메뉴 건너뛰기




Volumn 18, Issue 9, 2017, Pages 548-562

Understanding nucleosome dynamics and their links to gene expression and DNA replication

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN; NUCLEOSOME;

EID: 85026913454     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2017.47     Document Type: Review
Times cited : (341)

References (178)
  • 1
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 Å resolution
    • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251-260 (1997).
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 2
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Kornberg, R. D., Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294 (1999).
    • (1999) Cell , vol.98 , pp. 285-294
    • Kornberg, R.D.1    Lorch, Y.2
  • 3
    • 0037992395 scopus 로고    scopus 로고
    • The structure of DNA in the nucleosome core
    • Richmond, T. J., Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145-150 (2003).
    • (2003) Nature , vol.423 , pp. 145-150
    • Richmond, T.J.1    Davey, C.A.2
  • 4
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • Narlikar, G. J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490-503 (2013).
    • (2013) Cell , vol.154 , pp. 490-503
    • Narlikar, G.J.1    Sundaramoorthy, R.2    Owen-Hughes, T.3
  • 6
    • 84923596623 scopus 로고    scopus 로고
    • Subnucleosomal structures and nucleosome asymmetry across a genome
    • Rhee, H. S., Bataille, A. R., Zhang, L., Pugh, B. F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159, 1377-1388 (2014).
    • (2014) Cell , vol.159 , pp. 1377-1388
    • Rhee, H.S.1    Bataille, A.R.2    Zhang, L.3    Pugh, B.F.4
  • 7
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl, B. D., Allis, C. D. The language of covalent histone modifications. Nature 403, 41-45 (2000).
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 8
    • 23944462969 scopus 로고    scopus 로고
    • Genome-wide map of nucleosome acetylation and methylation in yeast
    • Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517-527 (2005).
    • (2005) Cell , vol.122 , pp. 517-527
    • Pokholok, D.K.1
  • 9
    • 84898883789 scopus 로고    scopus 로고
    • Histone variants: Dynamic punctuation in transcription
    • Weber, C. M., Henikoff, S. Histone variants: Dynamic punctuation in transcription. Genes Dev. 28, 672-682 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 672-682
    • Weber, C.M.1    Henikoff, S.2
  • 10
    • 34250168295 scopus 로고    scopus 로고
    • Rules and regulation in the primary structure of chromatin
    • Rando, O. J., Ahmad, K. Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol. 19, 250-256 (2007).
    • (2007) Curr. Opin. Cell Biol. , vol.19 , pp. 250-256
    • Rando, O.J.1    Ahmad, K.2
  • 11
    • 60349089645 scopus 로고    scopus 로고
    • Nucleosome positioning and gene regulation: Advances through genomics
    • Jiang, C., Pugh, B. F. Nucleosome positioning and gene regulation: Advances through genomics. Nat. Rev. Genet. 10, 161-172 (2009).
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 161-172
    • Jiang, C.1    Pugh, B.F.2
  • 12
    • 75349098018 scopus 로고    scopus 로고
    • A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome
    • Jiang, C., Pugh, B. F. A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol. 10, R109 (2009).
    • (2009) Genome Biol. , vol.10 , pp. R109
    • Jiang, C.1    Pugh, B.F.2
  • 13
    • 84870593313 scopus 로고    scopus 로고
    • Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing
    • Cui, F., Cole, H. A., Clark, D. J., Zhurkin, V. B. Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res. 40, 10753-10764 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10753-10764
    • Cui, F.1    Cole, H.A.2    Clark, D.J.3    Zhurkin, V.B.4
  • 14
    • 41749091787 scopus 로고    scopus 로고
    • Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation
    • Shivaswamy, S. et al. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 6, e65 (2008).
    • (2008) PLoS Biol. , vol.6 , pp. e65
    • Shivaswamy, S.1
  • 16
    • 84896786505 scopus 로고    scopus 로고
    • Nucleosomes are context-specific H2A.Z-modulated barriers to RNA polymerase
    • Weber, C. M., Ramachandran, S., Henikoff, S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell 53, 819-830 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 819-830
    • Weber, C.M.1    Ramachandran, S.2    Henikoff, S.3
  • 17
    • 84941960643 scopus 로고    scopus 로고
    • Molecular mechanisms of ribosomal protein gene coregulation
    • Reja, R., Vinayachandran, V., Ghosh, S., Pugh, B. F. Molecular mechanisms of ribosomal protein gene coregulation. Genes Dev. 29, 1942-1954 (2015).
    • (2015) Genes Dev. , vol.29 , pp. 1942-1954
    • Reja, R.1    Vinayachandran, V.2    Ghosh, S.3    Pugh, B.F.4
  • 18
    • 84993660529 scopus 로고    scopus 로고
    • Genomic nucleosome organization reconstituted with pure proteins
    • Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709-721.e12 (2016).
    • (2016) Cell , vol.167 , pp. 709e12-721e12
    • Krietenstein, N.1
  • 19
    • 77953310289 scopus 로고    scopus 로고
    • Nucleosome positioning, nucleosome spacing and the nucleosome code
    • Clark, D. J. Nucleosome positioning, nucleosome spacing and the nucleosome code. J. Biomol. Struct. Dyn. 27, 781-793 (2010).
    • (2010) J. Biomol. Struct. Dyn. , vol.27 , pp. 781-793
    • Clark, D.J.1
  • 20
    • 37249077649 scopus 로고    scopus 로고
    • Chromatin remodelling at promoters suppresses antisense transcription
    • Whitehouse, I., Rando, O. J., Delrow, J., Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031-1035 (2007).
    • (2007) Nature , vol.450 , pp. 1031-1035
    • Whitehouse, I.1    Rando, O.J.2    Delrow, J.3    Tsukiyama, T.4
  • 21
    • 79957929301 scopus 로고    scopus 로고
    • Stable and dynamic nucleosome states during a meiotic developmental process
    • Zhang, L., Ma, H., Pugh, B. F. Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res. 21, 875-884 (2011).
    • (2011) Genome Res. , vol.21 , pp. 875-884
    • Zhang, L.1    Ma, H.2    Pugh, B.F.3
  • 22
    • 37249012276 scopus 로고    scopus 로고
    • Nucleosome destabilization in the epigenetic regulation of gene expression
    • Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15-26 (2008).
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 15-26
    • Henikoff, S.1
  • 23
    • 15744397041 scopus 로고    scopus 로고
    • Chromatin remodeling complexes: Strength in diversity, precision through specialization
    • Cairns, B. R. Chromatin remodeling complexes: Strength in diversity, precision through specialization. Curr. Opin. Genet. Dev. 15, 185-190 (2005).
