-
1
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8 Å resolution
-
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251-260 (1997).
-
(1997)
Nature
, vol.389
, pp. 251-260
-
-
Luger, K.1
Mader, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
2
-
-
0033529565
-
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
-
Kornberg, R. D., Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294 (1999).
-
(1999)
Cell
, vol.98
, pp. 285-294
-
-
Kornberg, R.D.1
Lorch, Y.2
-
3
-
-
0037992395
-
The structure of DNA in the nucleosome core
-
Richmond, T. J., Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145-150 (2003).
-
(2003)
Nature
, vol.423
, pp. 145-150
-
-
Richmond, T.J.1
Davey, C.A.2
-
4
-
-
84881166117
-
Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
-
Narlikar, G. J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490-503 (2013).
-
(2013)
Cell
, vol.154
, pp. 490-503
-
-
Narlikar, G.J.1
Sundaramoorthy, R.2
Owen-Hughes, T.3
-
5
-
-
84978372481
-
Mechanisms of ATP-dependent chromatin remodeling motors
-
Zhou, C. Y., Johnson, S. L., Gamarra, N. I., Narlikar, G. J. Mechanisms of ATP-dependent chromatin remodeling motors. Annu. Rev. Biophys. 45, 153-181 (2016).
-
(2016)
Annu. Rev. Biophys.
, vol.45
, pp. 153-181
-
-
Zhou, C.Y.1
Johnson, S.L.2
Gamarra, N.I.3
Narlikar, G.J.4
-
6
-
-
84923596623
-
Subnucleosomal structures and nucleosome asymmetry across a genome
-
Rhee, H. S., Bataille, A. R., Zhang, L., Pugh, B. F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159, 1377-1388 (2014).
-
(2014)
Cell
, vol.159
, pp. 1377-1388
-
-
Rhee, H.S.1
Bataille, A.R.2
Zhang, L.3
Pugh, B.F.4
-
7
-
-
0034610814
-
The language of covalent histone modifications
-
Strahl, B. D., Allis, C. D. The language of covalent histone modifications. Nature 403, 41-45 (2000).
-
(2000)
Nature
, vol.403
, pp. 41-45
-
-
Strahl, B.D.1
Allis, C.D.2
-
8
-
-
23944462969
-
Genome-wide map of nucleosome acetylation and methylation in yeast
-
Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517-527 (2005).
-
(2005)
Cell
, vol.122
, pp. 517-527
-
-
Pokholok, D.K.1
-
9
-
-
84898883789
-
Histone variants: Dynamic punctuation in transcription
-
Weber, C. M., Henikoff, S. Histone variants: Dynamic punctuation in transcription. Genes Dev. 28, 672-682 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 672-682
-
-
Weber, C.M.1
Henikoff, S.2
-
10
-
-
34250168295
-
Rules and regulation in the primary structure of chromatin
-
Rando, O. J., Ahmad, K. Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol. 19, 250-256 (2007).
-
(2007)
Curr. Opin. Cell Biol.
, vol.19
, pp. 250-256
-
-
Rando, O.J.1
Ahmad, K.2
-
11
-
-
60349089645
-
Nucleosome positioning and gene regulation: Advances through genomics
-
Jiang, C., Pugh, B. F. Nucleosome positioning and gene regulation: Advances through genomics. Nat. Rev. Genet. 10, 161-172 (2009).
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 161-172
-
-
Jiang, C.1
Pugh, B.F.2
-
12
-
-
75349098018
-
A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome
-
Jiang, C., Pugh, B. F. A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol. 10, R109 (2009).
-
(2009)
Genome Biol.
, vol.10
, pp. R109
-
-
Jiang, C.1
Pugh, B.F.2
-
13
-
-
84870593313
-
Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing
-
Cui, F., Cole, H. A., Clark, D. J., Zhurkin, V. B. Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res. 40, 10753-10764 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 10753-10764
-
-
Cui, F.1
Cole, H.A.2
Clark, D.J.3
Zhurkin, V.B.4
-
14
-
-
41749091787
-
Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation
-
Shivaswamy, S. et al. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 6, e65 (2008).
-
(2008)
PLoS Biol.
, vol.6
, pp. e65
-
-
Shivaswamy, S.1
-
15
-
-
84872392743
-
Mechanism of transcription through a nucleosome by RNA polymerase II
-
Kulaeva, O. I., Hsieh, F. K., Chang, H. W., Luse, D. S., Studitsky, V. M. Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim. Biophys. Acta 1829, 76-83 (2013).
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 76-83
-
-
Kulaeva, O.I.1
Hsieh, F.K.2
Chang, H.W.3
Luse, D.S.4
Studitsky, V.M.5
-
16
-
-
84896786505
-
Nucleosomes are context-specific H2A.Z-modulated barriers to RNA polymerase
-
Weber, C. M., Ramachandran, S., Henikoff, S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell 53, 819-830 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 819-830
-
-
Weber, C.M.1
Ramachandran, S.2
Henikoff, S.3
-
17
-
-
84941960643
-
Molecular mechanisms of ribosomal protein gene coregulation
-
Reja, R., Vinayachandran, V., Ghosh, S., Pugh, B. F. Molecular mechanisms of ribosomal protein gene coregulation. Genes Dev. 29, 1942-1954 (2015).
-
(2015)
Genes Dev.
, vol.29
, pp. 1942-1954
-
-
Reja, R.1
Vinayachandran, V.2
Ghosh, S.3
Pugh, B.F.4
-
18
-
-
84993660529
-
Genomic nucleosome organization reconstituted with pure proteins
-
Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709-721.e12 (2016).
-
(2016)
Cell
, vol.167
, pp. 709e12-721e12
-
-
Krietenstein, N.1
-
19
-
-
77953310289
-
Nucleosome positioning, nucleosome spacing and the nucleosome code
-
Clark, D. J. Nucleosome positioning, nucleosome spacing and the nucleosome code. J. Biomol. Struct. Dyn. 27, 781-793 (2010).
-
(2010)
J. Biomol. Struct. Dyn.
, vol.27
, pp. 781-793
-
-
Clark, D.J.1
-
20
-
-
37249077649
-
Chromatin remodelling at promoters suppresses antisense transcription
-
Whitehouse, I., Rando, O. J., Delrow, J., Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031-1035 (2007).
-
(2007)
Nature
, vol.450
, pp. 1031-1035
-
-
Whitehouse, I.1
Rando, O.J.2
Delrow, J.3
Tsukiyama, T.4
-
21
-
-
79957929301
-
Stable and dynamic nucleosome states during a meiotic developmental process
-
Zhang, L., Ma, H., Pugh, B. F. Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res. 21, 875-884 (2011).
