput. Biol. , vol.7
    • Marchisio, M.A.1    Stelling, J.2
  • 18
    • 4644268555 scopus 로고    scopus 로고
    • Mathematical models in microbial systems biology
    • doi:10.1016/j.mib.2004.08.004
    • Stelling J. 2004 Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7, 513-518. (doi:10.1016/j.mib.2004.08.004)
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 513-518
    • Stelling, J.1
  • 19
    • 0347473809 scopus 로고    scopus 로고
    • Gaining confidence in high-throughput protein interaction networks
    • doi:10.1038/nbt924
    • Bader JS, Chaudhuri A, Rothberg JM, Chant J. 2003 Gaining confidence in high-throughput protein interaction networks. Nat. Biotechnol. 22, 78-85. (doi:10.1038/nbt924)
    • (2003) Nat. Biotechnol. , vol.22 , pp. 78-85
    • Bader, J.S.1    Chaudhuri, A.2    Rothberg, J.M.3    Chant, J.4
  • 20
    • 33645732240 scopus 로고    scopus 로고
    • Modeling cellular machinery through biological network comparison
    • doi:10.1038/nbt1196
    • Sharan R, Ideker T. 2006 Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24, 427-433. (doi:10.1038/nbt1196)
    • (2006) Nat. Biotechnol. , vol.24 , pp. 427-433
    • Sharan, R.1    Ideker, T.2
  • 21
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • doi:10.1101/gr.234503
    • Förster J, Famili I, Fu P, Palsson BØ, Nielsen J. 2003 Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253. (doi:10.1101/gr.234503)
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø.4    Nielsen, J.5
  • 22
    • 39449095000 scopus 로고    scopus 로고
    • Stoichiometric modelling of cell metabolism
    • doi:10.1263/jbb.105.1
    • Llaneras F, Picó J. 2008 Stoichiometric modelling of cell metabolism. J. Biosci. Bioeng. 105, 1-11. (doi:10.1263/jbb.105.1)
    • (2008) J. Biosci. Bioeng. , vol.105 , pp. 1-11
    • Llaneras, F.1    Picó, J.2
  • 24
    • 79957637424 scopus 로고    scopus 로고
    • A survey on methods for modeling and analyzing integrated biological networks
    • doi:10.1109/TCBB.2010.117
    • Tenazinha N, Vinga S. 2011 A survey on methods for modeling and analyzing integrated biological networks. IEEE-ACM Trans. Comput. Biol. Inform. 8, 943-958. (doi:10.1109/TCBB.2010.117)
    • (2011) IEEE-ACM Trans. Comput. Biol. Inform. , vol.8 , pp. 943-958
    • Tenazinha, N.1    Vinga, S.2
  • 25
    • 33644524741 scopus 로고    scopus 로고
    • Cell-signalling dynamics in time and space
    • doi:10.1038/nrm1838
    • Kholodenko BN. 2006 Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165-176. (doi:10.1038/nrm1838)
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 165-176
    • Kholodenko, B.N.1
  • 26
    • 56749160113 scopus 로고    scopus 로고
    • Design principles of biochemical oscillators
    • doi:10.1038/nrm2530
    • Novák B, Tyson JJ. 2008 Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981-991. (doi:10.1038/nrm2530)
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 981-991
    • Novák, B.1    Tyson, J.J.2
  • 27
    • 0037376655 scopus 로고    scopus 로고
    • Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell
    • doi:10.1016/S0955-0674(03) 00017-6
    • Tyson JJ, Chen KC, Novak B. 2003 Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221-231. (doi:10.1016/S0955-0674(03) 00017-6)
    • (2003) Curr. Opin. Cell Biol. , vol.15 , pp. 221-231
    • Tyson, J.J.1    Chen, K.C.2    Novak, B.3
  • 28
  • 30
    • 0037385718 scopus 로고    scopus 로고
    • Genome-scale microbial in silico models: The constraints-based approach
    • doi:10.1016/S0167-7799(03)00030-1
    • Price ND, Papin JA, Schilling CH, Palsson BO. 2003 Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21, 162-169. (doi:10.1016/S0167-7799(03)00030-1)
    • (2003) Trends Biotechnol. , vol.21 , pp. 162-169
    • Price, N.D.1    Papin, J.A.2    Schilling, C.H.3    Palsson, B.O.4
  • 31
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • doi:10.1038/nbt.1614
    • Orth JD, Thiele I, Palsson BØ. 2010 What is flux balance analysis? Nat. Biotechnol. 28, 245-248. (doi:10.1038/nbt.1614)
    • (2010) Nat. Biotechnol. , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.Ø.3
  • 32
    • 84872093417 scopus 로고    scopus 로고
    • Analysis of omics data with genome-scale models of metabolism
    • doi:10.1039/c2mb25453k
    • Hyduke DR, Lewis NE, Palsson BØ. 2013 Analysis of omics data with genome-scale models of metabolism. Mol. BioSyst. 9, 167-174. (doi:10.1039/c2mb25453k)
    • (2013) Mol. BioSyst. , vol.9 , pp. 167-174
    • Hyduke, D.R.1    Lewis, N.E.2    Palsson, B.Ø.3
  • 33
    • 4043150795 scopus 로고    scopus 로고
    • The interplay of Bayesian and frequentist analysis
    • doi:10.1214/088342304000000116
    • Bayarri MJ, Berger JO. 2004 The interplay of Bayesian and frequentist analysis. Stat. Sci. 19, 58-80. (doi:10.1214/088342304000000116)
    • (2004) Stat. Sci. , vol.19 , pp. 58-80
    • Bayarri, M.J.1    Berger, J.O.2
  • 36
    • 70349138992 scopus 로고    scopus 로고
    • Bayes and empirical Bayes methods for data analysis
    • doi:10.1023/A:1018577817064
    • Carlin BP, Louis TA. 1997 Bayes and empirical Bayes methods for data analysis. Stat. Comput. 7, 153-154. (doi:10.1023/A:1018577817064)
    • (1997) Stat. Comput. , vol.7 , pp. 153-154
    • Carlin, B.P.1    Louis, T.A.2
  • 37
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • doi:10.1109/TPAMI.1984.4767596
    • Geman S, Geman D. 1984 Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741. (doi:10.1109/TPAMI.1984.4767596)
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 38
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • doi:10.1080/01621459.1990.10476213
    • Gelfand AE, Smith AF. 1990 Sampling-based approaches to calculating marginal densities. J. Amer. Stat. Assoc. 85, 398-409. (doi:10.1080/01621459. 1990.10476213)
    • (1990) J. Amer. Stat. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.2
  • 40
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith AF, Roberts GO. 1993 Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Stat. Soc. B 55, 3-23.
    • (1993) J. R. Stat. Soc. B , vol.55 , pp. 3-23
    • Smith, A.F.1    Roberts, G.O.2
  • 42
    • 34250658998 scopus 로고    scopus 로고
    • Bayesian methods in bioinformatics and computational systems biology
    • doi:10.1093/bib/bbm007
    • Wilkinson DJ. 2007 Bayesian methods in bioinformatics and computational systems biology. Brief. Bioinform. 8, 109-116. (doi:10.1093/bib/bbm007)
    • (2007) Brief. Bioinform. , vol.8 , pp. 109-116
    • Wilkinson, D.J.1
  • 43
    • 34548459831 scopus 로고    scopus 로고
    • A primer on learning in Bayesian networks for computational biology
    • doi:10.1371/journal.pcbi.0030129
    • Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. 2007 A primer on learning in Bayesian networks for computational biology. PLoS Comp. Biol. 3, e129. (doi:10.1371/journal.pcbi.0030129)
    • (2007) PLoS Comp. Biol. , vol.3
    • Needham, C.J.1    Bradford, J.R.2    Bulpitt, A.J.3    Westhead, D.R.4
  • 45
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • doi:10.1093/bioinformatics/16.8.707
    • D'Haeseleer P, Liang S, Somogyi R. 2000 Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707-726. (doi:10.1093/bioinformatics/16.8.707)
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 47
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K. 2010 Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 8, 717-729.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 48
    • 84859149116 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles, revisited
    • doi:10.1098/rsfs.2011.0053
    • Penfold CA, Wild DL. 2011 How to infer gene networks from expression profiles, revisited. Interface Focus 1, 857-870. (doi:10.1098/rsfs.2011.0053)
    • (2011) Interface Focus , vol.1 , pp. 857-870
    • Penfold, C.A.1    Wild, D.L.2
  • 49
    • 84884518215 scopus 로고    scopus 로고
    • Biostatistical approaches for the reconstruction of gene coexpression networks based on transcriptomic data
    • doi:10.1093/bfgp/elt003
    • López-Kleine L, Leal L, López C. 2013 Biostatistical approaches for the reconstruction of gene coexpression networks based on transcriptomic data. Brief. Funct. Genomics 12, 457-467. (doi:10.1093/bfgp/ elt003)
    • (2013) Brief. Funct. Genomics , vol.12 , pp. 457-467
    • López-Kleine, L.1    Leal, L.2    López, C.3
  • 50
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • doi:10.1126/science.1094068
    • Friedman N. 2004 Inferring cellular networks using probabilistic graphical models. Science 303, 799-805. (doi:10.1126/science.1094068)
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 51
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks - A review
    • doi:10.1186/1471-2105-8-S6-S5
    • Markowetz F, Spang R. 2007 Inferring cellular networks-a review. BMC Bioinform. 8(Suppl. 6), S5. (doi:10.1186/1471-2105-8-S6-S5)
    • (2007) BMC Bioinform. , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 52
    • 84891892293 scopus 로고    scopus 로고
    • Reverse engineering cellular networks with information theoretic methods
    • doi:10.3390/cells2020306
    • Villaverde AF, Ross J, Banga JR. 2013 Reverse engineering cellular networks with information theoretic methods. Cells 2, 306-329. (doi:10.3390/cells2020306)
    • (2013) Cells , vol.2 , pp. 306-329
    • Villaverde, A.F.1    Ross, J.2    Banga, J.R.3
  • 53
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • doi:10.1073/pnas.220392197
    • Butte A, Tamayo P, Slonim D, Golub T, Kohane I. 2000 Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl Acad. Sci. USA 97, 12 182-12 186. (doi:10.1073/pnas.220392197)