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 185-190
    • Cairns, B.R.1
  • 24
    • 80053140931 scopus 로고    scopus 로고
    • A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization
    • Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758-1760 (2011).
    • (2011) Science , vol.333 , pp. 1758-1760
    • Gkikopoulos, T.1
  • 25
    • 84862643713 scopus 로고    scopus 로고
    • Genome-wide nucleosome specificity and directionality of chromatin remodelers
    • Yen, K., Vinayachandran, V., Batta, K., Koerber, R. T., Pugh, B. F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461-1473 (2012).
    • (2012) Cell , vol.149 , pp. 1461-1473
    • Yen, K.1    Vinayachandran, V.2    Batta, K.3    Koerber, R.T.4    Pugh, B.F.5
  • 26
    • 84884234697 scopus 로고    scopus 로고
    • SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes
    • Yen, K., Vinayachandran, V., Pugh, B. F. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154, 1246-1256 (2013).
    • (2013) Cell , vol.154 , pp. 1246-1256
    • Yen, K.1    Vinayachandran, V.2    Pugh, B.F.3
  • 27
    • 84902203517 scopus 로고    scopus 로고
    • Histone chaperones: Assisting histone traffic and nucleosome dynamics
    • Gurard-Levin, Z. A., Quivy, J. P., Almouzni, G. Histone chaperones: Assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487-517 (2014).
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 487-517
    • Gurard-Levin, Z.A.1    Quivy, J.P.2    Almouzni, G.3
  • 28
    • 0035104474 scopus 로고    scopus 로고
    • Nucleosomes positioned by ORC facilitate the initiation of DNA replication
    • Lipford, J. R., Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21-30 (2001).
    • (2001) Mol. Cell , vol.7 , pp. 21-30
    • Lipford, J.R.1    Bell, S.P.2
  • 29
    • 77950962157 scopus 로고    scopus 로고
    • Conserved nucleosome positioning defines replication origins
    • Eaton, M. L., Galani, K., Kang, S., Bell, S. P., MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748-753 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 748-753
    • Eaton, M.L.1    Galani, K.2    Kang, S.3    Bell, S.P.4    MacAlpine, D.M.5
  • 30
    • 34548544648 scopus 로고    scopus 로고
    • Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling
    • Wang, G. G., Allis, C. D., Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med. 13, 373-380 (2007).
    • (2007) Trends Mol. Med. , vol.13 , pp. 373-380
    • Wang, G.G.1    Allis, C.D.2    Chi, P.3
  • 31
    • 84872051865 scopus 로고    scopus 로고
    • Histone chaperones in nucleosome assembly and human disease
    • Burgess, R. J., Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20, 14-22 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 14-22
    • Burgess, R.J.1    Zhang, Z.2
  • 32
    • 84878282462 scopus 로고    scopus 로고
    • Histone variants in pluripotency and disease
    • Skene, P. J., Henikoff, S. Histone variants in pluripotency and disease. Development 140, 2513-2524 (2013).
    • (2013) Development , vol.140 , pp. 2513-2524
    • Skene, P.J.1    Henikoff, S.2
  • 33
    • 84908151229 scopus 로고    scopus 로고
    • Histone core modifications regulating nucleosome structure and dynamics
    • Tessarz, P., Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703-708 (2014).
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 703-708
    • Tessarz, P.1    Kouzarides, T.2
  • 34
    • 85001720295 scopus 로고    scopus 로고
    • Histone variants on the move: Substrates for chromatin dynamics
    • Talbert, P. B., Henikoff, S. Histone variants on the move: Substrates for chromatin dynamics. Nat. Rev. Mol. Cell Biol. 18, 115-126 (2017).
    • (2017) Nat. Rev. Mol. Cell Biol. , vol.18 , pp. 115-126
    • Talbert, P.B.1    Henikoff, S.2
  • 35
    • 85011296283 scopus 로고    scopus 로고
    • Variants of core histones and their roles in cell fate decisions, development and cancer
    • Buschbeck, M., Hake, S. B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2016.166 (2017).
    • (2017) Nat. Rev. Mol. Cell Biol.
    • Buschbeck, M.1    Hake, S.B.2
  • 36
    • 33747500567 scopus 로고    scopus 로고
    • A genomic code for nucleosome positioning
    • Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772-778 (2006).
    • (2006) Nature , vol.442 , pp. 772-778
    • Segal, E.1
  • 37
    • 77955410104 scopus 로고    scopus 로고
    • Nucleosome sequence preferences influence in vivo nucleosome organization
    • Kaplan, N. et al. Nucleosome sequence preferences influence in vivo nucleosome organization. Nat. Struct. Mol. Biol. 17, 918-920 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 918-920
    • Kaplan, N.1
  • 38
    • 84875196326 scopus 로고    scopus 로고
    • Determinants of nucleosome positioning
    • Struhl, K., Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267-273 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 267-273
    • Struhl, K.1    Segal, E.2
  • 39
    • 84901980324 scopus 로고    scopus 로고
    • Mechanisms underlying nucleosome positioning in vivo
    • Hughes, A. L., Rando, O. J. Mechanisms underlying nucleosome positioning in vivo. Annu. Rev. Biophys. 43, 41-63 (2014).
    • (2014) Annu. Rev. Biophys. , vol.43 , pp. 41-63
    • Hughes, A.L.1    Rando, O.J.2
  • 40
    • 34547630151 scopus 로고    scopus 로고
    • ChIP-seq: Welcome to the new frontier
    • Mardis, E. R. ChIP-seq: Welcome to the new frontier. Nat. Methods 4, 613-614 (2007).
    • (2007) Nat. Methods , vol.4 , pp. 613-614
    • Mardis, E.R.1
  • 41
    • 80054729999 scopus 로고    scopus 로고
    • Using ChIP-seq technology to generate high-resolution profiles of histone modifications
    • O'Geen, H., Echipare, L., Farnham, P. J. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol. 791, 265-286 (2011).
    • (2011) Methods Mol. Biol. , vol.791 , pp. 265-286
    • O'Geen, H.1    Echipare, L.2    Farnham, P.J.3
  • 42
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
    • (2012) Nature , vol.489 , pp. 57-74
  • 43
    • 84908207355 scopus 로고    scopus 로고
    • Identifying and mitigating bias in next-generation sequencing methods for chromatin biology
    • Meyer, C. A., Liu, X. S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 15, 709-721 (2014).
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 709-721
    • Meyer, C.A.1    Liu, X.S.2
  • 44
    • 84988945264 scopus 로고    scopus 로고
    • Chromatin accessibility: A window into the genome
    • Tsompana, M., Buck, M. J. Chromatin accessibility: A window into the genome. Epigenetics Chromatin 7, 33 (2014).