-
(2011)
Genome Res.
, vol.21
, pp. 875-884
-
-
Zhang, L.1
Ma, H.2
Pugh, B.F.3
-
22
-
-
37249012276
-
Nucleosome destabilization in the epigenetic regulation of gene expression
-
Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15-26 (2008).
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 15-26
-
-
Henikoff, S.1
-
23
-
-
15744397041
-
Chromatin remodeling complexes: Strength in diversity, precision through specialization
-
Cairns, B. R. Chromatin remodeling complexes: Strength in diversity, precision through specialization. Curr. Opin. Genet. Dev. 15, 185-190 (2005).
-
(2005)
Curr. Opin. Genet. Dev.
, vol.15
, pp. 185-190
-
-
Cairns, B.R.1
-
24
-
-
80053140931
-
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization
-
Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758-1760 (2011).
-
(2011)
Science
, vol.333
, pp. 1758-1760
-
-
Gkikopoulos, T.1
-
25
-
-
84862643713
-
Genome-wide nucleosome specificity and directionality of chromatin remodelers
-
Yen, K., Vinayachandran, V., Batta, K., Koerber, R. T., Pugh, B. F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461-1473 (2012).
-
(2012)
Cell
, vol.149
, pp. 1461-1473
-
-
Yen, K.1
Vinayachandran, V.2
Batta, K.3
Koerber, R.T.4
Pugh, B.F.5
-
26
-
-
84884234697
-
SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes
-
Yen, K., Vinayachandran, V., Pugh, B. F. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154, 1246-1256 (2013).
-
(2013)
Cell
, vol.154
, pp. 1246-1256
-
-
Yen, K.1
Vinayachandran, V.2
Pugh, B.F.3
-
27
-
-
84902203517
-
Histone chaperones: Assisting histone traffic and nucleosome dynamics
-
Gurard-Levin, Z. A., Quivy, J. P., Almouzni, G. Histone chaperones: Assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487-517 (2014).
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 487-517
-
-
Gurard-Levin, Z.A.1
Quivy, J.P.2
Almouzni, G.3
-
28
-
-
0035104474
-
Nucleosomes positioned by ORC facilitate the initiation of DNA replication
-
Lipford, J. R., Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21-30 (2001).
-
(2001)
Mol. Cell
, vol.7
, pp. 21-30
-
-
Lipford, J.R.1
Bell, S.P.2
-
29
-
-
77950962157
-
Conserved nucleosome positioning defines replication origins
-
Eaton, M. L., Galani, K., Kang, S., Bell, S. P., MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748-753 (2010).
-
(2010)
Genes Dev.
, vol.24
, pp. 748-753
-
-
Eaton, M.L.1
Galani, K.2
Kang, S.3
Bell, S.P.4
MacAlpine, D.M.5
-
30
-
-
34548544648
-
Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling
-
Wang, G. G., Allis, C. D., Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med. 13, 373-380 (2007).
-
(2007)
Trends Mol. Med.
, vol.13
, pp. 373-380
-
-
Wang, G.G.1
Allis, C.D.2
Chi, P.3
-
31
-
-
84872051865
-
Histone chaperones in nucleosome assembly and human disease
-
Burgess, R. J., Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20, 14-22 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 14-22
-
-
Burgess, R.J.1
Zhang, Z.2
-
32
-
-
84878282462
-
Histone variants in pluripotency and disease
-
Skene, P. J., Henikoff, S. Histone variants in pluripotency and disease. Development 140, 2513-2524 (2013).
-
(2013)
Development
, vol.140
, pp. 2513-2524
-
-
Skene, P.J.1
Henikoff, S.2
-
33
-
-
84908151229
-
Histone core modifications regulating nucleosome structure and dynamics
-
Tessarz, P., Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703-708 (2014).
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 703-708
-
-
Tessarz, P.1
Kouzarides, T.2
-
34
-
-
85001720295
-
Histone variants on the move: Substrates for chromatin dynamics
-
Talbert, P. B., Henikoff, S. Histone variants on the move: Substrates for chromatin dynamics. Nat. Rev. Mol. Cell Biol. 18, 115-126 (2017).
-
(2017)
Nat. Rev. Mol. Cell Biol.
, vol.18
, pp. 115-126
-
-
Talbert, P.B.1
Henikoff, S.2
-
35
-
-
85011296283
-
Variants of core histones and their roles in cell fate decisions, development and cancer
-
Buschbeck, M., Hake, S. B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2016.166 (2017).
-
(2017)
Nat. Rev. Mol. Cell Biol.
-
-
Buschbeck, M.1
Hake, S.B.2
-
36
-
-
33747500567
-
A genomic code for nucleosome positioning
-
Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772-778 (2006).
-
(2006)
Nature
, vol.442
, pp. 772-778
-
-
Segal, E.1
-
37
-
-
77955410104
-
Nucleosome sequence preferences influence in vivo nucleosome organization
-
Kaplan, N. et al. Nucleosome sequence preferences influence in vivo nucleosome organization. Nat. Struct. Mol. Biol. 17, 918-920 (2010).
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 918-920
-
-
Kaplan, N.1
-
38
-
-
84875196326
-
Determinants of nucleosome positioning
-
Struhl, K., Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267-273 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 267-273
-
-
Struhl, K.1
Segal, E.2
-
39
-
-
84901980324
-
Mechanisms underlying nucleosome positioning in vivo
-
Hughes, A. L., Rando, O. J. Mechanisms underlying nucleosome positioning in vivo. Annu. Rev. Biophys. 43, 41-63 (2014).
-
(2014)
Annu. Rev. Biophys.
, vol.43
, pp. 41-63
-
-
Hughes, A.L.1
Rando, O.J.2
-
40
-
-
34547630151
-
ChIP-seq: Welcome to the new frontier
-
Mardis, E. R. ChIP-seq: Welcome to the new frontier. Nat. Methods 4, 613-614 (2007).
-
(2007)
Nat. Methods
, vol.4
, pp. 613-614
-
-
Mardis, E.R.1
-
41
-
-
80054729999
-
Using ChIP-seq technology to generate high-resolution profiles of histone modifications
-
O'Geen, H., Echipare, L., Farnham, P. J. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol. 791, 265-286 (2011).
-
(2011)
Methods Mol. Biol.
, vol.791
, pp. 265-286
-
-
O'Geen, H.1
Echipare, L.2
Farnham, P.J.3
-
42
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
-
43
-
-
84908207355
-
Identifying and mitigating bias in next-generation sequencing methods for chromatin biology
-
Meyer, C. A., Liu, X. S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 15, 709-721 (2014).