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 12182-12186
    • Butte, A.1    Tamayo, P.2    Slonim, D.3    Golub, T.4    Kohane, I.5
  • 54
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • doi:10.1126/science.1087447
    • Stuart J, Segal E, Koller D, Kim S. 2003 A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249-255. (doi:10.1126/science.1087447)
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.1    Segal, E.2    Koller, D.3    Kim, S.4
  • 55
    • 0000122278 scopus 로고
    • Statistical construction of chemical reaction mechanisms from measured time-series
    • doi:10.1021/j100003a020
    • Arkin A, Ross J. 1995 Statistical construction of chemical reaction mechanisms from measured time-series. J. Phys. Chem. 99, 970-979. (doi:10.1021/j100003a020)
    • (1995) J. Phys. Chem. , vol.99 , pp. 970-979
    • Arkin, A.1    Ross, J.2
  • 56
    • 0030848624 scopus 로고    scopus 로고
    • A test case of correlation metric construction of a reaction pathway from measurements
    • doi:10.1126/science.277.5330.1275
    • Arkin A, Shen P, Ross J. 1997 A test case of correlation metric construction of a reaction pathway from measurements. Science 277, 1275-1279. (doi:10.1126/science.277.5330.1275)
    • (1997) Science , vol.277 , pp. 1275-1279
    • Arkin, A.1    Shen, P.2    Ross, J.3
  • 57
    • 50849124115 scopus 로고    scopus 로고
    • Measuring and testing dependence by correlation of distances
    • doi:10.1214/009053607000000505
    • Székely G, Rizzo M, Bakirov N. 2007 Measuring and testing dependence by correlation of distances. Ann. Stat. 35, 2769-2794. (doi:10.1214/009053607000000505)
    • (2007) Ann. Stat. , vol.35 , pp. 2769-2794
    • Székely, G.1    Rizzo, M.2    Bakirov, N.3
  • 58
    • 80052945281 scopus 로고    scopus 로고
    • Brownian distance correlation
    • doi:10.1214/09-AOAS312
    • Szekely G, Rizzo M. 2009 Brownian distance correlation. Ann. Appl. Stat. 3, 1236-1265. (doi:10.1214/09-AOAS312)
    • (2009) Ann. Appl. Stat. , vol.3 , pp. 1236-1265
    • Szekely, G.1    Rizzo, M.2
  • 59
    • 84866172359 scopus 로고    scopus 로고
    • Detection of long-range concerted motions in protein by a distance covariance
    • doi:10.1021/ct300565f
    • Roy A, Post C. 2012 Detection of long-range concerted motions in protein by a distance covariance. J. Chem. Theory Comput. 8, 3009-3014. (doi:10.1021/ct300565f)
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 3009-3014
    • Roy, A.1    Post, C.2
  • 60
    • 84870935881 scopus 로고    scopus 로고
    • Using distance correlation and SS-ANOVA to assess associations of familial relationships, lifestyle factors, diseases, and mortality
    • doi:10.1073/pnas.1217269109
    • Kong J, Klein B, Klein R, Lee K, Wahba G. 2012 Using distance correlation and SS-ANOVA to assess associations of familial relationships, lifestyle factors, diseases, and mortality. Proc. Natl Acad. Sci. USA 109, 20 352-20 357. (doi:10.1073/pnas.1217269109)
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 20352-20357
    • Kong, J.1    Klein, B.2    Klein, R.3    Lee, K.4    Wahba, G.5
  • 61
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • doi:10.1002/j.1538-7305.1948.tb01338.x
    • Shannon C. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423. (doi:10.1002/j.1538-7305.1948.tb01338.x)
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.1
  • 63
    • 0026736363 scopus 로고
    • Determination of eukaryotic protein coding regions using neural networks and information theory
    • doi:10.1016/0022-2836(92)90961-I
    • Farber R, Lapedes A, Sirotkin K. 1992 Determination of eukaryotic protein coding regions using neural networks and information theory. J. Mol. Biol. 226, 471-479. (doi:10.1016/0022-2836(92)90961-I)
    • (1992) J. Mol. Biol. , vol.226 , pp. 471-479
    • Farber, R.1    Lapedes, A.2    Sirotkin, K.3
  • 64
    • 0027297096 scopus 로고
    • Covariation of mutations in the v3 loop of human immunodeficiency virus type 1 envelope protein: An information theoretic analysis
    • doi:10.1073/pnas. 90.15.7176
    • Korber B, Farber R, Wolpert D, Lapedes A. 1993 Covariation of mutations in the v3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc. Natl Acad. Sci. USA 90, 7176-7180. (doi:10.1073/pnas. 90.15.7176)
    • (1993) Proc. Natl Acad. Sci. USA , vol.90 , pp. 7176-7180
    • Korber, B.1    Farber, R.2    Wolpert, D.3    Lapedes, A.4
  • 65
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang S, Fuhrman S, Somogyi R. 1998 Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput. 3, 18-29.
    • (1998) Pac. Symp. Biocomput. , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 67
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte A, Kohane I. 2000 Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5, 418-429.
    • (2000) Pac. Symp. Biocomput. , vol.5 , pp. 418-429
    • Butte, A.1    Kohane, I.2
  • 69
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • doi:10.1186/1471-2105-11-154
    • Zoppoli P, Morganella S, Ceccarelli M. 2010 TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinform. 11, 154. (doi:10.1186/1471-2105-11-154)
    • (2010) BMC Bioinform. , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 70
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • doi:10.1093/bioinformatics/18.suppl-2.S231
    • Steuer R, Kurths J, Daub C, Weise J, Selbig J. 2002 The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(Suppl. 2), S231-S240. (doi:10.1093/bioinformatics/18.suppl-2. S231)
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 2
    • Steuer, R.1    Kurths, J.2    Daub, C.3    Weise, J.4    Selbig, J.5
  • 71
    • 27944469202 scopus 로고    scopus 로고
    • Statistical validation of mutual information calculations: Comparison of alternative numerical algorithms
    • doi:10.1103/PhysRevE.71.066208
    • Cellucci C, Albano A, Rapp P. 2005 Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. Phys. Rev. E 71, 066208. (doi:10.1103/PhysRevE.71.066208)
    • (2005) Phys. Rev. E , vol.71 , pp. 066208
    • Cellucci, C.1    Albano, A.2    Rapp, P.3
  • 72
    • 0001259448 scopus 로고
    • Estimation of mutual information using kernel density estimators
    • doi:10.1103/PhysRevE.52.2318
    • Moon Y, Rajagopalan B, Lall U. 1995 Estimation of mutual information using kernel density estimators. Phys. Rev. E 52, 2318-2321. (doi:10.1103/PhysRevE.52.2318)
    • (1995) Phys. Rev. E , vol.52 , pp. 2318-2321
    • Moon, Y.1    Rajagopalan, B.2    Lall, U.3
  • 73
    • 84855265038 scopus 로고    scopus 로고
    • Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks
    • doi:10.1371/journal.pone.0029279
    • de Matos Simoes R, Emmert-Streib F. 2011 Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks. PLoS ONE 6, e29279. (doi:10.1371/journal.pone.0029279)
    • (2011) PLoS ONE , vol.6
    • De Matos Simoes, R.1    Emmert-Streib, F.2
  • 74
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • doi:10.1155/2007/79879
    • Meyer PE, Kontos K, Lafitte F, Bontempi G. 2007 Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2007, 79879. (doi:10.1155/2007/79879)
    • (2007) EURASIP J. Bioinform. Syst. Biol. , vol.2007 , pp. 79879
    • Meyer, P.E.1    Kontos, K.2    Lafitte, F.3    Bontempi, G.4
  • 75
    • 58149349958 scopus 로고    scopus 로고
    • Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
    • doi:10.1186/1471-2105-9-467
    • Luo W, Hankenson K, Woolf P. 2008 Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinform. 9, 467. (doi:10.1186/1471-2105-9-467)
    • (2008) BMC Bioinform. , vol.9 , pp. 467
    • Luo, W.1    Hankenson, K.2    Woolf, P.3
  • 77
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • doi:10.1371/journal.pbio.0050008
    • Faith J, Hayete B, Thaden J, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins J, Gardner T. 2007 Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8. (doi:10.1371/journal.pbio.0050008)
    • (2007) PLoS Biol. , vol.5
    • Faith, J.1    Hayete, B.2    Thaden, J.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6    Kasif, S.7    Collins, J.8    Gardner, T.9
  • 78
    • 33747813561 scopus 로고    scopus 로고
    • The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • doi:10.1186/gb-2006-7-5-r36
    • Bonneau R, Reiss D, Shannon P, Facciotti M, Hood L, Baliga N, Thorsson V. 2006 The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36. (doi:10.1186/gb-2006-7-5-r36)
    • (2006) Genome Biol. , vol.7
    • Bonneau, R.1    Reiss, D.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.6    Thorsson, V.7
  • 79
    • 78149421254 scopus 로고    scopus 로고
    • DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models
    • doi:10.1371/journal.pone.0013397
    • Greenfield A, Madar A, Ostrer H, Bonneau R. 2010 DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS ONE 5, e13397. (doi:10.1371/journal.pone.0013397)
    • (2010) PLoS ONE , vol.5
    • Greenfield, A.1    Madar, A.2    Ostrer, H.3    Bonneau, R.4
  • 81
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • doi:10.1016/j.cell.2009.01.055
    • Cantone I et al. 2009 A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137, 172-181. (doi:10.1016/j.cell.2009.01.055)
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 83
    • 33748864942 scopus 로고    scopus 로고
    • A guide to the literature on inferring genetic networks by probabilistic graphical models
    • (eds F Azuaje, J Dopazo), New York, NY: Wiley
    • Larranaga P, Inza I, Flores JL. 2005 A guide to the literature on inferring genetic networks by probabilistic graphical models. In Data analysis and visualization in genomics and proteomics (eds F Azuaje, J Dopazo), pp. 215. New York, NY: Wiley.