    • (2014) Epigenetics Chromatin , vol.7 , pp. 33
    • Tsompana, M.1    Buck, M.J.2
  • 45
    • 84989306838 scopus 로고    scopus 로고
    • A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution
    • Zhou, X., Blocker, A. W., Airoldi, E. M., O'Shea, E. K. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution. eLife 5, e16970 (2016).
    • (2016) ELife , vol.5 , pp. e16970
    • Zhou, X.1    Blocker, A.W.2    Airoldi, E.M.3    O'Shea, E.K.4
  • 46
    • 16844384065 scopus 로고    scopus 로고
    • Split decision: What happens to nucleosomes during DNA replication
    • Annunziato, A. T. Split decision: What happens to nucleosomes during DNA replication J. Biol. Chem. 280, 12065-12068 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 12065-12068
    • Annunziato, A.T.1
  • 47
    • 79956316470 scopus 로고    scopus 로고
    • A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome
    • Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977-980 (2011).
    • (2011) Science , vol.332 , pp. 977-980
    • Zhang, Z.1
  • 48
    • 84923782190 scopus 로고    scopus 로고
    • Histone exchange, chromatin structure and the regulation of transcription
    • Venkatesh, S., Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178-189 (2015).
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 178-189
    • Venkatesh, S.1    Workman, J.L.2
  • 49
    • 11144231369 scopus 로고    scopus 로고
    • The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes
    • Wade, J. T., Hall, D. B., Struhl, K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432, 1054-1058 (2004).
    • (2004) Nature , vol.432 , pp. 1054-1058
    • Wade, J.T.1    Hall, D.B.2    Struhl, K.3
  • 50
    • 33749153628 scopus 로고    scopus 로고
    • Nucleosome positions predicted through comparative genomics
    • Ioshikhes, I. P., Albert, I., Zanton, S. J., Pugh, B. F. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38, 1210-1215 (2006).
    • (2006) Nat. Genet. , vol.38 , pp. 1210-1215
    • Ioshikhes, I.P.1    Albert, I.2    Zanton, S.J.3    Pugh, B.F.4
  • 51
    • 67649826220 scopus 로고    scopus 로고
    • From DNA sequence to transcriptional behaviour: A quantitative approach
    • Segal, E., Widom, J. From DNA sequence to transcriptional behaviour: A quantitative approach. Nat. Rev. Genet. 10, 443-456 (2009).
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 443-456
    • Segal, E.1    Widom, J.2
  • 52
    • 62649085538 scopus 로고    scopus 로고
    • The DNA-encoded nucleosome organization of a eukaryotic genome
    • Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362-366 (2009).
    • (2009) Nature , vol.458 , pp. 362-366
    • Kaplan, N.1
  • 53
    • 68249142923 scopus 로고    scopus 로고
    • Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo
    • Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16, 847-852 (2009).
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 847-852
    • Zhang, Y.1
  • 54
    • 34047111213 scopus 로고    scopus 로고
    • Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome
    • Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572-576 (2007).
    • (2007) Nature , vol.446 , pp. 572-576
    • Albert, I.1
  • 55
    • 84884228389 scopus 로고    scopus 로고
    • Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex
    • Tosi, A. et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154, 1207-1219 (2013).
    • (2013) Cell , vol.154 , pp. 1207-1219
    • Tosi, A.1
  • 56
    • 84876313606 scopus 로고    scopus 로고
    • A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme
    • Watanabe, S., Radman-Livaja, M., Rando, O. J., Peterson, C. L. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340, 195-199 (2013).
    • (2013) Science , vol.340 , pp. 195-199
    • Watanabe, S.1    Radman-Livaja, M.2    Rando, O.J.3    Peterson, C.L.4
  • 57
    • 84979528666 scopus 로고    scopus 로고
    • Comment on A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme
    • Wang, F., Ranjan, A., Wei, D., Wu, C. Comment on "A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme". Science 353, 358 (2016).
    • (2016) Science , vol.353 , pp. 358
    • Wang, F.1    Ranjan, A.2    Wei, D.3    Wu, C.4
  • 58
    • 84906257725 scopus 로고    scopus 로고
    • The mammalian INO80 chromatin remodeling complex is required for replication stress recovery
    • Vassileva, I., Yanakieva, I., Peycheva, M., Gospodinov, A., Anachkova, B. The mammalian INO80 chromatin remodeling complex is required for replication stress recovery. Nucleic Acids Res. 42, 9074-9086 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 9074-9086
    • Vassileva, I.1    Yanakieva, I.2    Peycheva, M.3    Gospodinov, A.4    Anachkova, B.5
  • 59
    • 84883797029 scopus 로고    scopus 로고
    • Nucleosome dynamics as modular systems that integrate DNA damage and repair
    • Peterson, C. L., Almouzni, G. Nucleosome dynamics as modular systems that integrate DNA damage and repair. Cold Spring Harb. Perspect. Biol. 5, a012658 (2013).
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a012658
    • Peterson, C.L.1    Almouzni, G.2
  • 60
    • 0036166206 scopus 로고    scopus 로고
    • When repair meets chromatin. First in series on chromatin dynamics
    • Green, C. M., Almouzni, G. When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep. 3, 28-33 (2002).
    • (2002) EMBO Rep. , vol.3 , pp. 28-33
    • Green, C.M.1    Almouzni, G.2
  • 61
    • 33947137710 scopus 로고    scopus 로고
    • Dynamics of replication-independent histone turnover in budding yeast
    • Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405-1408 (2007).
    • (2007) Science , vol.315 , pp. 1405-1408
    • Dion, M.F.1
  • 62
    • 77952996319 scopus 로고    scopus 로고
    • Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones
    • Deal, R. B., Henikoff, J. G., Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161-1164 (2010).
    • (2010) Science , vol.328 , pp. 1161-1164
    • Deal, R.B.1    Henikoff, J.G.2    Henikoff, S.3
  • 63
    • 84255162049 scopus 로고    scopus 로고
    • Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity
    • Ray-Gallet, D. et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 44, 928-941 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 928-941
    • Ray-Gallet, D.1
  • 64
    • 84886731038 scopus 로고    scopus 로고
    • Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3
    • Kraushaar, D. C. et al. Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol. 14, R121 (2013).
    • (2013) Genome Biol. , vol.14 , pp. R121
    • Kraushaar, D.C.1
  • 65
    • 84930962818 scopus 로고    scopus 로고
    • A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters
    • Yildirim, O. et al. A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters. PLoS Genet. 10, e1004515 (2014).
