메뉴 건너뛰기




Volumn 45, Issue , 2016, Pages 153-181

Mechanisms of ATP-Dependent Chromatin Remodeling Motors

Author keywords

ATPase; histones; INO80; ISWI; molecular motors; nucleosome; SWI SNF; SWR

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; DNA; EXODEOXYRIBONUCLEASE V; NUCLEIC ACID; PEPTIDES AND PROTEINS; PROTEIN INO80; PROTEIN ISWI; PROTEIN MOT1; PROTEIN MSS116; PROTEIN SWI; RECA PROTEIN; TRANSCRIPTION FACTOR SNF; UNCLASSIFIED DRUG; CHROMATIN; MOLECULAR MOTOR; NUCLEOSOME;

EID: 84978372481     PISSN: 1936122X     EISSN: 19361238     Source Type: Book Series    
DOI: 10.1146/annurev-biophys-051013-022819     Document Type: Article
Times cited : (110)

References (153)
  • 1
    • 0035823613 scopus 로고    scopus 로고
    • Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H
    • Aalfs JD, Narlikar GJ, Kingston RE. 2001. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J. Biol. Chem. 276(36):34270-78
    • (2001) J. Biol. Chem. , vol.276 , Issue.36 , pp. 34270-34278
    • Aalfs, J.D.1    Narlikar, G.J.2    Kingston, R.E.3
  • 2
    • 0034647509 scopus 로고    scopus 로고
    • Purification and enzymic properties of mot1 ATPase, a regulator of basal transcription in the yeast saccharomyces cerevisiae
    • Adamkewicz JI, Mueller CG, Hansen KE, Prud'homme WA, Thorner J. 2000. Purification and enzymic properties of Mot1 ATPase, a regulator of basal transcription in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 275(28):21158-68
    • (2000) J. Biol. Chem. , vol.275 , Issue.28 , pp. 21158-21168
    • Adamkewicz, J.I.1    Mueller, C.G.2    Hansen, K.E.3    Prud'Homme, W.A.4    Thorner, J.5
  • 3
    • 0034598944 scopus 로고    scopus 로고
    • Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites
    • Anderson JD, Widom J. 2000. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296(4):979-87
    • (2000) J. Mol. Biol. , vol.296 , Issue.4 , pp. 979-987
    • Anderson, J.D.1    Widom, J.2
  • 4
    • 77949548012 scopus 로고    scopus 로고
    • The histone chaperone nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions
    • Andrews AJ, Chen X, Zevin A, Stargell LA, Luger K. 2010. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol. Cell 37(6):834-42
    • (2010) Mol. Cell , vol.37 , Issue.6 , pp. 834-842
    • Andrews, A.J.1    Chen, X.2    Zevin, A.3    Stargell, L.A.4    Luger, K.5
  • 5
    • 79955811415 scopus 로고    scopus 로고
    • Nucleosome structure(s) and stability: Variations on a theme
    • Andrews AJ, Luger K. 2011. Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 40:99-117
    • (2011) Annu. Rev. Biophys. , vol.40 , pp. 99-117
    • Andrews, A.J.1    Luger, K.2
  • 6
    • 0036091330 scopus 로고    scopus 로고
    • Nucleosome remodeling by the human SWI/SNF complex requires transient global disruption of histone-DNA interactions
    • Aoyagi S, Narlikar G, Zheng C, Sif S, Kingston RE, Hayes JJ. 2002. Nucleosome remodeling by the human SWI/SNF complex requires transient global disruption of histone-DNA interactions. Mol. Cell. Biol. 22(11):3653-62
    • (2002) Mol. Cell. Biol. , vol.22 , Issue.11 , pp. 3653-3662
    • Aoyagi, S.1    Narlikar, G.2    Zheng, C.3    Sif, S.4    Kingston, R.E.5    Hayes, J.J.6
  • 7
    • 0027191870 scopus 로고
    • An ATP-dependent inhibitor of TBP binding to DNA
    • Auble DT, Hahn S. 1993. An ATP-dependent inhibitor of TBP binding to DNA. Genes Dev. 7(5):844-56
    • (1993) Genes Dev. , vol.7 , Issue.5 , pp. 844-856
    • Auble, D.T.1    Hahn, S.2
  • 8
    • 0028038315 scopus 로고
    • Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism
    • Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J, Hahn S. 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8(16):1920-34
    • (1994) Genes Dev. , vol.8 , Issue.16 , pp. 1920-1934
    • Auble, D.T.1    Hansen, K.E.2    Mueller, C.G.3    Lane, W.S.4    Thorner, J.5    Hahn, S.6