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 709-721
-
-
Meyer, C.A.1
Liu, X.S.2
-
44
-
-
84988945264
-
Chromatin accessibility: A window into the genome
-
Tsompana, M., Buck, M. J. Chromatin accessibility: A window into the genome. Epigenetics Chromatin 7, 33 (2014).
-
(2014)
Epigenetics Chromatin
, vol.7
, pp. 33
-
-
Tsompana, M.1
Buck, M.J.2
-
45
-
-
84989306838
-
A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution
-
Zhou, X., Blocker, A. W., Airoldi, E. M., O'Shea, E. K. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution. eLife 5, e16970 (2016).
-
(2016)
ELife
, vol.5
, pp. e16970
-
-
Zhou, X.1
Blocker, A.W.2
Airoldi, E.M.3
O'Shea, E.K.4
-
46
-
-
16844384065
-
Split decision: What happens to nucleosomes during DNA replication
-
Annunziato, A. T. Split decision: What happens to nucleosomes during DNA replication J. Biol. Chem. 280, 12065-12068 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 12065-12068
-
-
Annunziato, A.T.1
-
47
-
-
79956316470
-
A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome
-
Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977-980 (2011).
-
(2011)
Science
, vol.332
, pp. 977-980
-
-
Zhang, Z.1
-
48
-
-
84923782190
-
Histone exchange, chromatin structure and the regulation of transcription
-
Venkatesh, S., Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178-189 (2015).
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 178-189
-
-
Venkatesh, S.1
Workman, J.L.2
-
49
-
-
11144231369
-
The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes
-
Wade, J. T., Hall, D. B., Struhl, K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432, 1054-1058 (2004).
-
(2004)
Nature
, vol.432
, pp. 1054-1058
-
-
Wade, J.T.1
Hall, D.B.2
Struhl, K.3
-
50
-
-
33749153628
-
Nucleosome positions predicted through comparative genomics
-
Ioshikhes, I. P., Albert, I., Zanton, S. J., Pugh, B. F. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38, 1210-1215 (2006).
-
(2006)
Nat. Genet.
, vol.38
, pp. 1210-1215
-
-
Ioshikhes, I.P.1
Albert, I.2
Zanton, S.J.3
Pugh, B.F.4
-
51
-
-
67649826220
-
From DNA sequence to transcriptional behaviour: A quantitative approach
-
Segal, E., Widom, J. From DNA sequence to transcriptional behaviour: A quantitative approach. Nat. Rev. Genet. 10, 443-456 (2009).
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 443-456
-
-
Segal, E.1
Widom, J.2
-
52
-
-
62649085538
-
The DNA-encoded nucleosome organization of a eukaryotic genome
-
Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362-366 (2009).
-
(2009)
Nature
, vol.458
, pp. 362-366
-
-
Kaplan, N.1
-
53
-
-
68249142923
-
Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo
-
Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16, 847-852 (2009).
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 847-852
-
-
Zhang, Y.1
-
54
-
-
34047111213
-
Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome
-
Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572-576 (2007).
-
(2007)
Nature
, vol.446
, pp. 572-576
-
-
Albert, I.1
-
55
-
-
84884228389
-
Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex
-
Tosi, A. et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154, 1207-1219 (2013).
-
(2013)
Cell
, vol.154
, pp. 1207-1219
-
-
Tosi, A.1
-
56
-
-
84876313606
-
A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme
-
Watanabe, S., Radman-Livaja, M., Rando, O. J., Peterson, C. L. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340, 195-199 (2013).
-
(2013)
Science
, vol.340
, pp. 195-199
-
-
Watanabe, S.1
Radman-Livaja, M.2
Rando, O.J.3
Peterson, C.L.4
-
57
-
-
84979528666
-
Comment on A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme
-
Wang, F., Ranjan, A., Wei, D., Wu, C. Comment on "A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme". Science 353, 358 (2016).
-
(2016)
Science
, vol.353
, pp. 358
-
-
Wang, F.1
Ranjan, A.2
Wei, D.3
Wu, C.4
-
58
-
-
84906257725
-
The mammalian INO80 chromatin remodeling complex is required for replication stress recovery
-
Vassileva, I., Yanakieva, I., Peycheva, M., Gospodinov, A., Anachkova, B. The mammalian INO80 chromatin remodeling complex is required for replication stress recovery. Nucleic Acids Res. 42, 9074-9086 (2014).
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 9074-9086
-
-
Vassileva, I.1
Yanakieva, I.2
Peycheva, M.3
Gospodinov, A.4
Anachkova, B.5
-
59
-
-
84883797029
-
Nucleosome dynamics as modular systems that integrate DNA damage and repair
-
Peterson, C. L., Almouzni, G. Nucleosome dynamics as modular systems that integrate DNA damage and repair. Cold Spring Harb. Perspect. Biol. 5, a012658 (2013).
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a012658
-
-
Peterson, C.L.1
Almouzni, G.2
-
60
-
-
0036166206
-
When repair meets chromatin. First in series on chromatin dynamics
-
Green, C. M., Almouzni, G. When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep. 3, 28-33 (2002).
-
(2002)
EMBO Rep.
, vol.3
, pp. 28-33
-
-
Green, C.M.1
Almouzni, G.2
-
61
-
-
33947137710
-
Dynamics of replication-independent histone turnover in budding yeast
-
Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405-1408 (2007).
-
(2007)
Science
, vol.315
, pp. 1405-1408
-
-
Dion, M.F.1
-
62
-
-
77952996319
-
Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones
-
Deal, R. B., Henikoff, J. G., Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161-1164 (2010).
-
(2010)
Science
, vol.328
, pp. 1161-1164
-
-
Deal, R.B.1
Henikoff, J.G.2
Henikoff, S.3
-
63
-
-
84255162049
-
Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity
-
Ray-Gallet, D. et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 44, 928-941 (2011).
-
(2011)
Mol. Cell
, vol.44
, pp. 928-941
-
-
Ray-Gallet, D.1
-
64
-
-
84886731038
-
Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3
-
Kraushaar, D. C. et al. Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol. 14, R121 (2013).
-
(2013)
Genome Biol.
, vol.14
, pp. R121
-
-
Kraushaar, D.C.1
-
65
-
-
84930962818
-
A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters
-
Yildirim, O. et al. A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters. PLoS Genet. 10, e1004515 (2014).
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004515
-
-
Yildirim, O.1
-
66
-
-
84931835913
-
A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin
-
Svensson, J. P. et al. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res. 25, 872-883 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 872-883
-
-
Svensson, J.P.1
-
67
-
-
0037225952
-
A general method for the covalent labeling of fusion proteins with small molecules in vivo
-
Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86-89 (2003).