    • (2014) PLoS Genet. , vol.10 , pp. e1004515
    • Yildirim, O.1
  • 66
    • 84931835913 scopus 로고    scopus 로고
    • A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin
    • Svensson, J. P. et al. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res. 25, 872-883 (2015).
    • (2015) Genome Res. , vol.25 , pp. 872-883
    • Svensson, J.P.1
  • 67
    • 0037225952 scopus 로고    scopus 로고
    • A general method for the covalent labeling of fusion proteins with small molecules in vivo
    • Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86-89 (2003).
    • (2003) Nat. Biotechnol. , vol.21 , pp. 86-89
    • Keppler, A.1
  • 68
    • 84982728065 scopus 로고    scopus 로고
    • Enhancer regions show high histone H3.3 turnover that changes during differentiation
    • Deaton, A. M. et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. eLife 5, e15316 (2016).
    • (2016) ELife , vol.5 , pp. e15316
    • Deaton, A.M.1
  • 69
    • 0041828954 scopus 로고    scopus 로고
    • FACT facilitates transcription-dependent nucleosome alteration
    • Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090-1093 (2003).
    • (2003) Science , vol.301 , pp. 1090-1093
    • Belotserkovskaya, R.1
  • 70
    • 79958077283 scopus 로고    scopus 로고
    • Nucleosome positioning in Saccharomyces cerevisiae
    • Jansen, A., Verstrepen, K. J. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 75, 301-320 (2011).
    • (2011) Microbiol. Mol. Biol. Rev. , vol.75 , pp. 301-320
    • Jansen, A.1    Verstrepen, K.J.2
  • 71
    • 0034721670 scopus 로고    scopus 로고
    • The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p
    • Goldmark, J. P., Fazzio, T. G., Estep, P. W., Church, G. M., Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423-433 (2000).
    • (2000) Cell , vol.103 , pp. 423-433
    • Goldmark, J.P.1    Fazzio, T.G.2    Estep, P.W.3    Church, G.M.4    Tsukiyama, T.5
  • 72
    • 84867371116 scopus 로고    scopus 로고
    • A functional evolutionary approach to identify determinants of nucleosome positioning: A unifying model for establishing the genome-wide pattern
    • Hughes, A. L., Jin, Y., Rando, O. J., Struhl, K. A functional evolutionary approach to identify determinants of nucleosome positioning: A unifying model for establishing the genome-wide pattern. Mol. Cell 48, 5-15 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 5-15
    • Hughes, A.L.1    Jin, Y.2    Rando, O.J.3    Struhl, K.4
  • 73
    • 77955365269 scopus 로고    scopus 로고
    • Evidence against a genomic code for nucleosome positioning. Reply to Nucleosome sequence preferences influence in vivo nucleosome organization
    • Zhang, Y. et al. Evidence against a genomic code for nucleosome positioning. Reply to "Nucleosome sequence preferences influence in vivo nucleosome organization". Nat. Struct. Mol. Biol. 17, 920-923 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 920-923
    • Zhang, Y.1
  • 74
    • 80555125013 scopus 로고    scopus 로고
    • Variety of genomic DNA patterns for nucleosome positioning
    • Ioshikhes, I., Hosid, S., Pugh, B. F. Variety of genomic DNA patterns for nucleosome positioning. Genome Res. 21, 1863-1871 (2011).
    • (2011) Genome Res. , vol.21 , pp. 1863-1871
    • Ioshikhes, I.1    Hosid, S.2    Pugh, B.F.3
  • 75
    • 84870485829 scopus 로고    scopus 로고
    • CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters
    • Fenouil, R. et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 22, 2399-2408 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2399-2408
    • Fenouil, R.1
  • 76
    • 84957554030 scopus 로고    scopus 로고
    • Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells
    • de Dieuleveult, M. et al. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530, 113-116 (2016).
    • (2016) Nature , vol.530 , pp. 113-116
    • De Dieuleveult, M.1
  • 77
    • 76949093375 scopus 로고    scopus 로고
    • Nucleosome positioning: How is it established, and why does it matter
    • Radman-Livaja, M., Rando, O. J. Nucleosome positioning: How is it established, and why does it matter Dev. Biol. 339, 258-266 (2010).
    • (2010) Dev. Biol. , vol.339 , pp. 258-266
    • Radman-Livaja, M.1    Rando, O.J.2
  • 78
    • 65249164132 scopus 로고    scopus 로고
    • Mechanisms that specify promoter nucleosome location and identity
    • Hartley, P. D., Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445-458 (2009).
    • (2009) Cell , vol.137 , pp. 445-458
    • Hartley, P.D.1    Madhani, H.D.2
  • 79
    • 84875149194 scopus 로고    scopus 로고
    • Regulation of nucleosome dynamics by histone modifications
    • Zentner, G. E., Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259-266 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 259-266
    • Zentner, G.E.1    Henikoff, S.2
  • 80
    • 33646869229 scopus 로고    scopus 로고
    • Chromatin remodelling in mammalian differentiation: Lessons from ATP-dependent remodellers
    • de la Serna, I. L., Ohkawa, Y., Imbalzano, A. N. Chromatin remodelling in mammalian differentiation: Lessons from ATP-dependent remodellers. Nat. Rev. Genet. 7, 461-473 (2006).
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 461-473
    • De La Serna, I.L.1    Ohkawa, Y.2    Imbalzano, A.N.3
  • 81
    • 33646856673 scopus 로고    scopus 로고
    • SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment
    • Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y., Stillman, D. J. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol. Cell. Biol. 26, 4095-4110 (2006).
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 4095-4110
    • Mitra, D.1    Parnell, E.J.2    Landon, J.W.3    Yu, Y.4    Stillman, D.J.5
  • 82
    • 1042290351 scopus 로고    scopus 로고
    • The SWI/SNF complex-chromatin and cancer
    • Roberts, C. W., Orkin, S. H. The SWI/SNF complex-chromatin and cancer. Nat. Rev. Cancer 4, 133-142 (2004).
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 133-142
    • Roberts, C.W.1    Orkin, S.H.2
  • 83
    • 0031947549 scopus 로고    scopus 로고
    • SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding
    • Ryan, M. P., Jones, R., Morse, R. H. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18, 1774-1782 (1998).