  • 9
    • 0037115473 scopus 로고    scopus 로고
    • Biological functions of the ISWI chromatin remodeling complex NURF
    • Badenhorst P, Voas M, Rebay I, Wu C. 2002. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 30(2):3186-98
    • (2002) Genes Dev. , vol.30 , Issue.2 , pp. 3186-3198
    • Badenhorst, P.1    Voas, M.2    Rebay, I.3    Wu, C.4
  • 10
    • 84902168468 scopus 로고    scopus 로고
    • Regulating the chromatin landscape: Structural and mechanistic perspectives
    • Bartholomew B. 2014. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83:671-96
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 671-696
    • Bartholomew, B.1
  • 11
    • 0344938355 scopus 로고    scopus 로고
    • The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains
    • Bazett-Jones DP, Côté J, Landel CC, Peterson CL, Workman JL. 1999. The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol. Cell. Biol. 19(2):1470-78
    • (1999) Mol. Cell. Biol. , vol.19 , Issue.2 , pp. 1470-1478
    • Bazett-Jones, D.P.1    Côté, J.2    Landel, C.C.3    Peterson, C.L.4    Workman, J.L.5
  • 12
    • 72949099668 scopus 로고    scopus 로고
    • Dynamics of nucleosome remodelling by individual ACF complexes
    • Blosser TR, Yang JG, Stone MD, Narlikar GJ, Zhuang X. 2009. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462(7276):1022-27
    • (2009) Nature , vol.462 , Issue.7276 , pp. 1022-1027
    • Blosser, T.R.1    Yang, J.G.2    Stone, M.D.3    Narlikar, G.J.4    Zhuang, X.5
  • 13
    • 79955600331 scopus 로고    scopus 로고
    • Nucleosome accessibility governed by the dimer/tetramer interface
    • Böhm V, Hieb AR, Andrews AJ, Gansen A, Rocker A, et al. 2011. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res. 39(8):3093-102
    • (2011) Nucleic Acids Res. , vol.39 , Issue.8 , pp. 3093-3102
    • Böhm, V.1    Hieb, A.R.2    Andrews, A.J.3    Gansen, A.4    Rocker, A.5
  • 14
    • 0347539781 scopus 로고    scopus 로고
    • Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities
    • Bruno M, Flaus A, Stockdale C, Rencurel C, Ferreira H, Owen-Hughes T. 2003. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12(6):1599-606
    • (2003) Mol. Cell , vol.12 , Issue.6 , pp. 1599-1606
    • Bruno, M.1    Flaus, A.2    Stockdale, C.3    Rencurel, C.4    Ferreira, H.5    Owen-Hughes, T.6
  • 15
    • 84941356543 scopus 로고    scopus 로고
    • Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by mot1
    • Butryn A, Schuller JM, Stoehr G, Runge-Wollmann P, Förster F, et al. 2015. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1. eLife 4:1-56
    • (2015) ELife , vol.4 , pp. 1-56
    • Butryn, A.1    Schuller, J.M.2    Stoehr, G.3    Runge-Wollmann, P.4    Förster, F.5
  • 16
    • 84901470319 scopus 로고    scopus 로고
    • Mechanisms of functional promiscuity by HP1 proteins
    • Canzio D, Larson A, Narlikar GJ. 2014. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol. 24(6):377-86
    • (2014) Trends Cell Biol. , vol.24 , Issue.6 , pp. 377-386
    • Canzio, D.1    Larson, A.2    Narlikar, G.J.3
  • 17
    • 84890834908 scopus 로고    scopus 로고
    • Multiple modes of regulation of the human ino80 SNF2 ATPase by subunits of the INO80 chromatin-remodeling complex
    • Chen L, Conaway RC, Conaway JW. 2013. Multiple modes of regulation of the human Ino80 SNF2 ATPase by subunits of the INO80 chromatin-remodeling complex. PNAS 110(51):20497-502
    • (2013) PNAS , vol.110 , Issue.51 , pp. 20497-20502
    • Chen, L.1    Conaway, R.C.2    Conaway, J.W.3
  • 18
    • 44349162159 scopus 로고    scopus 로고
    • Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
    • Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453(7194):489-94
    • (2008) Nature , vol.453 , Issue.7194 , pp. 489-494
    • Chen, Z.1    Yang, H.2    Pavletich, N.P.3
  • 19
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273-304