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 86-89
-
-
Keppler, A.1
-
68
-
-
84982728065
-
Enhancer regions show high histone H3.3 turnover that changes during differentiation
-
Deaton, A. M. et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. eLife 5, e15316 (2016).
-
(2016)
ELife
, vol.5
, pp. e15316
-
-
Deaton, A.M.1
-
69
-
-
0041828954
-
FACT facilitates transcription-dependent nucleosome alteration
-
Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090-1093 (2003).
-
(2003)
Science
, vol.301
, pp. 1090-1093
-
-
Belotserkovskaya, R.1
-
70
-
-
79958077283
-
Nucleosome positioning in Saccharomyces cerevisiae
-
Jansen, A., Verstrepen, K. J. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 75, 301-320 (2011).
-
(2011)
Microbiol. Mol. Biol. Rev.
, vol.75
, pp. 301-320
-
-
Jansen, A.1
Verstrepen, K.J.2
-
71
-
-
0034721670
-
The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p
-
Goldmark, J. P., Fazzio, T. G., Estep, P. W., Church, G. M., Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423-433 (2000).
-
(2000)
Cell
, vol.103
, pp. 423-433
-
-
Goldmark, J.P.1
Fazzio, T.G.2
Estep, P.W.3
Church, G.M.4
Tsukiyama, T.5
-
72
-
-
84867371116
-
A functional evolutionary approach to identify determinants of nucleosome positioning: A unifying model for establishing the genome-wide pattern
-
Hughes, A. L., Jin, Y., Rando, O. J., Struhl, K. A functional evolutionary approach to identify determinants of nucleosome positioning: A unifying model for establishing the genome-wide pattern. Mol. Cell 48, 5-15 (2012).
-
(2012)
Mol. Cell
, vol.48
, pp. 5-15
-
-
Hughes, A.L.1
Jin, Y.2
Rando, O.J.3
Struhl, K.4
-
73
-
-
77955365269
-
Evidence against a genomic code for nucleosome positioning. Reply to Nucleosome sequence preferences influence in vivo nucleosome organization
-
Zhang, Y. et al. Evidence against a genomic code for nucleosome positioning. Reply to "Nucleosome sequence preferences influence in vivo nucleosome organization". Nat. Struct. Mol. Biol. 17, 920-923 (2010).
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 920-923
-
-
Zhang, Y.1
-
74
-
-
80555125013
-
Variety of genomic DNA patterns for nucleosome positioning
-
Ioshikhes, I., Hosid, S., Pugh, B. F. Variety of genomic DNA patterns for nucleosome positioning. Genome Res. 21, 1863-1871 (2011).
-
(2011)
Genome Res.
, vol.21
, pp. 1863-1871
-
-
Ioshikhes, I.1
Hosid, S.2
Pugh, B.F.3
-
75
-
-
84870485829
-
CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters
-
Fenouil, R. et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 22, 2399-2408 (2012).
-
(2012)
Genome Res.
, vol.22
, pp. 2399-2408
-
-
Fenouil, R.1
-
76
-
-
84957554030
-
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells
-
de Dieuleveult, M. et al. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530, 113-116 (2016).
-
(2016)
Nature
, vol.530
, pp. 113-116
-
-
De Dieuleveult, M.1
-
77
-
-
76949093375
-
Nucleosome positioning: How is it established, and why does it matter
-
Radman-Livaja, M., Rando, O. J. Nucleosome positioning: How is it established, and why does it matter Dev. Biol. 339, 258-266 (2010).
-
(2010)
Dev. Biol.
, vol.339
, pp. 258-266
-
-
Radman-Livaja, M.1
Rando, O.J.2
-
78
-
-
65249164132
-
Mechanisms that specify promoter nucleosome location and identity
-
Hartley, P. D., Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445-458 (2009).
-
(2009)
Cell
, vol.137
, pp. 445-458
-
-
Hartley, P.D.1
Madhani, H.D.2
-
79
-
-
84875149194
-
Regulation of nucleosome dynamics by histone modifications
-
Zentner, G. E., Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259-266 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 259-266
-
-
Zentner, G.E.1
Henikoff, S.2
-
80
-
-
33646869229
-
Chromatin remodelling in mammalian differentiation: Lessons from ATP-dependent remodellers
-
de la Serna, I. L., Ohkawa, Y., Imbalzano, A. N. Chromatin remodelling in mammalian differentiation: Lessons from ATP-dependent remodellers. Nat. Rev. Genet. 7, 461-473 (2006).
-
(2006)
Nat. Rev. Genet.
, vol.7
, pp. 461-473
-
-
De La Serna, I.L.1
Ohkawa, Y.2
Imbalzano, A.N.3
-
81
-
-
33646856673
-
SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment
-
Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y., Stillman, D. J. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol. Cell. Biol. 26, 4095-4110 (2006).
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 4095-4110
-
-
Mitra, D.1
Parnell, E.J.2
Landon, J.W.3
Yu, Y.4
Stillman, D.J.5
-
82
-
-
1042290351
-
The SWI/SNF complex-chromatin and cancer
-
Roberts, C. W., Orkin, S. H. The SWI/SNF complex-chromatin and cancer. Nat. Rev. Cancer 4, 133-142 (2004).
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 133-142
-
-
Roberts, C.W.1
Orkin, S.H.2
-
83
-
-
0031947549
-
SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding
-
Ryan, M. P., Jones, R., Morse, R. H. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18, 1774-1782 (1998).
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 1774-1782
-
-
Ryan, M.P.1
Jones, R.2
Morse, R.H.3
-
84
-
-
84908083147
-
Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions
-
Dutta, A. et al. Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions. Genes Dev. 28, 2314-2330 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 2314-2330
-
-
Dutta, A.1
-
85
-
-
0034068906
-
Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene
-
de La Serna, I. L. et al. Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol. Cell. Biol. 20, 2839-2851 (2000).
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 2839-2851
-
-
De La Serna, I.L.1
-
86
-
-
85041801996
-
Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics
-
Kadoch, C., Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
-
(2015)
Sci. Adv.
, vol.1
, pp. e1500447
-
-
Kadoch, C.1
Crabtree, G.R.2
-
87
-
-
84879312591
-
Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters
-
Tolstorukov, M. Y. et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc. Natl Acad. Sci. USA 110, 10165-10170 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 10165-10170
-
-
Tolstorukov, M.Y.1
-
88
-
-
0030447612
-
RSC, an essential, abundant chromatin-remodeling complex
-
Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-1260 (1996).