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 1774-1782
    • Ryan, M.P.1    Jones, R.2    Morse, R.H.3
  • 84
    • 84908083147 scopus 로고    scopus 로고
    • Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions
    • Dutta, A. et al. Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions. Genes Dev. 28, 2314-2330 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 2314-2330
    • Dutta, A.1
  • 85
    • 0034068906 scopus 로고    scopus 로고
    • Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene
    • de La Serna, I. L. et al. Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol. Cell. Biol. 20, 2839-2851 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2839-2851
    • De La Serna, I.L.1
  • 86
    • 85041801996 scopus 로고    scopus 로고
    • Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics
    • Kadoch, C., Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
    • (2015) Sci. Adv. , vol.1 , pp. e1500447
    • Kadoch, C.1    Crabtree, G.R.2
  • 87
    • 84879312591 scopus 로고    scopus 로고
    • Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters
    • Tolstorukov, M. Y. et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc. Natl Acad. Sci. USA 110, 10165-10170 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 10165-10170
    • Tolstorukov, M.Y.1
  • 88
    • 0030447612 scopus 로고    scopus 로고
    • RSC, an essential, abundant chromatin-remodeling complex
    • Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-1260 (1996).
    • (1996) Cell , vol.87 , pp. 1249-1260
    • Cairns, B.R.1
  • 89
    • 38049055816 scopus 로고    scopus 로고
    • RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes
    • Parnell, T. J., Huff, J. T., Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100-110 (2008).
    • (2008) EMBO J. , vol.27 , pp. 100-110
    • Parnell, T.J.1    Huff, J.T.2    Cairns, B.R.3
  • 90
    • 84947716265 scopus 로고    scopus 로고
    • Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast
    • Kubik, S. et al. Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast. Mol. Cell 60, 422-434 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 422-434
    • Kubik, S.1
  • 91
    • 84910681263 scopus 로고    scopus 로고
    • Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions
    • Lorch, Y., Maier-Davis, B., Kornberg, R. D. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions. Genes Dev. 28, 2492-2497 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 2492-2497
    • Lorch, Y.1    Maier-Davis, B.2    Kornberg, R.D.3
  • 92
    • 84908577906 scopus 로고    scopus 로고
    • Poly-dA:dT tracts form an in vivo nucleosomal turnstile
    • de Boer, C. G., Hughes, T. R. Poly-dA:dT tracts form an in vivo nucleosomal turnstile. PLoS ONE 9, e110479 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e110479
    • De Boer, C.G.1    Hughes, T.R.2
  • 93
    • 34147158728 scopus 로고    scopus 로고
    • The Chd family of chromatin remodelers
    • Marfella, C. G., Imbalzano, A. N. The Chd family of chromatin remodelers. Mutat. Res. 618, 30-40 (2007).
    • (2007) Mutat. Res. , vol.618 , pp. 30-40
    • Marfella, C.G.1    Imbalzano, A.N.2
  • 94
    • 84985946819 scopus 로고    scopus 로고
    • Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness
    • Kari, V. et al. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 17, 1609-1623 (2016).
    • (2016) EMBO Rep. , vol.17 , pp. 1609-1623
    • Kari, V.1
  • 95
    • 84882655459 scopus 로고    scopus 로고
    • ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling
    • Torigoe, S. E., Patel, A., Khuong, M. T., Bowman, G. D., Kadonaga, J. T. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2, e00863 (2013).
    • (2013) ELife , vol.2 , pp. e00863
    • Torigoe, S.E.1    Patel, A.2    Khuong, M.T.3    Bowman, G.D.4    Kadonaga, J.T.5
  • 96
    • 84988921966 scopus 로고    scopus 로고
    • The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome
    • Nodelman, I. M. et al. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome. Nucleic Acids Res. 44, 7580-7591 (2016).
    • (2016) Nucleic Acids Res. , vol.44 , pp. 7580-7591
    • Nodelman, I.M.1
  • 97
    • 84964924299 scopus 로고    scopus 로고
    • Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler
    • McKnight, J. N., Tsukiyama, T., Bowman, G. D. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler. Genome Res. 26, 693-704 (2016).
    • (2016) Genome Res. , vol.26 , pp. 693-704
    • McKnight, J.N.1    Tsukiyama, T.2    Bowman, G.D.3
  • 98
    • 84860518345 scopus 로고    scopus 로고
    • Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1
    • Lee, J. S. et al. Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev. 26, 914-919 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 914-919
    • Lee, J.S.1
  • 99
    • 84988935720 scopus 로고    scopus 로고
    • Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns
    • Park, D., Shivram, H., Iyer, V. R. Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns. Epigenetics Chromatin 7, 32 (2014).
    • (2014) Epigenetics Chromatin , vol.7 , pp. 32
    • Park, D.1    Shivram, H.2    Iyer, V.R.3
  • 100
    • 33744916194 scopus 로고    scopus 로고
    • Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
    • Zofall, M., Persinger, J., Kassabov, S. R., Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339-346 (2006).
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 339-346
    • Zofall, M.1    Persinger, J.2    Kassabov, S.R.3    Bartholomew, B.4
  • 101
    • 36849004886 scopus 로고    scopus 로고
    • Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
    • Dang, W., Bartholomew, B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27, 8306-8317 (2007).
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8306-8317
    • Dang, W.1    Bartholomew, B.2
  • 102
    • 84873566553 scopus 로고    scopus 로고
    • Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains
    • Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222-229 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 222-229
    • Hota, S.K.1
  • 103
    • 1542358189 scopus 로고    scopus 로고
    • Multiple roles for ISWI in transcription, chromosome organization and DNA replication
    • Corona, D. F., Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113-119 (2004).
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 113-119
    • Corona, D.F.1    Tamkun, J.W.2
  • 104
    • 84925945816 scopus 로고    scopus 로고
    • ISWI chromatin remodeling complexes in the DNA damage response
    • Aydin, O. Z., Vermeulen, W., Lans, H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 13, 3016-3025 (2014).
    • (2014) Cell Cycle , vol.13 , pp. 3016-3025
    • Aydin, O.Z.1    Vermeulen, W.2    Lans, H.3
  • 105
    • 35848958821 scopus 로고    scopus 로고
    • Chromatin remodeling: Insights and intrigue from single-molecule studies
    • Cairns, B. R. Chromatin remodeling: Insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989-996 (2007).
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 989-996
    • Cairns, B.R.1
  • 106
    • 0034902187 scopus 로고    scopus 로고
    • Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors
    • Langst, G., Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561-2568 (2001).
    • (2001) J. Cell Sci. , vol.114 , pp. 2561-2568
    • Langst, G.1    Becker, P.B.2
  • 108
    • 0033867524 scopus 로고    scopus 로고
    • The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo
    • Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355-365 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 355-365
    • Deuring, R.1
  • 109
    • 0035801407 scopus 로고    scopus 로고
    • NoRC-a novel member of mammalian ISWI-containing chromatin remodeling machines
    • Strohner, R. et al. NoRC-a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20, 4892-4900 (2001).