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 20
    • 84871023769 scopus 로고    scopus 로고
    • Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes
    • Clapier CR, Cairns BR. 2012. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492(7428):280-84
    • (2012) Nature , vol.492 , Issue.7428 , pp. 280-284
    • Clapier, C.R.1    Cairns, B.R.2
  • 22
    • 0036464569 scopus 로고    scopus 로고
    • A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI
    • Clapier CR, Nightingale KP, Becker PB. 2002. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30(3):649-55
    • (2002) Nucleic Acids Res. , vol.30 , Issue.3 , pp. 649-655
    • Clapier, C.R.1    Nightingale, K.P.2    Becker, P.B.3
  • 23
    • 2342518189 scopus 로고    scopus 로고
    • Spontaneous sharp bending of double-stranded DNA
    • Cloutier TE, Widom J. 2004. Spontaneous sharp bending of double-stranded DNA. Mol. Cell 14(3):355-62
    • (2004) Mol. Cell , vol.14 , Issue.3 , pp. 355-362
    • Cloutier, T.E.1    Widom, J.2
  • 25
    • 1542358189 scopus 로고    scopus 로고
    • Multiple roles for ISWI in transcription, chromosome organization and DNA replication
    • Corona DFV, Tamkun JW. 2004. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta. 1677(1-3):113-19
    • (2004) Biochim. Biophys. Acta. , vol.1677 , Issue.1-3 , pp. 113-119
    • Corona, D.F.V.1    Tamkun, J.W.2
  • 26
    • 33847778234 scopus 로고    scopus 로고
    • Motoring along with the bacterial RecA protein
    • Cox MM. 2007. Motoring along with the bacterial RecA protein. Nat. Rev. Mol. Cell Biol. 8(2):127-38
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , Issue.2 , pp. 127-138
    • Cox, M.M.1
  • 27
    • 36849004886 scopus 로고    scopus 로고
    • Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
    • Dang W, Bartholomew B. 2007. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27(23):8306-17
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.23 , pp. 8306-8317
    • Dang, W.1    Bartholomew, B.2
  • 28
    • 0036307707 scopus 로고    scopus 로고
    • Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Å resolution
    • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Å resolution. J. Mol. Biol. 319(5):1097-113
    • (2002) J. Mol. Biol. , vol.319 , Issue.5 , pp. 1097-1113
    • Davey, C.A.1    Sargent, D.F.2    Luger, K.3    Maeder, A.W.4    Richmond, T.J.5
  • 30
    • 77952566675 scopus 로고    scopus 로고
    • SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes
    • Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, et al. 2010. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38(4):590-602
    • (2010) Mol. Cell , vol.38 , Issue.4 , pp. 590-602
    • Dechassa, M.L.1    Sabri, A.2    Pondugula, S.3    Kassabov, S.R.4    Chatterjee, N.5
  • 31
    • 84873301476 scopus 로고    scopus 로고
    • ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps
    • Deindl S, Hwang WL, Hota SK, Blosser TR, Prasad P, et al. 2013. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152(3):442-52
    • (2013) Cell , vol.152 , Issue.3 , pp. 442-452
    • Deindl, S.1    Hwang, W.L.2    Hota, S.K.3    Blosser, T.R.4    Prasad, P.5
  • 32
    • 69749126977 scopus 로고    scopus 로고
    • Structure of the yeast DEAD box protein mss116p reveals two wedges that crimp RNA
    • Del Campo M, Lambowitz AM. 2009. Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol. Cell 35(5):598-609
    • (2009) Mol. Cell , vol.35 , Issue.5 , pp. 598-609
    • Del Campo, M.1    Lambowitz, A.M.2
  • 33
    • 0037436410 scopus 로고    scopus 로고
    • Chromatin fiber folding: Requirement for the histone H4 N-terminal tail
    • Dorigo B, Schalch T, Bystricky K, Richmond TJ. 2003. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327(1):85-96
    • (2003) J. Mol. Biol. , vol.327 , Issue.1 , pp. 85-96
    • Dorigo, B.1    Schalch, T.2    Bystricky, K.3    Richmond, T.J.4
  • 34