    • (2005) Data Analysis and Visualization in Genomics and Proteomics , pp. 215
    • Larranaga, P.1    Inza, I.2    Flores, J.L.3
  • 84
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • (eds D Fisher, H-J Lenz), New York, NY: Springer
    • Chickering D. 1996 Learning Bayesian networks is NP-complete. In Learning from data: artificial intelligence and statistics (eds D Fisher, H-J Lenz), pp. 121-130. New York, NY: Springer.
    • (1996) Learning from Data: Artificial Intelligence and Statistics , pp. 121-130
    • Chickering, D.1
  • 85
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont MA, Zhang W, Balding DJ. 2002 Approximate Bayesian computation in population genetics. Genetics 162, 2025-2035.
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 86
    • 75249088572 scopus 로고    scopus 로고
    • Simulation-based model selection for dynamical systems in systems and population biology
    • doi:10.1093/bioinformatics/btp619
    • Toni T, Stumpf MP. 2010 Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26, 104-110. (doi:10.1093/bioinformatics/btp619)
    • (2010) Bioinformatics , vol.26 , pp. 104-110
    • Toni, T.1    Stumpf, M.P.2
  • 87
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • doi:10.1007/BF00994110
    • Cooper G, Herskovits E. 1992 A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309-347. (doi:10.1007/ BF00994110)
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 88
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • doi:10.1089/106652700750050961
    • Friedman N, Linial M, Nachman I, Pe'er D. 2000 Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601-620. (doi:10.1089/ 106652700750050961)
    • (2000) J. Comput. Biol. , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 89
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • doi:10.1093/bioinformatics/bth448
    • Yu J, Smith V, Wang P, Hartemink A, Jarvis E. 2004 Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594-3603. (doi:10.1093/bioinformatics/bth448)
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.4    Jarvis, E.5
  • 90
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • doi:10.1093/bib/4.3.228
    • Kim S, Imoto S, Miyano S. 2003 Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief. Bioinform. 4, 228-235. (doi:10.1093/bib/4.3.228)
    • (2003) Brief. Bioinform. , vol.4 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 91
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • doi:10.1016/j.biosystems.2004.03.004
    • Kim S, Imoto S, Miyano S. 2004 Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75, 57-65. (doi:10.1016/j.biosystems.2004.03.004)
    • (2004) Biosystems , vol.75 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 92
    • 84856225992 scopus 로고    scopus 로고
    • Dynamic Bayesian networks in molecular plant science: Inferring gene regulatory networks from multiple gene expression time series
    • doi:10.1007/s10681-011-0538-3
    • Dondelinger F, Husmeier D, Lébre S. 2012 Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series. Euphytica 183, 361-377. (doi:10.1007/s10681-011- 0538-3)
    • (2012) Euphytica , vol.183 , pp. 361-377
    • Dondelinger, F.1    Husmeier, D.2    Lébre, S.3
  • 93
    • 36248953897 scopus 로고    scopus 로고
    • Comparison of reverse-engineering methods using an in silico network
    • doi:10.1196/annals.1407.006
    • Camacho D, Vera Licona P, Mendes P, Laubenbacher R. 2007 Comparison of reverse-engineering methods using an in silico network. Ann. NY Acad. Sci. 1115, 73-89. (doi:10.1196/annals.1407.006)
    • (2007) Ann. NY Acad. Sci. , vol.1115 , pp. 73-89
    • Camacho, D.1    Vera Licona, P.2    Mendes, P.3    Laubenbacher, R.4
  • 97
    • 0002500486 scopus 로고
    • Sur les problèmes aux dérivées partielles et leur signification physique
    • Hadamard J. 1902 Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13, 28.
    • (1902) Princet. Univ. Bull. , vol.13 , pp. 28
    • Hadamard, J.1
  • 98
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • London, UK: Lawrence Erlbaum Associates Ltd.
    • Kohavi R et al. 1995 A study of cross-validation and bootstrap for accuracy estimation and model selection. In Int. Joint Conf. on Artificial Intelligence, vol. 14, pp. 1137-1145. London, UK: Lawrence Erlbaum Associates Ltd.
    • (1995) Int. Joint Conf. on Artificial Intelligence , vol.14 , pp. 1137-1145
    • Kohavi, R.1
  • 99
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • doi:10.1080/01621459.1984.10478083
    • Picard RR, Cook RD. 1984 Cross-validation of regression models. J. Am. Stat. Assoc. 79, 575-583. (doi:10.1080/01621459.1984.10478083)
    • (1984) J. Am. Stat. Assoc. , vol.79 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 104
    • 0010975662 scopus 로고
    • A stochastic approach to global optimization
    • Kan A, Timmer G. 1985 A stochastic approach to global optimization. Numer. Optim. 84, 245-262.
    • (1985) Numer. Optim. , vol.84 , pp. 245-262
    • Kan, A.1    Timmer, G.2
  • 106
    • 68049141586 scopus 로고    scopus 로고
    • A review of recent advances in global optimization
    • doi:10.1007/s10898-008-9332-8
    • Floudas C, Gounaris C. 2009 A review of recent advances in global optimization. J. Glob. Optim. 45, 3-38. (doi:10.1007/s10898-008-9332-8)
    • (2009) J. Glob. Optim. , vol.45 , pp. 3-38
    • Floudas, C.1    Gounaris, C.2
  • 107
    • 0034102942 scopus 로고    scopus 로고
    • Global optimization for the parameter estimation of differential- algebraic systems
    • doi:10.1021/ie990486w
    • Esposito WR, Floudas CA. 2000 Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39, 1291-1310. (doi:10.1021/ie990486w)
    • (2000) Ind. Eng. Chem. Res. , vol.39 , pp. 1291-1310
    • Esposito, W.R.1    Floudas, C.A.2
  • 108
    • 84860666182 scopus 로고    scopus 로고
    • Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems
    • doi:10.1186/1471-2105-13-90
    • Miró A, Pozo C, Guillén-Gosálbez G, Egea JA, Jiménez L. 2012 Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinform. 13, 90. (doi:10.1186/1471-2105-13-90)
    • (2012) BMC Bioinform. , vol.13 , pp. 90
    • Miró, A.1    Pozo, C.2    Guillén-Gosálbez, G.3    Egea, J.A.4    Jiménez, L.5
  • 109
    • 33644593114 scopus 로고    scopus 로고
    • Unsolvability of some optimization problems
    • doi:10.1016/j.amc.2005.05.025
    • Zhu W. 2006 Unsolvability of some optimization problems. Appl. Math. Comput. 174, 921-926. (doi:10.1016/j.amc.2005.05.025)
    • (2006) Appl. Math. Comput. , vol.174 , pp. 921-926
    • Zhu, W.1
  • 110
    • 0023452095 scopus 로고
    • Some NP-complete problems in quadratic and nonlinear programming
    • doi:10.1007/BF02592948
    • Murty KG, Kabadi SN. 1987 Some NP-complete problems in quadratic and nonlinear programming. Math. Program 39, 117-129. (doi:10.1007/BF02592948)
    • (1987) Math. Program , vol.39 , pp. 117-129
    • Murty, K.G.1    Kabadi, S.N.2
  • 111
    • 70149110596 scopus 로고    scopus 로고
    • The status of the P versus NP problem
    • doi:10.1145/1562164.1562186
    • Fortnow L. 2009 The status of the P versus NP problem. Commun. ACM 52, 78-86. (doi:10.1145/1562164.1562186)
    • (2009) Commun. ACM , vol.52 , pp. 78-86
    • Fortnow, L.1
  • 112
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: A comparison of global optimization methods
    • doi:10.1101/gr.1262503
    • Moles CG, Mendes P, Banga JR. 2003 Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467-2474. (doi:10.1101/gr.1262503)
    • (2003) Genome Res. , vol.13 , pp. 2467-2474
    • Moles, C.G.1    Mendes, P.2    Banga, J.R.3
  • 113
    • 33846563823 scopus 로고    scopus 로고
    • Scatter search for chemical and bio-process optimization
    • doi:10.1007/s10898-006-9075-3
    • Egea JA, Rodrguez-Fernández M, Banga JR, Mart R. 2007 Scatter search for chemical and bio-process optimization. J. Glob. Optim. 37, 481-503. (doi:10.1007/s10898-006-9075-3)
    • (2007) J. Glob. Optim. , vol.37 , pp. 481-503
    • Egea, J.A.1    Rodrguez-Fernández, M.2    Banga, J.R.3    Mart, R.4
  • 114
    • 33751423943 scopus 로고    scopus 로고
    • Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
    • doi:10.1186/1471-2105-7-483
    • Rodriguez-Fernandez M, Egea JA, Banga JR. 2006 Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinform. 7, 483. (doi:10.1186/1471-2105-7-483)
    • (2006) BMC Bioinform. , vol.7 , pp. 483
    • Rodriguez-Fernandez, M.1    Egea, J.A.2    Banga, J.R.3
  • 115
    • 46349105936 scopus 로고    scopus 로고
    • Optimization in computational systems biology
    • doi:10.1186/1752-0509-2-47
    • Banga JR. 2008 Optimization in computational systems biology. BMC Syst. Biol. 2, 47. (doi:10.1186/1752-0509-2-47)
    • (2008) BMC Syst. Biol. , vol.2 , pp. 47
    • Banga, J.R.1
  • 116
    • 84862556212 scopus 로고    scopus 로고
    • A cooperative strategy for parameter estimation in large scale systems biology models
    • doi:10.1186/1752-0509-6-75
    • Villaverde A, Egea J, Banga J. 2012 A cooperative strategy for parameter estimation in large scale systems biology models. BMC Syst. Biol. 6, 75. (doi:10.1186/1752-0509-6-75)
    • (2012) BMC Syst. Biol. , vol.6 , pp. 75
    • Villaverde, A.1    Egea, J.2    Banga, J.3
  • 117
    • 60149094488 scopus 로고    scopus 로고
    • A divide-and-conquer approach to analyze underdetermined biochemical models
    • doi:10.1093/bioinformatics/btp004
    • Kotte O, Heinemann M. 2009 A divide-and-conquer approach to analyze underdetermined biochemical models. Bioinformatics 25, 519-525. (doi:10.1093/bioinformatics/btp004)
    • (2009) Bioinformatics , vol.25 , pp. 519-525
    • Kotte, O.1    Heinemann, M.2
  • 118
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • doi:10.1109/4235.585893
    • Wolpert DH, Macready WG. 1997 No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67-82. (doi:10.1109/4235.585893)
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , pp. 67-82
    • Wolpert, D.H.1    Macready, W.G.2
  • 119
    • 0001806101 scopus 로고    scopus 로고
    • The no free lunch theorem and the human-machine interface
    • doi:10.1109/37.768535
    • Ho Y-C. 1999 The no free lunch theorem and the human-machine interface. IEEE Contr. Syst. 19, 8-10. (doi:10.1109/37.768535)
    • (1999) IEEE Contr. Syst. , vol.19 , pp. 8-10
    • Ho, Y.-C.1
  • 120
    • 0004092085 scopus 로고    scopus 로고
    • New York, NY: Wiley Online Library
    • Ljung L. 1999 System identification. New York, NY: Wiley Online Library.