-
(1996)
Cell
, vol.87
, pp. 1249-1260
-
-
Cairns, B.R.1
-
89
-
-
38049055816
-
RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes
-
Parnell, T. J., Huff, J. T., Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100-110 (2008).
-
(2008)
EMBO J.
, vol.27
, pp. 100-110
-
-
Parnell, T.J.1
Huff, J.T.2
Cairns, B.R.3
-
90
-
-
84947716265
-
Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast
-
Kubik, S. et al. Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast. Mol. Cell 60, 422-434 (2015).
-
(2015)
Mol. Cell
, vol.60
, pp. 422-434
-
-
Kubik, S.1
-
91
-
-
84910681263
-
Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions
-
Lorch, Y., Maier-Davis, B., Kornberg, R. D. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions. Genes Dev. 28, 2492-2497 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 2492-2497
-
-
Lorch, Y.1
Maier-Davis, B.2
Kornberg, R.D.3
-
92
-
-
84908577906
-
Poly-dA:dT tracts form an in vivo nucleosomal turnstile
-
de Boer, C. G., Hughes, T. R. Poly-dA:dT tracts form an in vivo nucleosomal turnstile. PLoS ONE 9, e110479 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e110479
-
-
De Boer, C.G.1
Hughes, T.R.2
-
93
-
-
34147158728
-
The Chd family of chromatin remodelers
-
Marfella, C. G., Imbalzano, A. N. The Chd family of chromatin remodelers. Mutat. Res. 618, 30-40 (2007).
-
(2007)
Mutat. Res.
, vol.618
, pp. 30-40
-
-
Marfella, C.G.1
Imbalzano, A.N.2
-
94
-
-
84985946819
-
Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness
-
Kari, V. et al. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 17, 1609-1623 (2016).
-
(2016)
EMBO Rep.
, vol.17
, pp. 1609-1623
-
-
Kari, V.1
-
95
-
-
84882655459
-
ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling
-
Torigoe, S. E., Patel, A., Khuong, M. T., Bowman, G. D., Kadonaga, J. T. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2, e00863 (2013).
-
(2013)
ELife
, vol.2
, pp. e00863
-
-
Torigoe, S.E.1
Patel, A.2
Khuong, M.T.3
Bowman, G.D.4
Kadonaga, J.T.5
-
96
-
-
84988921966
-
The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome
-
Nodelman, I. M. et al. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome. Nucleic Acids Res. 44, 7580-7591 (2016).
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 7580-7591
-
-
Nodelman, I.M.1
-
97
-
-
84964924299
-
Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler
-
McKnight, J. N., Tsukiyama, T., Bowman, G. D. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler. Genome Res. 26, 693-704 (2016).
-
(2016)
Genome Res.
, vol.26
, pp. 693-704
-
-
McKnight, J.N.1
Tsukiyama, T.2
Bowman, G.D.3
-
98
-
-
84860518345
-
Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1
-
Lee, J. S. et al. Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev. 26, 914-919 (2012).
-
(2012)
Genes Dev.
, vol.26
, pp. 914-919
-
-
Lee, J.S.1
-
99
-
-
84988935720
-
Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns
-
Park, D., Shivram, H., Iyer, V. R. Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns. Epigenetics Chromatin 7, 32 (2014).
-
(2014)
Epigenetics Chromatin
, vol.7
, pp. 32
-
-
Park, D.1
Shivram, H.2
Iyer, V.R.3
-
100
-
-
33744916194
-
Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
-
Zofall, M., Persinger, J., Kassabov, S. R., Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339-346 (2006).
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 339-346
-
-
Zofall, M.1
Persinger, J.2
Kassabov, S.R.3
Bartholomew, B.4
-
101
-
-
36849004886
-
Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
-
Dang, W., Bartholomew, B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27, 8306-8317 (2007).
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8306-8317
-
-
Dang, W.1
Bartholomew, B.2
-
102
-
-
84873566553
-
Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains
-
Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222-229 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 222-229
-
-
Hota, S.K.1
-
103
-
-
1542358189
-
Multiple roles for ISWI in transcription, chromosome organization and DNA replication
-
Corona, D. F., Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113-119 (2004).
-
(2004)
Biochim. Biophys. Acta
, vol.1677
, pp. 113-119
-
-
Corona, D.F.1
Tamkun, J.W.2
-
104
-
-
84925945816
-
ISWI chromatin remodeling complexes in the DNA damage response
-
Aydin, O. Z., Vermeulen, W., Lans, H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 13, 3016-3025 (2014).
-
(2014)
Cell Cycle
, vol.13
, pp. 3016-3025
-
-
Aydin, O.Z.1
Vermeulen, W.2
Lans, H.3
-
105
-
-
35848958821
-
Chromatin remodeling: Insights and intrigue from single-molecule studies
-
Cairns, B. R. Chromatin remodeling: Insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989-996 (2007).
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 989-996
-
-
Cairns, B.R.1
-
106
-
-
0034902187
-
Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors
-
Langst, G., Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561-2568 (2001).
-
(2001)
J. Cell Sci.
, vol.114
, pp. 2561-2568
-
-
Langst, G.1
Becker, P.B.2
-
107
-
-
84861762301
-
Swi2/Snf2 remodelers: Hybrid views on hybrid molecular machines
-
Hopfner, K. P., Gerhold, C. B., Lakomek, K., Wollmann, P. Swi2/Snf2 remodelers: Hybrid views on hybrid molecular machines. Curr. Opin. Struct. Biol. 22, 225-233 (2012).
-
(2012)
Curr. Opin. Struct. Biol.
, vol.22
, pp. 225-233
-
-
Hopfner, K.P.1
Gerhold, C.B.2
Lakomek, K.3
Wollmann, P.4
-
108
-
-
0033867524
-
The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo
-
Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355-365 (2000).
-
(2000)
Mol. Cell
, vol.5
, pp. 355-365
-
-
Deuring, R.1
-
109
-
-
0035801407
-
NoRC-a novel member of mammalian ISWI-containing chromatin remodeling machines
-
Strohner, R. et al. NoRC-a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20, 4892-4900 (2001).
-
(2001)
EMBO J.
, vol.20
, pp. 4892-4900
-
-
Strohner, R.1
-
110
-
-
1542358192
-
ISWI complexes in Saccharomyces cerevisiae
-
Mellor, J., Morillon, A. ISWI complexes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1677, 100-112 (2004).
-
(2004)
Biochim. Biophys. Acta
, vol.1677
, pp. 100-112
-
-
Mellor, J.1
Morillon, A.2
-
111
-
-
33745221438
-
Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes
-
Stockdale, C., Flaus, A., Ferreira, H., Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279-16288 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 16279-16288
-
-
Stockdale, C.1
Flaus, A.2
Ferreira, H.3
Owen-Hughes, T.4
-
112
-
-
84933053431
-
Dynamic regulation of transcription factors by nucleosome remodeling
-
Li, M. et al. Dynamic regulation of transcription factors by nucleosome remodeling. eLife 4, e06249 (2015).