    • 0035898615 scopus 로고    scopus 로고
    • Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling
    • Eberharter A, Ferrari S, Längst G, Straub T, Imhof A, et al. 2001. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 20(14):3781-88
    • (2001) EMBO J. , vol.20 , Issue.14 , pp. 3781-3788
    • Eberharter, A.1    Ferrari, S.2    Längst, G.3    Straub, T.4    Imhof, A.5
  • 35
    • 84896716740 scopus 로고    scopus 로고
    • HP1a: A structural chromosomal protein regulating transcription
    • Eissenberg JC, Elgin SCR. 2014. HP1a: a structural chromosomal protein regulating transcription. Trends Genet. 30(3):103-10
    • (2014) Trends Genet. , vol.30 , Issue.3 , pp. 103-110
    • Eissenberg, J.C.1    Elgin, S.C.R.2
  • 36
    • 84866139181 scopus 로고    scopus 로고
    • SWI/SNF chromatin-remodeling factors: Multiscale analyses and diverse functions
    • Euskirchen G, Auerbach RK, Snyder M. 2012. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J. Biol. Chem. 287(37):30897-905
    • (2012) J. Biol. Chem. , vol.287 , Issue.37 , pp. 30897-30905
    • Euskirchen, G.1    Auerbach, R.K.2    Snyder, M.3
  • 38
    • 0037512311 scopus 로고    scopus 로고
    • Distinct strategies to make nucleosomal DNA accessible
    • Fan H-Y, He X, Kingston RE, Narlikar GJ. 2003. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11(5):1311-22
    • (2003) Mol. Cell , vol.11 , Issue.5 , pp. 1311-1322
    • Fan, H.-Y.1    He, X.2    Kingston, R.E.3    Narlikar, G.J.4
  • 39
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct snf2 subfamilies with conserved structural motifs
    • Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34(10):2887-905
    • (2006) Nucleic Acids Res. , vol.34 , Issue.10 , pp. 2887-2905
    • Flaus, A.1    Martin, D.M.A.2    Barton, G.J.3    Owen-Hughes, T.4
  • 40
    • 0142027850 scopus 로고    scopus 로고
    • Dynamic properties of nucleosomes during thermal and ATP-driven mobilization
    • Flaus A, Owen-Hughes T. 2003. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23(21):7767-79
    • (2003) Mol. Cell. Biol. , vol.23 , Issue.21 , pp. 7767-7779
    • Flaus, A.1    Owen-Hughes, T.2
  • 41
    • 0942290537 scopus 로고    scopus 로고
    • Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo
    • Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT. 2004. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18(2):170-83
    • (2004) Genes Dev. , vol.18 , Issue.2 , pp. 170-183
    • Fyodorov, D.V.1    Blower, M.D.2    Karpen, G.H.3    Kadonaga, J.T.4
  • 42
    • 84875758730 scopus 로고    scopus 로고
    • Lessons from the cancer genome
    • Garraway LA, Lander ES. 2013. Lessons from the cancer genome. Cell 153(1):17-37
    • (2013) Cell , vol.153 , Issue.1 , pp. 17-37
    • Garraway, L.A.1    Lander, E.S.2
  • 43
    • 84925433120 scopus 로고    scopus 로고
    • INO80-C and SWR-C: Guardians of the genome
    • Gerhold C-B, Hauer MH, Gasser SM. 2015. INO80-C and SWR-C: guardians of the genome. J. Mol. Biol. 427(3):637-51
    • (2015) J. Mol. Biol. , vol.427 , Issue.3 , pp. 637-651
    • Gerhold, C.-B.1    Hauer, M.H.2    Gasser, S.M.3
  • 44
    • 84925397108 scopus 로고    scopus 로고
    • INO80 and SWRcomplexes: Relating structure to function in chromatin remodeling
    • Gerhold CB, Gasser SM. 2014. INO80 and SWRcomplexes: relating structure to function in chromatin remodeling. Trends Cell Biol. 24(11):619-31
    • (2014) Trends Cell Biol. , vol.24 , Issue.11 , pp. 619-631
    • Gerhold, C.B.1    Gasser, S.M.2
  • 45
    • 67651202518 scopus 로고    scopus 로고
    • SWI/SNF and asf1p cooperate to displace histones during induction of the saccharomyces cerevisiae HO promoter
    • Gkikopoulos T, Havas KM, Dewar H, Owen-Hughes T. 2009. SWI/SNF and Asf1p cooperate to displace histones during induction of the Saccharomyces cerevisiae HO promoter. Mol. Cell. Biol. 29(15):4057-66