    • (1999) System Identification
    • Ljung, L.1
  • 122
    • 78649959469 scopus 로고    scopus 로고
    • Perspectives on system identification
    • doi:10.1016/j.arcontrol.2009.12.001
    • Ljung L. 2010 Perspectives on system identification. Annu. Rev. Control 34, 1-12. (doi:10.1016/j.arcontrol.2009.12.001)
    • (2010) Annu. Rev. Control , vol.34 , pp. 1-12
    • Ljung, L.1
  • 123
    • 0017909046 scopus 로고
    • Identification of biological systems: A survey
    • doi:10.1016/0005-1098(78)90075-4
    • Bekey GA, Beneken JE. 1978 Identification of biological systems: a survey. Automatica 14, 41-47. (doi:10.1016/0005-1098(78)90075-4)
    • (1978) Automatica , vol.14 , pp. 41-47
    • Bekey, G.A.1    Beneken, J.E.2
  • 126
    • 84878237812 scopus 로고    scopus 로고
    • Systems biology, synthetic biology and control theory: A promising golden braid
    • doi:10.1016/j.arcontrol.2013.03.006
    • Cury JE, Baldissera FL. 2013 Systems biology, synthetic biology and control theory: a promising golden braid. Ann. Rev. Control 37, 57-67. (doi:10.1016/j.arcontrol.2013.03.006)
    • (2013) Ann. Rev. Control , vol.37 , pp. 57-67
    • Cury, J.E.1    Baldissera, F.L.2
  • 127
    • 0000025874 scopus 로고
    • On structural identifiability
    • doi:10.1016/0025-5564(70)90132-X
    • Bellman R, Åström K. 1970 On structural identifiability. Math. Biosci. 7, 329-339. (doi:10.1016/0025-5564(70)90132-X)
    • (1970) Math. Biosci. , vol.7 , pp. 329-339
    • Bellman, R.1    Åström, K.2
  • 128
    • 0019034031 scopus 로고
    • Parameter and structural identifiability concepts and ambiguities: A critical review and analysis
    • Cobelli C, Distefano 3rd JJ. 1980 Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am. J. Physiol. 239, R7-R24.
    • (1980) Am. J. Physiol. , vol.239
    • Cobelli, C.1    Distefano III, J.J.2
  • 129
    • 4644301730 scopus 로고    scopus 로고
    • A benchmark for methods in reverse engineering and model discrimination: Problem formulation and solutions
    • doi:10.1101/gr.1226004
    • Kremling A, Fischer S, Gadkar K, Doyle F, Sauter T, Bullinger E, Allgower F, Gilles E. 2004 A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. Genome Res. 14, 1773-1785. (doi:10.1101/gr.1226004)
    • (2004) Genome Res. , vol.14 , pp. 1773-1785
    • Kremling, A.1    Fischer, S.2    Gadkar, K.3    Doyle, F.4    Sauter, T.5    Bullinger, E.6    Allgower, F.7    Gilles, E.8
  • 130
    • 33750374139 scopus 로고    scopus 로고
    • Linking data to models: Data regression
    • doi:10.1038/nrm2030
    • Jaqaman K, Danuser G. 2006 Linking data to models: data regression. Nat. Rev. Mol. Cell Biol. 7, 813-819. (doi:10.1038/nrm2030)
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 813-819
    • Jaqaman, K.1    Danuser, G.2
  • 131
    • 55549091692 scopus 로고    scopus 로고
    • Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics
    • doi:10.1016/j.ymben.2008.07.004
    • Nikerel IE, van Winden WA, Verheijen PJ, Heijnen JJ. 2009 Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. Metab. Eng. 11, 20-30. (doi:10.1016/j.ymben.2008.07.004)
    • (2009) Metab. Eng. , vol.11 , pp. 20-30
    • Nikerel, I.E.1    Van Winden, W.A.2    Verheijen, P.J.3    Heijnen, J.J.4
  • 132
    • 68349122496 scopus 로고    scopus 로고
    • Systematic identifiability testing for unambiguous mechanistic modeling - Application to JAK-STAT, map kinase, and NF- κb signaling pathway models
    • doi:10.1186/1752-0509-3-50
    • Quaiser T, Mönnigmann M. 2009 Systematic identifiability testing for unambiguous mechanistic modeling - application to JAK-STAT, map kinase, and NF-κb signaling pathway models. BMC Syst. Biol. 3, 50. (doi:10.1186/1752-0509-3-50)
    • (2009) BMC Syst. Biol. , vol.3 , pp. 50
    • Quaiser, T.1    Mönnigmann, M.2
  • 133
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • doi:10.1093/bioinformatics/btp358
    • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J. 2009 Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25, 1923-1929. (doi:10.1093/bioinformatics/btp358)
    • (2009) Bioinformatics , vol.25 , pp. 1923-1929
    • Raue, A.1    Kreutz, C.2    Maiwald, T.3    Bachmann, J.4    Schilling, M.5    Klingmüller, U.6    Timmer, J.7
  • 134
    • 58849106769 scopus 로고    scopus 로고
    • Systems biology: Parameter estimation for biochemical models
    • doi:10.1111/j.1742-4658.2008.06844.x
    • Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG. 2009 Systems biology: parameter estimation for biochemical models. FEBS J. 276, 886-902. (doi:10.1111/j.1742-4658.2008.06844.x)
    • (2009) FEBS J. , vol.276 , pp. 886-902
    • Ashyraliyev, M.1    Fomekong-Nanfack, Y.2    Kaandorp, J.A.3    Blom, J.G.4
  • 135
    • 77949475400 scopus 로고    scopus 로고
    • An iterative identification procedure for dynamic modeling of biochemical networks
    • doi:10.1186/1752-0509-4-11
    • Balsa-Canto E, Alonso AA, Banga JR. 2010 An iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst. Biol. 4, 11. (doi:10.1186/1752-0509-4-11)
    • (2010) BMC Syst. Biol. , vol.4 , pp. 11
    • Balsa-Canto, E.1    Alonso, A.A.2    Banga, J.R.3
  • 136
    • 77954190584 scopus 로고    scopus 로고
    • Parameter identifiability of power-law biochemical system models
    • doi:10.1016/j.jbiotec.2010.02.019
    • Srinath S, Gunawan R. 2010 Parameter identifiability of power-law biochemical system models. J. Biotechnol. 149, 132-140. (doi:10.1016/j.jbiotec. 2010.02.019)
    • (2010) J. Biotechnol. , vol.149 , pp. 132-140
    • Srinath, S.1    Gunawan, R.2
  • 137
    • 74149090194 scopus 로고    scopus 로고
    • Structural identifiability of polynomial and rational systems
    • doi:10.1016/j.mbs.2009.11.002
    • Nemcová J. 2010 Structural identifiability of polynomial and rational systems. Math. Biosci. 223, 83-96. (doi:10.1016/j.mbs.2009.11.002)
    • (2010) Math. Biosci. , vol.223 , pp. 83-96
    • Nemcová, J.1
  • 138
    • 81555207959 scopus 로고    scopus 로고
    • Structural identifiability of systems biology models: A critical comparison of methods
    • doi:10.1371/journal.pone.0027755
    • Chis O-T, Banga JR, Balsa-Canto E. 2011 Structural identifiability of systems biology models: a critical comparison of methods. PLoS ONE 6, e27755. (doi:10.1371/journal.pone.0027755)
    • (2011) PLoS ONE , vol.6
    • Chis, O.-T.1    Banga, J.R.2    Balsa-Canto, E.3
  • 139
    • 84887480588 scopus 로고    scopus 로고
    • On the identifiability of metabolic network models
    • doi:10.1007/s00285-012-0614-x
    • Berthoumieux S, Brilli M, Kahn D, De Jong H, Cinquemani E. 2012 On the identifiability of metabolic network models. J. Math. Biol. 67, 1795-1832. (doi:10.1007/s00285-012-0614-x)
    • (2012) J. Math. Biol. , vol.67 , pp. 1795-1832
    • Berthoumieux, S.1    Brilli, M.2    Kahn, D.3    De Jong, H.4    Cinquemani, E.5
  • 140
    • 84888062735 scopus 로고    scopus 로고
    • Parameter uncertainty in biochemical models described by ordinary differential equations
    • In press. (doi:10.1016/j.mbs.2013.03.006)
    • Vanlier J, Tiemann C, Hilbers P, van Riel N. In press. Parameter uncertainty in biochemical models described by ordinary differential equations. Math. Biosci. (doi:10.1016/j.mbs.2013.03.006)
    • Math. Biosci.