-
(2015)
ELife
, vol.4
, pp. e06249
-
-
Li, M.1
-
113
-
-
0016221697
-
Chromatin structure: A repeating unit of histones and DNA
-
Kornberg, R. D. Chromatin structure: A repeating unit of histones and DNA. Science 184, 868-871 (1974).
-
(1974)
Science
, vol.184
, pp. 868-871
-
-
Kornberg, R.D.1
-
114
-
-
0016753515
-
Histones H2a, H2b H3 and H4 form a tetrameric complex in solutions of high salt
-
Weintraub, H., Palter, K., Van Lente, F. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Cell 6, 85-110 (1975).
-
(1975)
Cell
, vol.6
, pp. 85-110
-
-
Weintraub, H.1
Palter, K.2
Van Lente, F.3
-
115
-
-
0017041240
-
A model for chromatin based upon two symmetrically paired half-nucleosomes
-
Weintraub, H., Worcel, A., Alberts, B. A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9, 409-417 (1976).
-
(1976)
Cell
, vol.9
, pp. 409-417
-
-
Weintraub, H.1
Worcel, A.2
Alberts, B.3
-
116
-
-
59649087452
-
The nucleosome family: Dynamic and growing
-
Zlatanova, J., Bishop, T. C., Victor, J. M., Jackson, V., van Holde, K. The nucleosome family: Dynamic and growing. Structure 17, 160-171 (2009).
-
(2009)
Structure
, vol.17
, pp. 160-171
-
-
Zlatanova, J.1
Bishop, T.C.2
Victor, J.M.3
Jackson, V.4
Van Holde, K.5
-
117
-
-
79951709224
-
Epigenetic centromere propagation and the nature of CENP-A nucleosomes
-
Black, B. E., Cleveland, D. W. Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 144, 471-479 (2011).
-
(2011)
Cell
, vol.144
, pp. 471-479
-
-
Black, B.E.1
Cleveland, D.W.2
-
118
-
-
0034598944
-
Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites
-
Anderson, J. D., Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979-987 (2000).
-
(2000)
J. Mol. Biol.
, vol.296
, pp. 979-987
-
-
Anderson, J.D.1
Widom, J.2
-
119
-
-
84879883663
-
Structural basis of histone H2A-H2B recognition by the essential chaperone FACT
-
Hondele, M. et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 499, 111-114 (2013).
-
(2013)
Nature
, vol.499
, pp. 111-114
-
-
Hondele, M.1
-
120
-
-
84977517829
-
Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly
-
Aguilar-Gurrieri, C. et al. Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly. EMBO J. 35, 1465-1482 (2016).
-
(2016)
EMBO J.
, vol.35
, pp. 1465-1482
-
-
Aguilar-Gurrieri, C.1
-
121
-
-
0028872728
-
Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative
-
Adams, C. C., Workman, J. L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405-1421 (1995).
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 1405-1421
-
-
Adams, C.C.1
Workman, J.L.2
-
122
-
-
0029875865
-
A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites
-
Polach, K. J., Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800-812 (1996).
-
(1996)
J. Mol. Biol.
, vol.258
, pp. 800-812
-
-
Polach, K.J.1
Widom, J.2
-
123
-
-
70349173215
-
Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome
-
Koerber, R. T., Rhee, H. S., Jiang, C., Pugh, B. F. Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol. Cell 35, 889-902 (2009).
-
(2009)
Mol. Cell
, vol.35
, pp. 889-902
-
-
Koerber, R.T.1
Rhee, H.S.2
Jiang, C.3
Pugh, B.F.4
-
124
-
-
84961904792
-
Stepwise nucleosome translocation by RSC remodeling complexes
-
Harada, B. T. et al. Stepwise nucleosome translocation by RSC remodeling complexes. eLife 5, e10051 (2016).
-
(2016)
ELife
, vol.5
, pp. e10051
-
-
Harada, B.T.1
-
125
-
-
36049013749
-
Structure dynamics, and evolution of centromeric nucleosomes
-
Dalal, Y., Furuyama, T., Vermaak, D., Henikoff, S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 15974-15981 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 15974-15981
-
-
Dalal, Y.1
Furuyama, T.2
Vermaak, D.3
Henikoff, S.4
-
126
-
-
84961204459
-
Nucleosome dynamics during chromatin remodeling in vivo
-
Ramachandran, S., Henikoff, S. Nucleosome dynamics during chromatin remodeling in vivo. Nucleus 7, 20-26 (2016).
-
(2016)
Nucleus
, vol.7
, pp. 20-26
-
-
Ramachandran, S.1
Henikoff, S.2
-
127
-
-
79955559703
-
Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation
-
Xi, Y., Yao, J., Chen, R., Li, W., He, X. Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation. Genome Res. 21, 718-724 (2011).
-
(2011)
Genome Res.
, vol.21
, pp. 718-724
-
-
Xi, Y.1
Yao, J.2
Chen, R.3
Li, W.4
He, X.5
-
128
-
-
84905260621
-
Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription
-
Knight, B. et al. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 28, 1695-1709 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 1695-1709
-
-
Knight, B.1
-
129
-
-
85011301116
-
MNase-sensitive complexes in yeast: Nucleosomes and non-histone barriers
-
Chereji, R. V., Ocampo, J., Clark, D. J. MNase-sensitive complexes in yeast: Nucleosomes and non-histone barriers. Mol. Cell 65, 565-577.e3 (2017).
-
(2017)
Mol. Cell
, vol.65
, pp. 565e3-577e3
-
-
Chereji, R.V.1
Ocampo, J.2
Clark, D.J.3
-
130
-
-
84949998205
-
The prenucleosome, a stable conformational isomer of the nucleosome
-
Fei, J. et al. The prenucleosome, a stable conformational isomer of the nucleosome. Genes Dev. 29, 2563-2575 (2015).
-
(2015)
Genes Dev.
, vol.29
, pp. 2563-2575
-
-
Fei, J.1
-
131
-
-
84899635905
-
The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo
-
Henikoff, S. et al. The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife 3, e01861 (2014).