    • (2009) Mol. Cell. Biol. , vol.29 , Issue.15 , pp. 4057-4066
    • Gkikopoulos, T.1    Havas, K.M.2    Dewar, H.3    Owen-Hughes, T.4
  • 46
    • 80053140931 scopus 로고    scopus 로고
    • A role for snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization
    • Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, et al. 2011. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333(6050):1758-60
    • (2011) Science , vol.333 , Issue.6050 , pp. 1758-1760
    • Gkikopoulos, T.1    Schofield, P.2    Singh, V.3    Pinskaya, M.4    Mellor, J.5
  • 48
    • 0035807901 scopus 로고    scopus 로고
    • Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF
    • Hamiche A, Kang JG, Dennis C, Xiao H, Wu C. 2001. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. PNAS 98(25):14316-21
    • (2001) PNAS , vol.98 , Issue.25 , pp. 14316-14321
    • Hamiche, A.1    Kang, J.G.2    Dennis, C.3    Xiao, H.4    Wu, C.5
  • 49
    • 0033603238 scopus 로고    scopus 로고
    • ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF
    • Hamiche A, Sandaltzopoulos R, Gdula DA, Wu C. 1999. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97(7):833-42
    • (1999) Cell , vol.97 , Issue.7 , pp. 833-842
    • Hamiche, A.1    Sandaltzopoulos, R.2    Gdula, D.A.3    Wu, C.4
  • 51
    • 84890085222 scopus 로고    scopus 로고
    • H1 histones: Current perspectives and challenges
    • Harshman SW, Young NL, Parthun MR. 2013. H1 histones: current perspectives and challenges. Nucleic Acids Res. 41(21):9593-609
    • (2013) Nucleic Acids Res. , vol.41 , Issue.21 , pp. 9593-9609
    • Harshman, S.W.1    Young, N.L.2    Parthun, M.R.3
  • 52
    • 65249164132 scopus 로고    scopus 로고
    • Mechanisms that specify promoter nucleosome location and identity
    • Hartley PD, Madhani HD. 2009. Mechanisms that specify promoter nucleosome location and identity. Cell 137(3):445-58
    • (2009) Cell , vol.137 , Issue.3 , pp. 445-458
    • Hartley, P.D.1    Madhani, H.D.2
  • 53
    • 33749396882 scopus 로고    scopus 로고
    • Human ACF1 alters the remodeling strategy of SNF2h
    • He X, Fan H-Y, Narlikar GJ, Kingston RE. 2006. Human ACF1 alters the remodeling strategy of SNF2h. J. Biol. Chem. 281(39):28636-47
    • (2006) J. Biol. Chem. , vol.281 , Issue.39 , pp. 28636-28647
    • He, X.1    Fan, H.-Y.2    Narlikar, G.J.3    Kingston, R.E.4
  • 54
    • 84893460190 scopus 로고    scopus 로고
    • The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2A.Z-H2B dimer
    • Hong J, Feng H, Wang F, Ranjan A, Chen J, et al. 2014. The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2A.Z-H2B dimer. Mol. Cell 53(3):498-505
    • (2014) Mol. Cell , vol.53 , Issue.3 , pp. 498-505
    • Hong, J.1    Feng, H.2    Wang, F.3    Ranjan, A.4    Chen, J.5
  • 56
    • 0036220074 scopus 로고    scopus 로고
    • Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes
    • Horn PJ, Carruthers LM, Logie C, Hill DA, Solomon MJ, et al. 2002. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat. Struct. Mol. Biol. 9(4):263-67
    • (2002) Nat. Struct. Mol. Biol. , vol.9 , Issue.4 , pp. 263-267
    • Horn, P.J.1    Carruthers, L.M.2    Logie, C.3    Hill, D.A.4    Solomon, M.J.5
  • 57
    • 11844297811 scopus 로고    scopus 로고
    • The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function
    • Huang H-R, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS. 2005. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. PNAS 102(1):163-68
    • (2005) PNAS , vol.102 , Issue.1 , pp. 163-168
    • Huang, H.-R.1    Rowe, C.E.2    Mohr, S.3    Jiang, Y.4    Lambowitz, A.M.5    Perlman, P.S.6
  • 58
    • 84906267703 scopus 로고    scopus 로고
    • Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA
    • Hwang WL, Deindl S, Harada BT, Zhuang X. 2014. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature 512(7513):213-17
    • (2014) Nature , vol.512 , Issue.7513 , pp. 213-217