    • Vanlier, J.1    Tiemann, C.2    Hilbers, P.3    Van Riel, N.4
  • 141
    • 84865989314 scopus 로고    scopus 로고
    • Conclusions via unique predictions obtained despite unidentifiability - New definitions and a general method
    • doi:10.1111/j.1742-4658.2012.08725.x
    • Cedersund G. 2012 Conclusions via unique predictions obtained despite unidentifiability - new definitions and a general method. FEBS J. 279, 3513-3527. (doi:10.1111/j.1742-4658.2012.08725.x)
    • (2012) FEBS J. , vol.279 , pp. 3513-3527
    • Cedersund, G.1
  • 142
    • 79551552677 scopus 로고    scopus 로고
    • Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks
    • doi:10.1016/j.copbio.2010.09.014
    • Schaber J, Klipp E. 2011 Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. Curr. Opin. Biotechnol. 22, 109-116. (doi:10.1016/j.copbio.2010.09.014)
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 109-116
    • Schaber, J.1    Klipp, E.2
  • 143
    • 77950841799 scopus 로고    scopus 로고
    • Parameter estimation and model selection in computational biology
    • doi:10.1371/journal.pcbi.1000696
    • Lillacci G, Khammash M. 2010 Parameter estimation and model selection in computational biology. PLoS Comput. Biol. 6, e1000696. (doi:10.1371/journal. pcbi.1000696)
    • (2010) PLoS Comput. Biol. , vol.6
    • Lillacci, G.1    Khammash, M.2
  • 144
    • 73449142148 scopus 로고    scopus 로고
    • Optimal experimental design for parameter estimation of a cell signaling model
    • doi:10.1371/journal.pcbi.1000558
    • Bandara S, Schlöder JP, Eils R, Bock HG, Meyer T. 2009 Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput. Biol. 5, e1000558. (doi:10.1371/journal.pcbi.1000558)
    • (2009) PLoS Comput. Biol. , vol.5
    • Bandara, S.1    Schlöder, J.P.2    Eils, R.3    Bock, H.G.4    Meyer, T.5
  • 145
    • 48749095711 scopus 로고    scopus 로고
    • Computational procedures for optimal experimental design in biological systems
    • doi:10.1049/iet-syb:20070069
    • Balsa-Canto E, Alonso AA, Banga JR. 2008 Computational procedures for optimal experimental design in biological systems. IET Syst. Biol. 2, 163-172. (doi:10.1049/iet-syb:20070069)
    • (2008) IET Syst. Biol. , vol.2 , pp. 163-172
    • Balsa-Canto, E.1    Alonso, A.A.2    Banga, J.R.3
  • 146
    • 58149232578 scopus 로고    scopus 로고
    • Parameter estimation and optimal experimental design
    • doi:10.1042/BSE0450195
    • Banga J, Balsa-Canto E. 2008 Parameter estimation and optimal experimental design. Essays Biochem. 45, 195-210. (doi:10.1042/BSE0450195)
    • (2008) Essays Biochem. , vol.45 , pp. 195-210
    • Banga, J.1    Balsa-Canto, E.2
  • 147
    • 40149112059 scopus 로고    scopus 로고
    • Stimulus design for model selection and validation in cell signaling
    • doi:10.1371/journal.pcbi.0040030
    • Apgar JF, Toettcher JE, Endy D, White FM, Tidor B. 2008 Stimulus design for model selection and validation in cell signaling. PLoS Comput. Biol. 4, e30. (doi:10.1371/journal.pcbi.0040030)
    • (2008) PLoS Comput. Biol. , vol.4
    • Apgar, J.F.1    Toettcher, J.E.2    Endy, D.3    White, F.M.4    Tidor, B.5
  • 148
    • 77953017679 scopus 로고    scopus 로고
    • Maximin and Bayesian robust experimental design for measurement set selection in modelling biochemical regulatory systems
    • doi:10.1002/rnc.1558
    • He F, Brown M, Yue H. 2010 Maximin and Bayesian robust experimental design for measurement set selection in modelling biochemical regulatory systems. Int. J. Robust Nonlinear Control 20, 1059-1078. (doi:10.1002/rnc.1558)
    • (2010) Int. J. Robust Nonlinear Control , vol.20 , pp. 1059-1078
    • He, F.1    Brown, M.2    Yue, H.3
  • 149
    • 77950535005 scopus 로고    scopus 로고
    • Discriminating between rival biochemical network models: Three approaches to optimal experiment design
    • doi:10.1186/1752-0509-4-38
    • Mélykúti B, August E, Papachristodoulou A, El-Samad H. 2010 Discriminating between rival biochemical network models: three approaches to optimal experiment design. BMC Syst. Biol. 4, 38. (doi:10.1186/1752-0509-4-38)
    • (2010) BMC Syst. Biol. , vol.4 , pp. 38
    • Mélykúti, B.1    August, E.2    Papachristodoulou, A.3    El-Samad, H.4
  • 150
    • 77951967006 scopus 로고    scopus 로고
    • An optimal experimental design approach to model discrimination in dynamic biochemical systems
    • doi:10.1093/bioinformatics/btq074
    • Skanda D, Lebiedz D. 2010 An optimal experimental design approach to model discrimination in dynamic biochemical systems. Bioinformatics 26, 939-945. (doi:10.1093/bioinformatics/btq074)
    • (2010) Bioinformatics , vol.26 , pp. 939-945
    • Skanda, D.1    Lebiedz, D.2
  • 151
    • 84870406313 scopus 로고    scopus 로고
    • Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks
    • doi:10.1093/bioinformatics/bts585
    • Flassig R, Sundmacher K. 2012 Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks. Bioinformatics 28, 3089-3096. (doi:10.1093/bioinformatics/bts585)
    • (2012) Bioinformatics , vol.28 , pp. 3089-3096
    • Flassig, R.1    Sundmacher, K.2
  • 152
    • 84873487641 scopus 로고    scopus 로고
    • Robust optimal design of experiments for model discrimination using an interactive software tool
    • doi:10.1371/journal.pone.0055723
    • Stegmaier J, Skanda D, Lebiedz D. 2013 Robust optimal design of experiments for model discrimination using an interactive software tool. PLoS ONE 8, e55723. (doi:10.1371/journal.pone.0055723)
    • (2013) PLoS ONE , vol.8
    • Stegmaier, J.1    Skanda, D.2    Lebiedz, D.3
  • 153
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling
    • doi:10.1073/pnas.0933416100
    • Tegner J, Yeung MS, Hasty J, Collins JJ. 2003 Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl Acad. Sci. USA 100, 5944-5949. (doi:10.1073/pnas.0933416100)
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.S.2    Hasty, J.3    Collins, J.J.4
  • 154
    • 50649111625 scopus 로고    scopus 로고
    • Systems biology: Reverse engineering the cell
    • doi:10.1038/4541059a
    • Ingolia NT, Weissman JS. 2008 Systems biology: reverse engineering the cell. Nature 454, 1059-1062. (doi:10.1038/4541059a)
    • (2008) Nature , vol.454 , pp. 1059-1062
    • Ingolia, N.T.1    Weissman, J.S.2
  • 157
    • 71149116758 scopus 로고    scopus 로고
    • Systems analysis of cellular networks under uncertainty
    • doi:10.1016/j.febslet.2009.10.074
    • Kaltenbach H-M, Dimopoulos S, Stelling J. 2009 Systems analysis of cellular networks under uncertainty. FEBS Lett. 583, 3923-3930. (doi:10.1016/j.febslet.2009.10.074)
    • (2009) FEBS Lett. , vol.583 , pp. 3923-3930
    • Kaltenbach, H.-M.1    Dimopoulos, S.2    Stelling, J.3
  • 158
    • 34948840834 scopus 로고    scopus 로고
    • Ensemble modeling for analysis of cell signaling dynamics
    • doi:10.1038/nbt1330
    • Kuepfer L, Peter M, Sauer U, Stelling J. 2007 Ensemble modeling for analysis of cell signaling dynamics. Nat. Biotechnol. 25, 1001-1006. (doi:10.1038/nbt1330)
    • (2007) Nat. Biotechnol. , vol.25 , pp. 1001-1006
    • Kuepfer, L.1    Peter, M.2    Sauer, U.3    Stelling, J.4
  • 159
    • 78650571311 scopus 로고    scopus 로고
    • Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux
    • doi:10.1016/j.ymben.2010.11.001
    • Tan Y, Lafontaine Rivera JG, Contador CA, Asenjo JA, Liao JC. 2011 Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab. Eng. 13, 60-75. (doi:10.1016/j.ymben. 2010.11.001)
    • (2011) Metab. Eng. , vol.13 , pp. 60-75
    • Tan, Y.1    Lafontaine Rivera, J.G.2    Contador, C.A.3    Asenjo, J.A.4    Liao, J.C.5
  • 160
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • doi:10.1038/nmeth.2016
    • Marbach D et al. 2012 Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796-804. (doi:10.1038/nmeth.2016)
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 161
    • 58249117722 scopus 로고    scopus 로고
    • A tunable synthetic mammalian oscillator
    • doi:10.1038/nature07616
    • Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. 2009 A tunable synthetic mammalian oscillator. Nature 457, 309-312. (doi:10.1038/nature07616)
    • (2009) Nature , vol.457 , pp. 309-312
    • Tigges, M.1    Marquez-Lago, T.T.2    Stelling, J.3    Fussenegger, M.4
  • 162
    • 73149088132 scopus 로고    scopus 로고
    • Engineering static and dynamic control of synthetic pathways
    • doi:10.1016/j.cell.2009.12.029
    • Holtz WJ, Keasling JD. 2010 Engineering static and dynamic control of synthetic pathways. Cell 140, 19-23. (doi:10.1016/j.cell.2009.12.029)
    • (2010) Cell , vol.140 , pp. 19-23
    • Holtz, W.J.1    Keasling, J.D.2
  • 163
    • 79956204640 scopus 로고    scopus 로고
    • Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks
    • doi:10.1016/j.automatica.2011.01.073