    • (2001) EMBO J. , vol.20 , pp. 4892-4900
    • Strohner, R.1
  • 110
    • 1542358192 scopus 로고    scopus 로고
    • ISWI complexes in Saccharomyces cerevisiae
    • Mellor, J., Morillon, A. ISWI complexes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1677, 100-112 (2004).
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 100-112
    • Mellor, J.1    Morillon, A.2
  • 111
    • 33745221438 scopus 로고    scopus 로고
    • Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes
    • Stockdale, C., Flaus, A., Ferreira, H., Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279-16288 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 16279-16288
    • Stockdale, C.1    Flaus, A.2    Ferreira, H.3    Owen-Hughes, T.4
  • 112
    • 84933053431 scopus 로고    scopus 로고
    • Dynamic regulation of transcription factors by nucleosome remodeling
    • Li, M. et al. Dynamic regulation of transcription factors by nucleosome remodeling. eLife 4, e06249 (2015).
    • (2015) ELife , vol.4 , pp. e06249
    • Li, M.1
  • 113
    • 0016221697 scopus 로고
    • Chromatin structure: A repeating unit of histones and DNA
    • Kornberg, R. D. Chromatin structure: A repeating unit of histones and DNA. Science 184, 868-871 (1974).
    • (1974) Science , vol.184 , pp. 868-871
    • Kornberg, R.D.1
  • 114
    • 0016753515 scopus 로고
    • Histones H2a, H2b H3 and H4 form a tetrameric complex in solutions of high salt
    • Weintraub, H., Palter, K., Van Lente, F. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Cell 6, 85-110 (1975).
    • (1975) Cell , vol.6 , pp. 85-110
    • Weintraub, H.1    Palter, K.2    Van Lente, F.3
  • 115
    • 0017041240 scopus 로고
    • A model for chromatin based upon two symmetrically paired half-nucleosomes
    • Weintraub, H., Worcel, A., Alberts, B. A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9, 409-417 (1976).
    • (1976) Cell , vol.9 , pp. 409-417
    • Weintraub, H.1    Worcel, A.2    Alberts, B.3
  • 117
    • 79951709224 scopus 로고    scopus 로고
    • Epigenetic centromere propagation and the nature of CENP-A nucleosomes
    • Black, B. E., Cleveland, D. W. Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 144, 471-479 (2011).
    • (2011) Cell , vol.144 , pp. 471-479
    • Black, B.E.1    Cleveland, D.W.2
  • 118
    • 0034598944 scopus 로고    scopus 로고
    • Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites
    • Anderson, J. D., Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979-987 (2000).
    • (2000) J. Mol. Biol. , vol.296 , pp. 979-987
    • Anderson, J.D.1    Widom, J.2
  • 119
    • 84879883663 scopus 로고    scopus 로고
    • Structural basis of histone H2A-H2B recognition by the essential chaperone FACT
    • Hondele, M. et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 499, 111-114 (2013).
    • (2013) Nature , vol.499 , pp. 111-114
    • Hondele, M.1
  • 120
    • 84977517829 scopus 로고    scopus 로고
    • Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly
    • Aguilar-Gurrieri, C. et al. Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly. EMBO J. 35, 1465-1482 (2016).
    • (2016) EMBO J. , vol.35 , pp. 1465-1482
    • Aguilar-Gurrieri, C.1
  • 121
    • 0028872728 scopus 로고
    • Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative
    • Adams, C. C., Workman, J. L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405-1421 (1995).
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1405-1421
    • Adams, C.C.1    Workman, J.L.2
  • 122
    • 0029875865 scopus 로고    scopus 로고
    • A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites
    • Polach, K. J., Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800-812 (1996).
    • (1996) J. Mol. Biol. , vol.258 , pp. 800-812
    • Polach, K.J.1    Widom, J.2
  • 123
    • 70349173215 scopus 로고    scopus 로고
    • Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome
    • Koerber, R. T., Rhee, H. S., Jiang, C., Pugh, B. F. Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol. Cell 35, 889-902 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 889-902
    • Koerber, R.T.1    Rhee, H.S.2    Jiang, C.3    Pugh, B.F.4
  • 124
    • 84961904792 scopus 로고    scopus 로고
    • Stepwise nucleosome translocation by RSC remodeling complexes
    • Harada, B. T. et al. Stepwise nucleosome translocation by RSC remodeling complexes. eLife 5, e10051 (2016).
    • (2016) ELife , vol.5 , pp. e10051
    • Harada, B.T.1
  • 125
  • 126
    • 84961204459 scopus 로고    scopus 로고
    • Nucleosome dynamics during chromatin remodeling in vivo
    • Ramachandran, S., Henikoff, S. Nucleosome dynamics during chromatin remodeling in vivo. Nucleus 7, 20-26 (2016).
    • (2016) Nucleus , vol.7 , pp. 20-26
    • Ramachandran, S.1    Henikoff, S.2
  • 127
    • 79955559703 scopus 로고    scopus 로고
    • Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation
    • Xi, Y., Yao, J., Chen, R., Li, W., He, X. Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation. Genome Res. 21, 718-724 (2011).
    • (2011) Genome Res. , vol.21 , pp. 718-724
    • Xi, Y.1    Yao, J.2    Chen, R.3    Li, W.4    He, X.5
  • 128
    • 84905260621 scopus 로고    scopus 로고
    • Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription
    • Knight, B. et al. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 28, 1695-1709 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 1695-1709
    • Knight, B.1
  • 129
    • 85011301116 scopus 로고    scopus 로고
    • MNase-sensitive complexes in yeast: Nucleosomes and non-histone barriers
    • Chereji, R. V., Ocampo, J., Clark, D. J. MNase-sensitive complexes in yeast: Nucleosomes and non-histone barriers. Mol. Cell 65, 565-577.e3 (2017).
    • (2017) Mol. Cell , vol.65 , pp. 565e3-577e3
    • Chereji, R.V.1    Ocampo, J.2    Clark, D.J.3
  • 130
    • 84949998205 scopus 로고    scopus 로고
    • The prenucleosome, a stable conformational isomer of the nucleosome
    • Fei, J. et al. The prenucleosome, a stable conformational isomer of the nucleosome. Genes Dev. 29, 2563-2575 (2015).
    • (2015) Genes Dev. , vol.29 , pp. 2563-2575
    • Fei, J.1
  • 131
    • 84899635905 scopus 로고    scopus 로고
    • The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo
    • Henikoff, S. et al. The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife 3, e01861 (2014).