    • Hwang, W.L.1    Deindl, S.2    Harada, B.T.3    Zhuang, X.4
  • 59
    • 0029814422 scopus 로고    scopus 로고
    • Nucleosome disruption by human SWI/SNF is maintained in the absence of continued ATP hydrolysis
    • Imbalzano AN, Schnitzler GR, Kingston RE. 1996. Nucleosome disruption by human SWI/SNF is maintained in the absence of continued ATP hydrolysis. J. Biol. Chem. 271(34):20726-33
    • (1996) J. Biol. Chem. , vol.271 , Issue.34 , pp. 20726-20733
    • Imbalzano, A.N.1    Schnitzler, G.R.2    Kingston, R.E.3
  • 60
    • 0031444148 scopus 로고    scopus 로고
    • ACF, an ISWI-containing and ATPutilizing chromatin assembly and remodeling factor
    • Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. 1997. ACF, an ISWI-containing and ATPutilizing chromatin assembly and remodeling factor. Cell 90(1):145-55
    • (1997) Cell , vol.90 , Issue.1 , pp. 145-155
    • Ito, T.1    Bulger, M.2    Pazin, M.J.3    Kobayashi, R.4    Kadonaga, J.T.5
  • 61
    • 84902185820 scopus 로고    scopus 로고
    • RNA helicase proteins as chaperones and remodelers
    • Jarmoskaite I, Russell R. 2014. RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83:697-725
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 697-725
    • Jarmoskaite, I.1    Russell, R.2
  • 62
    • 0037291915 scopus 로고    scopus 로고
    • Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes
    • Kadam S, Emerson BM. 2003. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11(2):377-89
    • (2003) Mol. Cell , vol.11 , Issue.2 , pp. 377-389
    • Kadam, S.1    Emerson, B.M.2
  • 63
    • 85041801996 scopus 로고    scopus 로고
    • Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics
    • Kadoch C, Crabtree GR. 2015. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1(5):e1500447
    • (2015) Sci. Adv. , vol.1 , Issue.5 , pp. e1500447
    • Kadoch, C.1    Crabtree, G.R.2
  • 64
    • 2942561969 scopus 로고    scopus 로고
    • Topography of the ISW2-nucleosome complex: Insights into nucleosome spacing and chromatin remodeling
    • Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. 2004. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23(10):2092-104
    • (2004) EMBO J. , vol.23 , Issue.10 , pp. 2092-2104
    • Kagalwala, M.N.1    Glaus, B.J.2    Dang, W.3    Zofall, M.4    Bartholomew, B.5
  • 65
  • 66
    • 84895514809 scopus 로고    scopus 로고
    • ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4
    • Klinker H, Mueller-Planitz F, Yang R, Forné I, Liu C-F, et al. 2014. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4. PLOS ONE 9(2):e88411
    • (2014) PLOS ONE , vol.9 , Issue.2 , pp. e88411
    • Klinker, H.1    Mueller-Planitz, F.2    Yang, R.3    Forné, I.4    Liu, C.-F.5
  • 67
    • 0016221697 scopus 로고
    • Chromatin structure: A repeating unit of histones and DNA
    • Kornberg RD. 1974. Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868-71
    • (1974) Science , vol.184 , Issue.4139 , pp. 868-871
    • Kornberg, R.D.1
  • 69
    • 0035930334 scopus 로고    scopus 로고
    • ISWI induces nucleosome sliding on nicked DNA
    • Längst G, Becker PB. 2001. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8(5):1085-92
    • (2001) Mol. Cell , vol.8 , Issue.5 , pp. 1085-1092
    • Längst, G.1    Becker, P.B.2
  • 70
    • 0033603212 scopus 로고    scopus 로고
    • Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer
    • Längst G, Bonte EJ, Corona DF, Becker PB. 1999. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97(7):843-52
    • (1999) Cell , vol.97 , Issue.7 , pp. 843-852
    • Längst, G.1    Bonte, E.J.2    Corona, D.F.3    Becker, P.B.4
  • 71
    • 84924041052 scopus 로고    scopus 로고
    • A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler
    • Leonard JD, Narlikar GJ. 2015. A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler. Mol. Cell 57(5):850-59