    • Menolascina F, Di Bernardo M, Di Bernardo D. 2011 Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks. Automatica 47, 1265-1270. (doi:10.1016/j.automatica.2011. 01.073)
    • (2011) Automatica , vol.47 , pp. 1265-1270
    • Menolascina, F.1    Di Bernardo, M.2    Di Bernardo, D.3
  • 164
    • 84863613673 scopus 로고    scopus 로고
    • Engineering and control of biological systems: A new way to tackle complex diseases
    • doi:10.1016/j.febslet.2012.04.050
    • Menolascina F, Siciliano V, di Bernardo D. 2012 Engineering and control of biological systems: a new way to tackle complex diseases. FEBS Lett. 586, 2122-2128. (doi:10.1016/j.febslet.2012.04.050)
    • (2012) FEBS Lett. , vol.586 , pp. 2122-2128
    • Menolascina, F.1    Siciliano, V.2    Di Bernardo, D.3
  • 167
  • 168
    • 0015482771 scopus 로고
    • General mass action kinetics
    • doi:10.1007/BF00251225
    • Horn F, Jackson R. 1972 General mass action kinetics. Arch. Rat. Mech. Anal. 47, 81-116. (doi:10.1007/BF00251225)
    • (1972) Arch. Rat. Mech. Anal. , vol.47 , pp. 81-116
    • Horn, F.1    Jackson, R.2
  • 169
    • 0015482348 scopus 로고
    • Complex balancing in general kinetic systems
    • doi:10.1007/BF00255665
    • Feinberg M. 1972 Complex balancing in general kinetic systems. Arch. Rat. Mech. Anal. 49, 187-194. (doi:10.1007/BF00255665)
    • (1972) Arch. Rat. Mech. Anal. , vol.49 , pp. 187-194
    • Feinberg, M.1
  • 170
    • 0016038059 scopus 로고
    • Dynamics of open chemical systems and the algebraic structure of the underlying reaction network
    • doi:10.1016/0009-2509(74)80195-8
    • Feinberg M, Horn FJ. 1974 Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Eng. Sci. 29, 775-787. (doi:10.1016/0009-2509(74)80195-8)
    • (1974) Chem. Eng. Sci. , vol.29 , pp. 775-787
    • Feinberg, M.1    Horn, F.J.2
  • 171
    • 0034995375 scopus 로고    scopus 로고
    • Complex biology with no parameters
    • doi:10.1038/89204
    • Bailey JE. 2001 Complex biology with no parameters. Nat. Biotechnol. 19, 503-504. (doi:10.1038/89204)
    • (2001) Nat. Biotechnol. , vol.19 , pp. 503-504
    • Bailey, J.E.1
  • 172
    • 33744744785 scopus 로고    scopus 로고
    • Understanding bistability in complex enzyme-driven reaction networks
    • doi:10.1073/pnas.0602767103
    • Craciun G, Tang Y, Feinberg M. 2006 Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl Acad. Sci. USA 103, 8697-8702. (doi:10.1073/pnas.0602767103)
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 8697-8702
    • Craciun, G.1    Tang, Y.2    Feinberg, M.3
  • 173
    • 42149099412 scopus 로고    scopus 로고
    • On the number of steady states in a multiple futile cycle
    • doi:10.1007/s00285-007-0145-z
    • Wang L, Sontag ED. 2008 On the number of steady states in a multiple futile cycle. J. Math. Biol. 57, 29-52. (doi:10.1007/s00285-007-0145-z)
    • (2008) J. Math. Biol. , vol.57 , pp. 29-52
    • Wang, L.1    Sontag, E.D.2
  • 174
    • 67651108626 scopus 로고    scopus 로고
    • Exploring multiplicity conditions in enzymatic reaction networks
    • doi:10.1002/btpr.112
    • Otero-Muras I, Banga JR, Alonso AA. 2009 Exploring multiplicity conditions in enzymatic reaction networks. Biotechnol. Prog. 25, 619-631. (doi:10.1002/btpr.112)
    • (2009) Biotechnol. Prog. , vol.25 , pp. 619-631
    • Otero-Muras, I.1    Banga, J.R.2    Alonso, A.A.3
  • 175
    • 77951199596 scopus 로고    scopus 로고
    • Multiple equilibria in complex chemical reaction networks: Semiopen mass action systems
    • doi:10.1137/090756387
    • Craciun G, Feinberg M. 2010 Multiple equilibria in complex chemical reaction networks: semiopen mass action systems. SIAM J. Appl. Math. 70, 1859-1877. (doi:10.1137/090756387)
    • (2010) SIAM J. Appl. Math. , vol.70 , pp. 1859-1877
    • Craciun, G.1    Feinberg, M.2
  • 176
    • 77952954509 scopus 로고    scopus 로고
    • Computing sparse and dense realizations of reaction kinetic systems
    • doi:10.1007/s10910-009-9525-5
    • Szederkényi G. 2010 Computing sparse and dense realizations of reaction kinetic systems. J. Math. Chem. 47, 551-568. (doi:10.1007/s10910-009- 9525-5)
    • (2010) J. Math. Chem. , vol.47 , pp. 551-568
    • Szederkényi, G.1
  • 177
    • 79955874654 scopus 로고    scopus 로고
    • Finding complex balanced and detailed balanced realizations of chemical reaction networks
    • doi:10.1007/s10910-011-9804-9
    • Szederkényi G, Hangos KM. 2011 Finding complex balanced and detailed balanced realizations of chemical reaction networks. J. Math. Chem. 49, 1163-1179. (doi:10.1007/s10910-011-9804-9)
    • (2011) J. Math. Chem. , vol.49 , pp. 1163-1179
    • Szederkényi, G.1    Hangos, K.M.2
  • 178
    • 79954617424 scopus 로고    scopus 로고
    • Design principles for robust biochemical reaction networks: What works, what cannot work, and what might almost work
    • doi:10.1016/j.mbs.2011.02.012
    • Shinar G, Feinberg M. 2011 Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Math. Biosci. 231, 39-48. (doi:10.1016/j.mbs.2011.02.012)
    • (2011) Math. Biosci. , vol.231 , pp. 39-48
    • Shinar, G.1    Feinberg, M.2
  • 179
    • 77949398351 scopus 로고    scopus 로고
    • Structural sources of robustness in biochemical reaction networks
    • doi:10.1126/science.1183372
    • Shinar G, Feinberg M. 2010 Structural sources of robustness in biochemical reaction networks. Science 327, 1389-1391. (doi:10.1126/science. 1183372)
    • (2010) Science , vol.327 , pp. 1389-1391
    • Shinar, G.1    Feinberg, M.2
  • 180
    • 43249126563 scopus 로고    scopus 로고
    • Identifiability of chemical reaction networks
    • doi:10.1007/s10910-007-9307-x
    • Craciun G, Pantea C. 2008 Identifiability of chemical reaction networks. J. Math. Chem. 44, 244-259. (doi:10.1007/s10910-007-9307-x)
    • (2008) J. Math. Chem. , vol.44 , pp. 244-259
    • Craciun, G.1    Pantea, C.2
  • 181
    • 84855997910 scopus 로고    scopus 로고
    • Inference of complex biological networks: Distinguishability issues and optimization-based solutions
    • doi:10.1186/1752-0509-5-177
    • Szederkényi G, Banga J, Alonso A. 2011 Inference of complex biological networks: distinguishability issues and optimization-based solutions. BMC Syst. Biol. 5, 177. (doi:10.1186/1752-0509-5-177)
    • (2011) BMC Syst. Biol. , vol.5 , pp. 177
    • Szederkényi, G.1    Banga, J.2    Alonso, A.3
  • 182
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • doi:10.1073/pnas.092576199
    • Yeung M, Tegnér J, Collins J. 2002 Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl Acad. Sci. USA 99, 6163-6168. (doi:10.1073/pnas.092576199)
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6163-6168
    • Yeung, M.1    Tegnér, J.2    Collins, J.3
  • 183
    • 33847059639 scopus 로고    scopus 로고
    • Size matters: Network inference tackles the genome scale
    • doi:10.1038/msb4100118
    • Hayete B, Gardner TS, Collins JJ. 2007 Size matters: network inference tackles the genome scale. Mol. Syst. Biol. 3, 77. (doi:10.1038/msb4100118)
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 77
    • Hayete, B.1    Gardner, T.S.2    Collins, J.J.3
  • 184
    • 84874288609 scopus 로고    scopus 로고
    • A 250-year argument: Belief, behavior, and the bootstrap
    • doi:10.1090/S0273-0979-2012-01374-5
    • Efron B. 2013 A 250-year argument: belief, behavior, and the bootstrap. Bull. Am. Math. Soc. 50, 129-146. (doi:10.1090/S0273-0979-2012-01374-5)
    • (2013) Bull. Am. Math. Soc. , vol.50 , pp. 129-146
    • Efron, B.1
  • 186
    • 35549009345 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear multivariate diffusion models observed with error
    • doi:10.1016/j.csda.2007.05.019
    • Golightly A, Wilkinson DJ. 2008 Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Stat. Data Anal. 52, 1674-1693. (doi:10.1016/j.csda.2007.05.019)
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 1674-1693
    • Golightly, A.1    Wilkinson, D.J.2
  • 188
    • 0037168597 scopus 로고    scopus 로고
    • An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa
    • doi:10.1073/pnas.262658899
    • Battogtokh D, Asch D, Case M, Arnold J, Schüttler H-B. 2002 An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa. Proc. Natl Acad. Sci. USA 99, 16 904-16 909. (doi:10.1073/pnas.262658899)
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 16904-16909
    • Battogtokh, D.1    Asch, D.2    Case, M.3    Arnold, J.4    Schüttler, H.-B.5
  • 189
    • 42749109054 scopus 로고    scopus 로고
    • Statistical mechanical approaches to models with many poorly known parameters
    • doi:10.1103/PhysRevE.68.021904
    • Brown KS, Sethna JP. 2003 Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E 68, 021904. (doi:10.1103/ PhysRevE.68.021904)
    • (2003) Phys. Rev. E , vol.68 , pp. 021904