-
(2014)
ELife
, vol.3
, pp. e01861
-
-
Henikoff, S.1
-
132
-
-
84856008074
-
Tripartite organization of centromeric chromatin in budding yeast
-
Krassovsky, K., Henikoff, J. G., Henikoff, S. Tripartite organization of centromeric chromatin in budding yeast. Proc. Natl Acad. Sci. USA 109, 243-248 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 243-248
-
-
Krassovsky, K.1
Henikoff, J.G.2
Henikoff, S.3
-
133
-
-
84878931770
-
The octamer is the major form of CENP-A nucleosomes at human centromeres
-
Hasson, D. et al. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 20, 687-695 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 687-695
-
-
Hasson, D.1
-
134
-
-
84878893101
-
Reconstitution of hemisomes on budding yeast centromeric DNA
-
Furuyama, T., Codomo, C. A., Henikoff, S. Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Res. 41, 5769-5783 (2013).
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 5769-5783
-
-
Furuyama, T.1
Codomo, C.A.2
Henikoff, S.3
-
135
-
-
84873020117
-
ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy
-
Rhee, H. S., Pugh, B. F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol. http://dx.doi.org/10.1002/0471142727.mb2124s100 (2012).
-
(2012)
Curr. Protoc. Mol. Biol.
-
-
Rhee, H.S.1
Pugh, B.F.2
-
136
-
-
84923924611
-
Asymmetric nucleosomes flank promoters in the budding yeast genome
-
Ramachandran, S., Zentner, G. E., Henikoff, S. Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res. 25, 381-390 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 381-390
-
-
Ramachandran, S.1
Zentner, G.E.2
Henikoff, S.3
-
137
-
-
84859893995
-
Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome
-
Arimura, Y., Tachiwana, H., Oda, T., Sato, M., Kurumizaka, H. Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome. Biochemistry 51, 3302-3309 (2012).
-
(2012)
Biochemistry
, vol.51
, pp. 3302-3309
-
-
Arimura, Y.1
Tachiwana, H.2
Oda, T.3
Sato, M.4
Kurumizaka, H.5
-
138
-
-
33746641324
-
Nucleosome displacement in transcription
-
Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 20, 2009-2017 (2006).
-
(2006)
Genes Dev.
, vol.20
, pp. 2009-2017
-
-
Workman, J.L.1
-
139
-
-
85028007752
-
Nucleosomal barrier to transcription: Structural determinants and changes in chromatin structure
-
Studitsky, V. M., Nizovtseva, E. V., Shaytan, A. K., Luse, D. S. Nucleosomal barrier to transcription: Structural determinants and changes in chromatin structure. Biochem. Mol. Biol. J. 2, 8 (2016).
-
(2016)
Biochem. Mol. Biol. J.
, vol.2
, pp. 8
-
-
Studitsky, V.M.1
Nizovtseva, E.V.2
Shaytan, A.K.3
Luse, D.S.4
-
140
-
-
79551581102
-
Chromatin signatures of the Drosophila replication program
-
Eaton, M. L. et al. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164-174 (2011).
-
(2011)
Genome Res.
, vol.21
, pp. 164-174
-
-
Eaton, M.L.1
-
142
-
-
84858165145
-
Genome-wide structure and organization of eukaryotic pre-initiation complexes
-
Rhee, H. S., Pugh, B. F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295-301 (2012).
-
(2012)
Nature
, vol.483
, pp. 295-301
-
-
Rhee, H.S.1
Pugh, B.F.2
-
143
-
-
84923780299
-
Getting up to speed with transcription elongation by RNA polymerase II
-
Jonkers, I., Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167-177 (2015).
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 167-177
-
-
Jonkers, I.1
Lis, J.T.2
-
144
-
-
0040116022
-
A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene
-
Stunkel, W., Kober, I., Seifart, K. H. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17, 4397-4405 (1997).
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 4397-4405
-
-
Stunkel, W.1
Kober, I.2
Seifart, K.H.3
-
145
-
-
0035265831
-
A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain
-
Zhao, X., Pendergrast, P. S., Hernandez, N. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell 7, 539-549 (2001).
-
(2001)
Mol. Cell
, vol.7
, pp. 539-549
-
-
Zhao, X.1
Pendergrast, P.S.2
Hernandez, N.3
-
146
-
-
84983542716
-
Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex
-
Tramantano, M. et al. Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex. eLife 5, e14243 (2016).
-
(2016)
ELife
, vol.5
, pp. e14243
-
-
Tramantano, M.1
-
147
-
-
34247341747
-
H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
-
Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).
-
(2007)
PLoS Biol.
, vol.5
, pp. e81
-
-
Brickner, D.G.1
-
148
-
-
84891689852
-
Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo
-
Grimaldi, Y., Ferrari, P., Strubin, M. Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo. Genome Res. 24, 117-124 (2014).
-
(2014)
Genome Res.
, vol.24
, pp. 117-124
-
-
Grimaldi, Y.1
Ferrari, P.2
Strubin, M.3
-
149
-
-
40549108563
-
Cell cycle regulation of DNA replication
-
Sclafani, R. A., Holzen, T. M. Cell cycle regulation of DNA replication. Annu. Rev. Genet. 41, 237-280 (2007).
-
(2007)
Annu. Rev. Genet.
, vol.41
, pp. 237-280
-
-
Sclafani, R.A.1
Holzen, T.M.2
-
150
-
-
84928925898
-
The dynamics of eukaryotic replication initiation: Origin specificity, licensing, and firing at the single-molecule level
-
Duzdevich, D. et al. The dynamics of eukaryotic replication initiation: Origin specificity, licensing, and firing at the single-molecule level. Mol. Cell 58, 483-494 (2015).
-
(2015)
Mol. Cell
, vol.58
, pp. 483-494
-
-
Duzdevich, D.1
-
151
-
-
84979894037
-
Chromosome duplication in Saccharomyces cerevisiae
-
Bell, S. P., Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027-1067 (2016).
-
(2016)
Genetics
, vol.203
, pp. 1027-1067
-
-
Bell, S.P.1
Labib, K.2
-
152
-
-
22344434704
-
Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C
-
Franco, A. A., Lam, W. M., Burgers, P. M., Kaufman, P. D. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev. 19, 1365-1375 (2005).
-
(2005)
Genes Dev.
, vol.19
, pp. 1365-1375
-
-
Franco, A.A.1
Lam, W.M.2
Burgers, P.M.3
Kaufman, P.D.4
-
153
-
-
84938692151
-
A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks
-
Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618-626 (2015).
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 618-626
-
-
Huang, H.1
-
154
-
-
84957948715
-
The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly
-
Yang, J. et al. The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly. Cell Rep. 14, 1128-1141 (2016).
-
(2016)
Cell Rep.