    • (2015) Mol. Cell , vol.57 , Issue.5 , pp. 850-859
    • Leonard, J.D.1    Narlikar, G.J.2
  • 73
    • 84933053431 scopus 로고    scopus 로고
    • Dynamic regulation of transcription factors by nucleosome remodeling
    • Li M, Hada A, Sen P, Olufemi L, Hall MA, et al. 2015. Dynamic regulation of transcription factors by nucleosome remodeling. eLife 4:e06249
    • (2015) ELife , vol.4 , pp. e06249
    • Li, M.1    Hada, A.2    Sen, P.3    Olufemi, L.4    Hall, M.A.5
  • 74
    • 31544454407 scopus 로고    scopus 로고
    • Direct observation of DNA distortion by the RSC complex
    • Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, et al. 2006. Direct observation of DNA distortion by the RSC complex. Mol. Cell 21(3):417-25
    • (2006) Mol. Cell , vol.21 , Issue.3 , pp. 417-425
    • Lia, G.1    Praly, E.2    Ferreira, H.3    Stockdale, C.4    Tse-Dinh, Y.C.5
  • 75
    • 84929207966 scopus 로고    scopus 로고
    • Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density
    • Lieleg C, Ketterer P, Nueble J, Ludwigsen J, Gerland U, et al. 2015. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol. Cell. Biol. 35(9):1588-605
    • (2015) Mol. Cell. Biol. , vol.35 , Issue.9 , pp. 1588-1605
    • Lieleg, C.1    Ketterer, P.2    Nueble, J.3    Ludwigsen, J.4    Gerland, U.5
  • 76
    • 80555156699 scopus 로고    scopus 로고
    • SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes
    • Liu N, Peterson CL, Hayes JJ. 2011. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol. Cell. Biol. 31(20):4165-75
    • (2011) Mol. Cell. Biol. , vol.31 , Issue.20 , pp. 4165-4175
    • Liu, N.1    Peterson, C.L.2    Hayes, J.J.3
  • 77
    • 0032504059 scopus 로고    scopus 로고
    • Activated RSC-nucleosome complex and persistently altered form of the nucleosome
    • Lorch Y, Cairns BR, Zhang M, Kornberg RD. 1998. Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94(1):29-34
    • (1998) Cell , vol.94 , Issue.1 , pp. 29-34
    • Lorch, Y.1    Cairns, B.R.2    Zhang, M.3    Kornberg, R.D.4
  • 78
    • 33644753839 scopus 로고    scopus 로고
    • Chromatin remodeling by nucleosome disassembly in vitro
    • Lorch Y, Maier-Davis B, Kornberg RD. 2006. Chromatin remodeling by nucleosome disassembly in vitro. PNAS 103(9):3090-93
    • (2006) PNAS , vol.103 , Issue.9 , pp. 3090-3093
    • Lorch, Y.1    Maier-Davis, B.2    Kornberg, R.D.3
  • 79
    • 84910681263 scopus 로고    scopus 로고
    • Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions
    • Lorch Y, Maier-Davis B, Kornberg RD. 2014. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions. Genes Dev. 28(22):2492-97
    • (2014) Genes Dev. , vol.28 , Issue.22 , pp. 2492-2497
    • Lorch, Y.1    Maier-Davis, B.2    Kornberg, R.D.3
  • 80
    • 0033524939 scopus 로고    scopus 로고
    • Histone octamer transfer by a chromatin-remodeling complex
    • Lorch Y, Zhang M, Kornberg RD. 1999. Histone octamer transfer by a chromatin-remodeling complex. Cell 96(3):389-92
    • (1999) Cell , vol.96 , Issue.3 , pp. 389-392
    • Lorch, Y.1    Zhang, M.2    Kornberg, R.D.3
  • 81
  • 82
    • 0032512794 scopus 로고    scopus 로고
    • New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
    • Lowary PT, Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276(1):19-42
    • (1998) J. Mol. Biol. , vol.276 , Issue.1 , pp. 19-42
    • Lowary, P.T.1    Widom, J.2
  • 83
    • 84889078670 scopus 로고    scopus 로고
    • No need for a power stroke in ISWI-mediated nucleosome sliding
    • Ludwigsen J, Klinker H, Mueller-Planitz F. 2013. No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep. 14(12):1092-97
    • (2013) EMBO Rep. , vol.14 , Issue.12 , pp. 1092-1097
    • Ludwigsen, J.1    Klinker, H.2    Mueller-Planitz, F.3
  • 84
    • 84862732690 scopus 로고    scopus 로고
    • New insights into nucleosome and chromatin structure: An ordered state or a disordered affair?