    • Brown, K.S.1    Sethna, J.P.2
  • 190
    • 33751008680 scopus 로고    scopus 로고
    • Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities
    • doi:10.1093/bioinformatics/btl473
    • Sanguinetti G, Lawrence ND, Rattray M. 2006 Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics 22, 2775-2781. (doi:10.1093/bioinformatics/btl473)
    • (2006) Bioinformatics , vol.22 , pp. 2775-2781
    • Sanguinetti, G.1    Lawrence, N.D.2    Rattray, M.3
  • 191
    • 54349110857 scopus 로고    scopus 로고
    • Bayesian inference for differential equations
    • doi:10.1016/j.tcs.2008.07.005
    • Girolami M. 2008 Bayesian inference for differential equations. Theor. Comput. Sci. 408, 4-16. (doi:10.1016/j.tcs.2008.07.005)
    • (2008) Theor. Comput. Sci. , vol.408 , pp. 4-16
    • Girolami, M.1
  • 192
    • 40749094910 scopus 로고    scopus 로고
    • Bayesian ranking of biochemical system models
    • doi:10.1093/bioinformatics/btm607
    • Vyshemirsky V, Girolami MA. 2008 Bayesian ranking of biochemical system models. Bioinformatics 24, 833-839. (doi:10.1093/bioinformatics/btm607)
    • (2008) Bioinformatics , vol.24 , pp. 833-839
    • Vyshemirsky, V.1    Girolami, M.A.2
  • 193
    • 0346734143 scopus 로고    scopus 로고
    • Markov chain Monte Carlo without likelihoods
    • doi:10.1073/pnas.0306899100
    • Marjoram P, Molitor J, Plagnol V, Tavaré S. 2003 Markov chain Monte Carlo without likelihoods. Proc. Natl Acad. Sci. USA 100, 15 324-15 328. (doi:10.1073/pnas.0306899100)
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 15324-15328
    • Marjoram, P.1    Molitor, J.2    Plagnol, V.3    Tavaré, S.4
  • 194
    • 33846939958 scopus 로고    scopus 로고
    • Sequential Monte Carlo without likelihoods
    • doi:10.1073/pnas.0607208104
    • Sisson S, Fan Y, Tanaka MM. 2007 Sequential Monte Carlo without likelihoods. Proc. Natl Acad. Sci. USA 104, 1760-1765. (doi:10.1073/pnas. 0607208104)
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 1760-1765
    • Sisson, S.1    Fan, Y.2    Tanaka, M.M.3
  • 195
    • 72949108893 scopus 로고    scopus 로고
    • The ABC of reverse engineering biological signalling systems
    • doi:10.1039/b908951a
    • Secrier M, Toni T, Stumpf MP. 2009 The ABC of reverse engineering biological signalling systems. Mol. Biosyst. 5, 1925-1935. (doi:10.1039/ b908951a)
    • (2009) Mol. Biosyst. , vol.5 , pp. 1925-1935
    • Secrier, M.1    Toni, T.2    Stumpf, M.P.3
  • 196
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • doi:10.1098/rsif.2008.0172
    • Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP. 2009 Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187-202. (doi:10.1098/rsif.2008.0172)
    • (2009) J. R. Soc. Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.5
  • 197
    • 77953839617 scopus 로고    scopus 로고
    • Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species
    • doi:10.1126/scisignal.2000517
    • Xu T-R et al. 2010 Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci. Signal. 3, ra20. (doi:10.1126/scisignal.2000517)
    • (2010) Sci. Signal. , vol.3
    • Xu, T.-R.1
  • 198
    • 84873622581 scopus 로고    scopus 로고
    • Properties of cell death models calibrated and compared using Bayesian approaches
    • doi:10.1038/msb.2012.69
    • Eydgahi H, Chen WW, Muhlich JL, Vitkup D, Tsitsiklis JN, Sorger PK. 2013 Properties of cell death models calibrated and compared using Bayesian approaches. Mol. Syst. Biol. 9, 644. (doi:10.1038/msb.2012.69)
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 644
    • Eydgahi, H.1    Chen, W.W.2    Muhlich, J.L.3    Vitkup, D.4    Tsitsiklis, J.N.5    Sorger, P.K.6
  • 199
    • 84873505176 scopus 로고    scopus 로고
    • Maximizing the information content of experiments in systems biology
    • doi:10.1371/journal.pcbi.1002888
    • Liepe J, Filippi S, Komorowski M, Stumpf MP. 2013 Maximizing the information content of experiments in systems biology. PLoS Comput. Biol. 9, e1002888. (doi:10.1371/journal.pcbi.1002888)
    • (2013) PLoS Comput. Biol. , vol.9
    • Liepe, J.1    Filippi, S.2    Komorowski, M.3    Stumpf, M.P.4
  • 200
    • 84874150433 scopus 로고    scopus 로고
    • Joining forces of Bayesian and frequentist methodology: A study for inference in the presence of non-identifiability
    • doi:10.1098/rsta.2011.0544
    • Raue A, Kreutz C, Theis FJ, Timmer J. 2013 Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability. Phil. Trans. R. Soc. A 371, 20110544. (doi:10.1098/rsta. 2011.0544)
    • (2013) Phil. Trans. R. Soc. A , vol.371 , pp. 20110544
    • Raue, A.1    Kreutz, C.2    Theis, F.J.3    Timmer, J.4
  • 201
    • 84888027235 scopus 로고    scopus 로고
    • High-dimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling
    • In press. (doi:10.1016/j.mbs.2013.04.002)()
    • Hug S, Raue A, Hasenauer J, Bachmann J, Klingmüller U, Timmer J, Theis F. In press. High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. Math. Biosci. (doi:10.1016/j.mbs.2013.04. 002)()
    • Math. Biosci.
    • Hug, S.1    Raue, A.2    Hasenauer, J.3    Bachmann, J.4    Klingmüller, U.5    Timmer, J.6    Theis, F.7
  • 203
    • 78049443039 scopus 로고    scopus 로고
    • Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes
    • eds D Koller, D Schuurmans, Y Bengio, L Bottou
    • Calderhead B, Girolami M, Lawrence ND. 2008 Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. In Advances in Neural Information Processing Systems (eds D Koller, D Schuurmans, Y Bengio, L Bottou), pp. 217-224. Neural Information Processing Systems Foundation, http://books.nips.cc/nips21.html.
    • (2008) Advances in Neural Information Processing Systems , pp. 217-224
    • Calderhead, B.1    Girolami, M.2    Lawrence, N.D.3
  • 204
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    • doi:10.1111/j.1467-9868.2010.00765.x
    • Girolami M, Calderhead B. 2011 Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. B 73, 123-214. (doi:10.1111/j.1467-9868. 2010.00765.x)
    • (2011) J. R. Stat. Soc. B , vol.73 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 205
    • 84859758552 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods
    • doi:10.1098/rsfs.2011.0051
    • Calderhead B, Girolami M. 2011 Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods. Interface Focus 1, 821-835. (doi:10.1098/rsfs.2011.0051)
    • (2011) Interface Focus , vol.1 , pp. 821-835
    • Calderhead, B.1    Girolami, M.2
  • 206
    • 84875110570 scopus 로고    scopus 로고
    • A vine-copula based adaptive MCMC sampler for efficient inference of dynamical systems
    • doi:10.1214/13-BA801
    • Schmidl D, Czado C, Hug S, Theis FJ. 2013 A vinecopula based adaptive MCMC sampler for efficient inference of dynamical systems. Bayesian Anal. 8, 1-22. (doi:10.1214/13-BA801)
    • (2013) Bayesian Anal. , vol.8 , pp. 1-22
    • Schmidl, D.1    Czado, C.2    Hug, S.3    Theis, F.J.4
  • 208
    • 77956498018 scopus 로고    scopus 로고
    • Sloppy models, parameter uncertainty, and the role of experimental design
    • doi:10.1039/b918098b
    • Apgar JF, Witmer DK, White FM, Tidor B. 2010 Sloppy models, parameter uncertainty, and the role of experimental design. Mol. Biosyst. 6, 1890-1900. (doi:10.1039/b918098b)
    • (2010) Mol. Biosyst. , vol.6 , pp. 1890-1900
    • Apgar, J.F.1    Witmer, D.K.2    White, F.M.3    Tidor, B.4
  • 209
    • 79960347744 scopus 로고    scopus 로고
    • Comment on 'sloppy models, parameter uncertainty, and the role of experimental design'
    • doi:10.1039/c1mb05046j
    • Chachra R, Transtrum MK, Sethna JP. 2011 Comment on 'sloppy models, parameter uncertainty, and the role of experimental design'. Mol. Biosyst. 7, 2522-2522. (doi:10.1039/c1mb05046j)
    • (2011) Mol. Biosyst. , vol.7 , pp. 2522-2522
    • Chachra, R.1    Transtrum, M.K.2    Sethna, J.P.3
  • 210
    • 79960349523 scopus 로고    scopus 로고
    • Reply to comment on 'sloppy models, parameter uncertainty, and the role of experimental design'
    • doi:10.1039/c1mb05200d
    • Hagen DR, Apgar JF, Witmer DK, White FM, Tidor B. 2011 Reply to comment on 'sloppy models, parameter uncertainty, and the role of experimental design'. Mol. Biosyst. 7, 2523-2524. (doi:10.1039/c1mb05200d)
    • (2011) Mol. Biosyst. , vol.7 , pp. 2523-2524
    • Hagen, D.R.1    Apgar, J.F.2    Witmer, D.K.3    White, F.M.4    Tidor, B.5
  • 211
    • 84879448507 scopus 로고    scopus 로고
    • Convergence in parameters and predictions using computational experimental design
    • doi:10.1098/rsfs.2013.0008
    • Hagen DR, White JK, Tidor B. 2013 Convergence in parameters and predictions using computational experimental design. Interface Focus 3, 20130008. (doi:10.1098/rsfs.2013.0008)
    • (2013) Interface Focus , vol.3 , pp. 20130008
    • Hagen, D.R.1    White, J.K.2    Tidor, B.3