    • (2014) ELife , vol.3 , pp. e01861
    • Henikoff, S.1
  • 132
    • 84856008074 scopus 로고    scopus 로고
    • Tripartite organization of centromeric chromatin in budding yeast
    • Krassovsky, K., Henikoff, J. G., Henikoff, S. Tripartite organization of centromeric chromatin in budding yeast. Proc. Natl Acad. Sci. USA 109, 243-248 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 243-248
    • Krassovsky, K.1    Henikoff, J.G.2    Henikoff, S.3
  • 133
    • 84878931770 scopus 로고    scopus 로고
    • The octamer is the major form of CENP-A nucleosomes at human centromeres
    • Hasson, D. et al. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 20, 687-695 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 687-695
    • Hasson, D.1
  • 134
    • 84878893101 scopus 로고    scopus 로고
    • Reconstitution of hemisomes on budding yeast centromeric DNA
    • Furuyama, T., Codomo, C. A., Henikoff, S. Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Res. 41, 5769-5783 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 5769-5783
    • Furuyama, T.1    Codomo, C.A.2    Henikoff, S.3
  • 135
    • 84873020117 scopus 로고    scopus 로고
    • ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy
    • Rhee, H. S., Pugh, B. F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol. http://dx.doi.org/10.1002/0471142727.mb2124s100 (2012).
    • (2012) Curr. Protoc. Mol. Biol.
    • Rhee, H.S.1    Pugh, B.F.2
  • 136
    • 84923924611 scopus 로고    scopus 로고
    • Asymmetric nucleosomes flank promoters in the budding yeast genome
    • Ramachandran, S., Zentner, G. E., Henikoff, S. Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res. 25, 381-390 (2015).
    • (2015) Genome Res. , vol.25 , pp. 381-390
    • Ramachandran, S.1    Zentner, G.E.2    Henikoff, S.3
  • 137
    • 84859893995 scopus 로고    scopus 로고
    • Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome
    • Arimura, Y., Tachiwana, H., Oda, T., Sato, M., Kurumizaka, H. Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome. Biochemistry 51, 3302-3309 (2012).
    • (2012) Biochemistry , vol.51 , pp. 3302-3309
    • Arimura, Y.1    Tachiwana, H.2    Oda, T.3    Sato, M.4    Kurumizaka, H.5
  • 138
    • 33746641324 scopus 로고    scopus 로고
    • Nucleosome displacement in transcription
    • Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 20, 2009-2017 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 2009-2017
    • Workman, J.L.1
  • 139
    • 85028007752 scopus 로고    scopus 로고
    • Nucleosomal barrier to transcription: Structural determinants and changes in chromatin structure
    • Studitsky, V. M., Nizovtseva, E. V., Shaytan, A. K., Luse, D. S. Nucleosomal barrier to transcription: Structural determinants and changes in chromatin structure. Biochem. Mol. Biol. J. 2, 8 (2016).
    • (2016) Biochem. Mol. Biol. J. , vol.2 , pp. 8
    • Studitsky, V.M.1    Nizovtseva, E.V.2    Shaytan, A.K.3    Luse, D.S.4
  • 140
    • 79551581102 scopus 로고    scopus 로고
    • Chromatin signatures of the Drosophila replication program
    • Eaton, M. L. et al. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164-174 (2011).
    • (2011) Genome Res. , vol.21 , pp. 164-174
    • Eaton, M.L.1
  • 142
    • 84858165145 scopus 로고    scopus 로고
    • Genome-wide structure and organization of eukaryotic pre-initiation complexes
    • Rhee, H. S., Pugh, B. F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295-301 (2012).
    • (2012) Nature , vol.483 , pp. 295-301
    • Rhee, H.S.1    Pugh, B.F.2
  • 143
    • 84923780299 scopus 로고    scopus 로고
    • Getting up to speed with transcription elongation by RNA polymerase II
    • Jonkers, I., Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167-177 (2015).
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 167-177
    • Jonkers, I.1    Lis, J.T.2
  • 144
    • 0040116022 scopus 로고    scopus 로고
    • A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene
    • Stunkel, W., Kober, I., Seifart, K. H. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17, 4397-4405 (1997).
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4397-4405
    • Stunkel, W.1    Kober, I.2    Seifart, K.H.3
  • 145
    • 0035265831 scopus 로고    scopus 로고
    • A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain
    • Zhao, X., Pendergrast, P. S., Hernandez, N. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell 7, 539-549 (2001).
    • (2001) Mol. Cell , vol.7 , pp. 539-549
    • Zhao, X.1    Pendergrast, P.S.2    Hernandez, N.3
  • 146
    • 84983542716 scopus 로고    scopus 로고
    • Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex
    • Tramantano, M. et al. Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex. eLife 5, e14243 (2016).
    • (2016) ELife , vol.5 , pp. e14243
    • Tramantano, M.1
  • 147
    • 34247341747 scopus 로고    scopus 로고
    • H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
    • Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).
    • (2007) PLoS Biol. , vol.5 , pp. e81
    • Brickner, D.G.1
  • 148
    • 84891689852 scopus 로고    scopus 로고
    • Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo
    • Grimaldi, Y., Ferrari, P., Strubin, M. Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo. Genome Res. 24, 117-124 (2014).
    • (2014) Genome Res. , vol.24 , pp. 117-124
    • Grimaldi, Y.1    Ferrari, P.2    Strubin, M.3
  • 149
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani, R. A., Holzen, T. M. Cell cycle regulation of DNA replication. Annu. Rev. Genet. 41, 237-280 (2007).
    • (2007) Annu. Rev. Genet. , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 150
    • 84928925898 scopus 로고    scopus 로고
    • The dynamics of eukaryotic replication initiation: Origin specificity, licensing, and firing at the single-molecule level
    • Duzdevich, D. et al. The dynamics of eukaryotic replication initiation: Origin specificity, licensing, and firing at the single-molecule level. Mol. Cell 58, 483-494 (2015).
    • (2015) Mol. Cell , vol.58 , pp. 483-494
    • Duzdevich, D.1
  • 151
    • 84979894037 scopus 로고    scopus 로고
    • Chromosome duplication in Saccharomyces cerevisiae
    • Bell, S. P., Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027-1067 (2016).
    • (2016) Genetics , vol.203 , pp. 1027-1067
    • Bell, S.P.1    Labib, K.2
  • 152
    • 22344434704 scopus 로고    scopus 로고
    • Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C
    • Franco, A. A., Lam, W. M., Burgers, P. M., Kaufman, P. D. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev. 19, 1365-1375 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 1365-1375
    • Franco, A.A.1    Lam, W.M.2    Burgers, P.M.3    Kaufman, P.D.4
  • 153
    • 84938692151 scopus 로고    scopus 로고
    • A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks
    • Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618-626 (2015).
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 618-626
    • Huang, H.1
  • 154
    • 84957948715 scopus 로고    scopus 로고
    • The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly
    • Yang, J. et al. The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly. Cell Rep. 14, 1128-1141 (2016).