, vol.14
, pp. 1128-1141
-
-
Yang, J.1
-
155
-
-
84955585450
-
Nucleosome architecture throughout the cell cycle
-
Deniz, O., Flores, O., Aldea, M., Soler-Lopez, M., Orozco, M. Nucleosome architecture throughout the cell cycle. Sci. Rep. 6, 19729 (2016).
-
(2016)
Sci. Rep.
, vol.6
, pp. 19729
-
-
Deniz, O.1
Flores, O.2
Aldea, M.3
Soler-Lopez, M.4
Orozco, M.5
-
156
-
-
84984940161
-
Chromatin dynamics during DNA replication
-
Bar-Ziv, R., Voichek, Y., Barkai, N. Chromatin dynamics during DNA replication. Genome Res. 26, 1245-1256 (2016).
-
(2016)
Genome Res.
, vol.26
, pp. 1245-1256
-
-
Bar-Ziv, R.1
Voichek, Y.2
Barkai, N.3
-
157
-
-
84934765682
-
The fork in the road: Histone partitioning during DNA replication
-
Annunziato, A. T. The fork in the road: Histone partitioning during DNA replication. Genes (Basel) 6, 353-371 (2015).
-
(2015)
Genes (Basel)
, vol.6
, pp. 353-371
-
-
Annunziato, A.T.1
-
158
-
-
79951992242
-
Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange
-
Katan-Khaykovich, Y., Struhl, K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA 108, 1296-1301 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 1296-1301
-
-
Katan-Khaykovich, Y.1
Struhl, K.2
-
159
-
-
77950462427
-
Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly
-
Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94-98 (2010).
-
(2010)
Science
, vol.328
, pp. 94-98
-
-
Xu, M.1
-
160
-
-
84868246832
-
Asymmetric division of Drosophila Male germline stem cell shows asymmetric histone distribution
-
Tran, V., Lim, C., Xie, J., Chen, X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338, 679-682 (2012).
-
(2012)
Science
, vol.338
, pp. 679-682
-
-
Tran, V.1
Lim, C.2
Xie, J.3
Chen, X.4
-
161
-
-
84869082555
-
Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics
-
Nekrasov, M. et al. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat. Struct. Mol. Biol. 19, 1076-1083 (2012).
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1076-1083
-
-
Nekrasov, M.1
-
162
-
-
33846293581
-
H2A.Z contributes to the unique 3D structure of the centromere
-
Greaves, I. K., Rangasamy, D., Ridgway, P., Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104, 525-530 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 525-530
-
-
Greaves, I.K.1
Rangasamy, D.2
Ridgway, P.3
Tremethick, D.J.4
-
163
-
-
70349952171
-
Role of the polycomb protein EED in the propagation of repressive histone marks
-
Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762-767 (2009).
-
(2009)
Nature
, vol.461
, pp. 762-767
-
-
Margueron, R.1
-
164
-
-
84920939145
-
Product binding enforces the genomic specificity of a yeast polycomb repressive complex
-
Dumesic, P. A. et al. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160, 204-218 (2015).
-
(2015)
Cell
, vol.160
, pp. 204-218
-
-
Dumesic, P.A.1
-
165
-
-
84861741887
-
Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA
-
Sirbu, B. M., Couch, F. B., Cortez, D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc. 7, 594-605 (2012).
-
(2012)
Nat. Protoc.
, vol.7
, pp. 594-605
-
-
Sirbu, B.M.1
Couch, F.B.2
Cortez, D.3
-
166
-
-
85010383406
-
Dynamics of nucleosome positioning maturation following genomic replication
-
Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651-2665 (2016).
-
(2016)
Cell Rep.
, vol.16
, pp. 2651-2665
-
-
Vasseur, P.1
-
167
-
-
84962698776
-
Transcriptional regulators compete with nucleosomes post-replication
-
Ramachandran, S., Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580-592 (2016).
-
(2016)
Cell
, vol.165
, pp. 580-592
-
-
Ramachandran, S.1
Henikoff, S.2
-
168
-
-
79951694175
-
Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
-
Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).
-
(2011)
Genome Biol.
, vol.12
, pp. R18
-
-
Aird, D.1
-
169
-
-
84865777819
-
ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia
-
Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813-1831 (2012).
-
(2012)
Genome Res.
, vol.22
, pp. 1813-1831
-
-
Landt, S.G.1
-
170
-
-
84860500037
-
Standardized collection of MNase-seq experiments enables unbiased dataset comparisons
-
Rizzo, J. M., Bard, J. E., Buck, M. J. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons. BMC Mol. Biol. 13, 15 (2012).
-
(2012)
BMC Mol. Biol.
, vol.13
, pp. 15
-
-
Rizzo, J.M.1
Bard, J.E.2
Buck, M.J.3
-
171
-
-
84967164105
-
MNase titration reveals differences between nucleosome occupancy and chromatin accessibility
-
Mieczkowski, J. et al. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat. Commun. 7, 11485 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 11485
-
-
Mieczkowski, J.1
-
172
-
-
84865511446
-
Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq
-
Wal, M., Pugh, B. F. Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq. Methods Enzymol. 513, 233-250 (2012).
-
(2012)
Methods Enzymol.
, vol.513
, pp. 233-250
-
-
Wal, M.1
Pugh, B.F.2
-
173
-
-
84870552401
-
Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules
-
Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497-2506 (2012).
-
(2012)
Genome Res.
, vol.22
, pp. 2497-2506
-
-
Kelly, T.K.1
-
174
-
-
84936759439
-
A new method for the genome-wide analysis of chromatin structure
-
Ishii, H., Kadonaga, J. T., Ren, B. MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proc. Natl Acad. Sci. USA 112, E3457-E3465 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. E3457-E3465
-
-
Ishii, H.1
Kadonaga, J.T.2
Mpe-Seq, R.B.3
-
175
-
-
84888877924
-
Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin DNA-binding proteins and nucleosome position
-
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1213-1218
-
-
Buenrostro, J.D.1
Giresi, P.G.2
Zaba, L.C.3
Chang, H.Y.4
Greenleaf, W.J.5
-
176
-
-
84946550982
-
Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions
-
Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757-1770 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1757-1770
-
-
Schep, A.N.1
-
177
-
-
84862979650
-
A map of nucleosome positions in yeast at base-pair resolution
-
Brogaard, K., Xi, L., Wang, J. P., Widom, J. A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496-501 (2012).
-
(2012)
Nature
, vol.486
, pp. 496-501
-
-
Brogaard, K.1
Xi, L.2
Wang, J.P.3
Widom, J.4
-
178
-
-
84934435162
-
Mapping nucleosome resolution chromosome folding in yeast by Micro-C
-
Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108-119 (2015).
-
(2015)
Cell
, vol.162
, pp. 108-119
-
-
Hsieh, T.H.1
|