  • 212
    • 84911837213 scopus 로고
    • Communication in the presence of noise
    • doi:10.1109/JRPROC.1949.232969
    • Shannon CE. 1949 Communication in the presence of noise. Proc. IRE 37, 10-21. (doi:10.1109/JRPROC. 1949.232969)
    • (1949) Proc. IRE , vol.37 , pp. 10-21
    • Shannon, C.E.1
  • 213
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • doi:10.1002/cpa.20124
    • Candes EJ, Romberg JK, Tao T. 2006 Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207-1223. (doi:10.1002/cpa.20124)
    • (2006) Commun. Pure Appl. Math. , vol.59 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.K.2    Tao, T.3
  • 214
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • doi:10.1109/TIT.2006.871582
    • Donoho DL. 2006 Compressed sensing. IEEE Trans. Inform. Theory 52, 1289-1306. (doi:10.1109/TIT.2006.871582)
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 215
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • doi:10.1109/TIT.2005.862083
    • Candès EJ, Romberg J, Tao T. 2006 Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52, 489-509. (doi:10.1109/TIT.2005.862083)
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 217
    • 84874272377 scopus 로고    scopus 로고
    • Reconstruction of arbitrary biochemical reaction networks: A compressive sensing approach
    • Piscataway Township, NJ: Institute of Electrical and Electronics Engineers (IEEE). (doi:10.1109/CDC.2012.6426216)
    • Pan W, Yuan Y, Stan G. 2012 Reconstruction of arbitrary biochemical reaction networks: a compressive sensing approach. In Proc. 51st IEEE Conf. Dec. Contr. 10-13 December 2012, Maui, HI, pp. 2334-2339, Piscataway Township, NJ: Institute of Electrical and Electronics Engineers (IEEE). (doi:10.1109/CDC.2012. 6426216)
    • (2012) Proc. 51st IEEE Conf. Dec. Contr. 10-13 December 2012, Maui, HI , pp. 2334-2339
    • Pan, W.1    Yuan, Y.2    Stan, G.3
  • 219
    • 33748849648 scopus 로고    scopus 로고
    • Machine learning in bioinformatics
    • doi:10.1093/bib/bbk007
    • Larrañaga P et al. 2006 Machine learning in bioinformatics. Brief. Bioinform. 7, 86-112. (doi:10.1093/bib/bbk007)
    • (2006) Brief. Bioinform. , vol.7 , pp. 86-112
    • Larrañaga, P.1
  • 220
    • 33644959172 scopus 로고    scopus 로고
    • Metabolomics, modelling and machine learning in systems biology - Towards an understanding of the languages of cells
    • doi:10.1111/j.1742-4658.2006.05136.x
    • Kell DB. 2006 Metabolomics, modelling and machine learning in systems biology - towards an understanding of the languages of cells. FEBS J. 273, 873-894. (doi:10.1111/j.1742-4658.2006.05136.x)
    • (2006) FEBS J. , vol.273 , pp. 873-894
    • Kell, D.B.1
  • 222
    • 0345743608 scopus 로고    scopus 로고
    • Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era
    • doi:10.1002/bies.10385
    • Kell DB, Oliver SG. 2004 Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99-105. (doi:10.1002/bies.10385)
    • (2004) Bioessays , vol.26 , pp. 99-105
    • Kell, D.B.1    Oliver, S.G.2
  • 223
    • 77954839098 scopus 로고    scopus 로고
    • Machine science
    • doi:10.1126/science.1189416
    • Evans J, Rzhetsky A. 2010 Machine science. Science 329, 399-400. (doi:10.1126/science.1189416)
    • (2010) Science , vol.329 , pp. 399-400
    • Evans, J.1    Rzhetsky, A.2
  • 225
    • 33747879054 scopus 로고    scopus 로고
    • An ontology for a robot scientist
    • doi:10.1093/bioinformatics/btl207
    • Soldatova LN, Clare A, Sparkes A, King RD. 2006 An ontology for a robot scientist. Bioinformatics 22, e464-e471. (doi:10.1093/bioinformatics/btl207)
    • (2006) Bioinformatics , vol.22
    • Soldatova, L.N.1    Clare, A.2    Sparkes, A.3    King, R.D.4
  • 226
    • 64249139133 scopus 로고    scopus 로고
    • The automation of science
    • doi:10.1126/science.1165620
    • King RD et al. 2009 The automation of science. Science 324, 85-89. (doi:10.1126/science.1165620)
    • (2009) Science , vol.324 , pp. 85-89
    • King, R.D.1
  • 227
    • 34547175927 scopus 로고    scopus 로고
    • Automated reverse engineering of nonlinear dynamical systems
    • doi:10.1073/pnas.0609476104
    • Bongard J, Lipson H. 2007 Automated reverse engineering of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 104, 9943-9948. (doi:10.1073/pnas.0609476104)
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 9943-9948
    • Bongard, J.1    Lipson, H.2
  • 228
    • 64249142111 scopus 로고    scopus 로고
    • Distilling free-form natural laws from experimental data
    • doi:10.1126/science.1165893
    • Schmidt M, Lipson H. 2009 Distilling free-form natural laws from experimental data. Science 324, 81-85. (doi:10.1126/science.1165893)
    • (2009) Science , vol.324 , pp. 81-85
    • Schmidt, M.1    Lipson, H.2
  • 229
    • 0033515831 scopus 로고    scopus 로고
    • Simple lessons from complexity
    • doi:10.1126/science.284.5411.87
    • Goldenfeld N, Kadanoff LP. 1999 Simple lessons from complexity. Science 284, 87-89. (doi:10.1126/science.284.5411.87)
    • (1999) Science , vol.284 , pp. 87-89
    • Goldenfeld, N.1    Kadanoff, L.P.2
  • 230
    • 0002331280 scopus 로고
    • The future of data analysis
    • doi:10.1214/aoms/1177704711
    • Tukey JW. 1962 The future of data analysis. Ann. Math. Stat. 33, 1-67. (doi:10.1214/aoms/1177704711)
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1-67
    • Tukey, J.W.1
  • 231
    • 75449094838 scopus 로고    scopus 로고
    • Sequences and consequences
    • doi:10.1098/rstb.2009.0221
    • Brenner S. 2010 Sequences and consequences. Phil. Trans. R. Soc. B 365, 207-212. (doi:10.1098/rstb.2009.0221)
    • (2010) Phil. Trans. R. Soc. B , vol.365 , pp. 207-212
    • Brenner, S.1
  • 232
    • 80053370343 scopus 로고    scopus 로고
    • Systems: What's in a name?
    • doi:10.1152/physiol.00014.2011
    • Noble D. 2011 Systems: what's in a name? Physiology 26, 126-128. (doi:10.1152/physiol.00014.2011)
    • (2011) Physiology , vol.26 , pp. 126-128
    • Noble, D.1
  • 233
    • 33746747003 scopus 로고    scopus 로고
    • Popper, Bayes and the inverse problem
    • doi:10.1038/nphys375
    • Tarantola A. 2006 Popper, Bayes and the inverse problem. Nat. Phys. 2, 492-494. (doi:10.1038/nphys375)
    • (2006) Nat. Phys. , vol.2 , pp. 492-494
    • Tarantola, A.1
  • 234
    • 84878753843 scopus 로고    scopus 로고
    • Bayes' theorem in the 21st century
    • doi:10.1126/science.1236536
    • Efron B. 2013 Bayes' theorem in the 21st century. Science 340, 1177-1178. (doi:10.1126/science.1236536)
    • (2013) Science , vol.340 , pp. 1177-1178
    • Efron, B.1
  • 235
    • 0343718294 scopus 로고
    • The future of statistics: A Bayesian 21st century
    • doi:10.2307/1426315
    • Lindley D. 1975 The future of statistics: a Bayesian 21st century. Adv. Appl. Probab. 7, 106-115. (doi:10.2307/1426315)
    • (1975) Adv. Appl. Probab. , vol.7 , pp. 106-115
    • Lindley, D.1
  • 236
    • 79954550872 scopus 로고    scopus 로고
    • Practical limits for reverse engineering of dynamical systems: A statistical analysis of sensitivity and parameter inferability in systems biology models
    • doi:10.1039/c0mb00107d
    • Erguler K, Stumpf M. 2011 Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. Mol. Biosyst. 7, 1593-1602. (doi:10.1039/c0mb00107d)
    • (2011) Mol. Biosyst. , vol.7 , pp. 1593-1602
    • Erguler, K.1    Stumpf, M.2
  • 237
    • 34548530660 scopus 로고    scopus 로고
    • Monotone and near-monotone biochemical networks
    • doi:10.1007/s11693-007-9005-9
    • Sontag ED. 2007 Monotone and near-monotone biochemical networks. Syst. Synth. Biol. 1, 59-87. (doi:10.1007/s11693-007-9005-9)
    • (2007) Syst. Synth. Biol. , vol.1 , pp. 59-87
    • Sontag, E.D.1
  • 238
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
    • doi:10.1093/bioinformatics/btg015
    • Hucka M et al. 2003 The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531. (doi:10.1093/bioinformatics/btg015)
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1
  • 239
    • 33644877164 scopus 로고    scopus 로고
    • Biomodels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems
    • doi:10.1093/nar/gkj092
    • Le Novere N et al. 2006 Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(Suppl. 1), D689-D691. (doi:10.1093/nar/gkj092)
    • (2006) Nucleic Acids Res. , vol.34 , Issue.SUPPL. 1
    • Le Novere, N.1
  • 240
    • 33746927955 scopus 로고    scopus 로고
    • International alliances for quantitative modeling in systems biology
    • 1:2005.0007. (doi:10.1038/msb4100011)
    • Kitano H. 2005 International alliances for quantitative modeling in systems biology. Mol. Syst. Biol. 1:2005.0007. (doi:10.1038/msb4100011)
    • (2005) Mol. Syst. Biol.
    • Kitano, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.