    • (2016) Cell Rep. , vol.14 , pp. 1128-1141
    • Yang, J.1
  • 156
    • 84984940161 scopus 로고    scopus 로고
    • Chromatin dynamics during DNA replication
    • Bar-Ziv, R., Voichek, Y., Barkai, N. Chromatin dynamics during DNA replication. Genome Res. 26, 1245-1256 (2016).
    • (2016) Genome Res. , vol.26 , pp. 1245-1256
    • Bar-Ziv, R.1    Voichek, Y.2    Barkai, N.3
  • 157
    • 84934765682 scopus 로고    scopus 로고
    • The fork in the road: Histone partitioning during DNA replication
    • Annunziato, A. T. The fork in the road: Histone partitioning during DNA replication. Genes (Basel) 6, 353-371 (2015).
    • (2015) Genes (Basel) , vol.6 , pp. 353-371
    • Annunziato, A.T.1
  • 158
    • 79951992242 scopus 로고    scopus 로고
    • Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange
    • Katan-Khaykovich, Y., Struhl, K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA 108, 1296-1301 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 1296-1301
    • Katan-Khaykovich, Y.1    Struhl, K.2
  • 159
    • 77950462427 scopus 로고    scopus 로고
    • Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly
    • Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94-98 (2010).
    • (2010) Science , vol.328 , pp. 94-98
    • Xu, M.1
  • 160
    • 84868246832 scopus 로고    scopus 로고
    • Asymmetric division of Drosophila Male germline stem cell shows asymmetric histone distribution
    • Tran, V., Lim, C., Xie, J., Chen, X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338, 679-682 (2012).
    • (2012) Science , vol.338 , pp. 679-682
    • Tran, V.1    Lim, C.2    Xie, J.3    Chen, X.4
  • 161
    • 84869082555 scopus 로고    scopus 로고
    • Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics
    • Nekrasov, M. et al. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat. Struct. Mol. Biol. 19, 1076-1083 (2012).
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1076-1083
    • Nekrasov, M.1
  • 163
    • 70349952171 scopus 로고    scopus 로고
    • Role of the polycomb protein EED in the propagation of repressive histone marks
    • Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762-767 (2009).
    • (2009) Nature , vol.461 , pp. 762-767
    • Margueron, R.1
  • 164
    • 84920939145 scopus 로고    scopus 로고
    • Product binding enforces the genomic specificity of a yeast polycomb repressive complex
    • Dumesic, P. A. et al. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160, 204-218 (2015).
    • (2015) Cell , vol.160 , pp. 204-218
    • Dumesic, P.A.1
  • 165
    • 84861741887 scopus 로고    scopus 로고
    • Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA
    • Sirbu, B. M., Couch, F. B., Cortez, D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc. 7, 594-605 (2012).
    • (2012) Nat. Protoc. , vol.7 , pp. 594-605
    • Sirbu, B.M.1    Couch, F.B.2    Cortez, D.3
  • 166
    • 85010383406 scopus 로고    scopus 로고
    • Dynamics of nucleosome positioning maturation following genomic replication
    • Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651-2665 (2016).
    • (2016) Cell Rep. , vol.16 , pp. 2651-2665
    • Vasseur, P.1
  • 167
    • 84962698776 scopus 로고    scopus 로고
    • Transcriptional regulators compete with nucleosomes post-replication
    • Ramachandran, S., Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580-592 (2016).
    • (2016) Cell , vol.165 , pp. 580-592
    • Ramachandran, S.1    Henikoff, S.2
  • 168
    • 79951694175 scopus 로고    scopus 로고
    • Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
    • Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).
    • (2011) Genome Biol. , vol.12 , pp. R18
    • Aird, D.1
  • 169
    • 84865777819 scopus 로고    scopus 로고
    • ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia
    • Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813-1831 (2012).
    • (2012) Genome Res. , vol.22 , pp. 1813-1831
    • Landt, S.G.1
  • 170
    • 84860500037 scopus 로고    scopus 로고
    • Standardized collection of MNase-seq experiments enables unbiased dataset comparisons
    • Rizzo, J. M., Bard, J. E., Buck, M. J. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons. BMC Mol. Biol. 13, 15 (2012).
    • (2012) BMC Mol. Biol. , vol.13 , pp. 15
    • Rizzo, J.M.1    Bard, J.E.2    Buck, M.J.3
  • 171
    • 84967164105 scopus 로고    scopus 로고
    • MNase titration reveals differences between nucleosome occupancy and chromatin accessibility
    • Mieczkowski, J. et al. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat. Commun. 7, 11485 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11485
    • Mieczkowski, J.1
  • 172
    • 84865511446 scopus 로고    scopus 로고
    • Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq
    • Wal, M., Pugh, B. F. Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq. Methods Enzymol. 513, 233-250 (2012).
    • (2012) Methods Enzymol. , vol.513 , pp. 233-250
    • Wal, M.1    Pugh, B.F.2
  • 173
    • 84870552401 scopus 로고    scopus 로고
    • Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules
    • Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497-2506 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2497-2506
    • Kelly, T.K.1
  • 174
    • 84936759439 scopus 로고    scopus 로고
    • A new method for the genome-wide analysis of chromatin structure
    • Ishii, H., Kadonaga, J. T., Ren, B. MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proc. Natl Acad. Sci. USA 112, E3457-E3465 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E3457-E3465
    • Ishii, H.1    Kadonaga, J.T.2    Mpe-Seq, R.B.3
  • 175
    • 84888877924 scopus 로고    scopus 로고
    • Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin DNA-binding proteins and nucleosome position
    • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1213-1218
    • Buenrostro, J.D.1    Giresi, P.G.2    Zaba, L.C.3    Chang, H.Y.4    Greenleaf, W.J.5
  • 176
    • 84946550982 scopus 로고    scopus 로고
    • Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions
    • Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757-1770 (2015).
    • (2015) Genome Res. , vol.25 , pp. 1757-1770
    • Schep, A.N.1
  • 177
    • 84862979650 scopus 로고    scopus 로고
    • A map of nucleosome positions in yeast at base-pair resolution
    • Brogaard, K., Xi, L., Wang, J. P., Widom, J. A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496-501 (2012).
    • (2012) Nature , vol.486 , pp. 496-501
    • Brogaard, K.1    Xi, L.2    Wang, J.P.3    Widom, J.4
  • 178
    • 84934435162 scopus 로고    scopus 로고
    • Mapping nucleosome resolution chromosome folding in yeast by Micro-C
    • Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108-119 (2015).
    • (2015) Cell , vol.162 , pp. 108-119
    • Hsieh, T.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.