    • Luger K, Dechassa ML, Tremethick DJ. 2012. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 13(7):436-47
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , Issue.7 , pp. 436-447
    • Luger, K.1    Dechassa, M.L.2    Tremethick, D.J.3
  • 85
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8Å resolution
    • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389(6648):251-60
    • (1997) Nature , vol.389 , Issue.6648 , pp. 251-260
    • Luger, K.1    Mäder, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 86
    • 0031587289 scopus 로고    scopus 로고
    • Characterization of nucleosome core particles containing histone proteins made in bacteria
    • Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ. 1997. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272(3):301-11
    • (1997) J. Mol. Biol. , vol.272 , Issue.3 , pp. 301-311
    • Luger, K.1    Rechsteiner, T.J.2    Flaus, A.J.3    Waye, M.M.4    Richmond, T.J.5
  • 87
    • 78751536862 scopus 로고    scopus 로고
    • Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome
    • Luk E, Ranjan A, Fitz Gerald PC, Mizuguchi G, Huang Y, et al. 2010. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143(5):725-36
    • (2010) Cell , vol.143 , Issue.5 , pp. 725-736
    • Luk, E.1    Ranjan, A.2    Fitz Gerald, P.C.3    Mizuguchi, G.4    Huang, Y.5
  • 88
    • 84867064003 scopus 로고    scopus 로고
    • Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase mss116p
    • Mallam AL, Del Campo M, Gilman B, Sidote DJ, Lambowitz AM. 2012. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490(7418):121-25
    • (2012) Nature , vol.490 , Issue.7418 , pp. 121-125
    • Mallam, A.L.1    Del Campo, M.2    Gilman, B.3    Sidote, D.J.4    Lambowitz, A.M.5
  • 90
    • 0348184963 scopus 로고    scopus 로고
    • ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
    • Mizuguchi G, Shen X, Landry J, WuW-H, Sen S, Wu C. 2004. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303(5656):343-48
    • (2004) Science , vol.303 , Issue.5656 , pp. 343-348
    • Mizuguchi, G.1    Shen, X.2    Landry, J.3    Wu, W.-H.4    Sen, S.5    Wu, C.6
  • 91
    • 67349147423 scopus 로고    scopus 로고
    • Chromatin remodelling beyond transcription: The INO80 and SWR1 complexes
    • Morrison AJ, Shen X. 2009. Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10(6):373-84
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , Issue.6 , pp. 373-384
    • Morrison, A.J.1    Shen, X.2
  • 92
    • 84858610971 scopus 로고    scopus 로고
    • Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA
    • Moyle-Heyrman G, Viswanathan R, Widom J, Auble DT. 2012. Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA. J. Biol. Chem. 287(12):9002-12
    • (2012) J. Biol. Chem. , vol.287 , Issue.12 , pp. 9002-9012
    • Moyle-Heyrman, G.1    Viswanathan, R.2    Widom, J.3    Auble, D.T.4
  • 93
    • 0035691979 scopus 로고    scopus 로고
    • Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity
    • Narlikar GJ, Phelan ML, Kingston RE. 2001. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8(6):1219-30
    • (2001) Mol. Cell , vol.8 , Issue.6 , pp. 1219-1230
    • Narlikar, G.J.1    Phelan, M.L.2    Kingston, R.E.3
  • 94
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154(3):490-503
    • (2013) Cell , vol.154 , Issue.3 , pp. 490-503
    • Narlikar, G.J.1    Sundaramoorthy, R.2    Owen-Hughes, T.3
  • 95
    • 84884225242 scopus 로고    scopus 로고
    • Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1
    • Nguyen VQ, Ranjan A, Stengel F, Wei D, Aebersold R, et al. 2013. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154(6):1220-31
    • (2013) Cell , vol.154 , Issue.6 , pp. 1220-1231
    • Nguyen, V.Q.1    Ranjan, A.2    Stengel, F.3    Wei, D.4    Aebersold, R.5
  • 96
    • 84889084190 scopus 로고    scopus 로고
    • Nucleosome sliding by chd1 does not require rigid coupling between DNA-binding and ATPase domains
    • Nodelman IM, Bowman GD.2013. Nucleosome sliding by Chd1 does not require rigid coupling between DNA-binding and ATPase domains. EMBO Rep. 14(12):1098-103
    • (2013) EMBO Rep. , vol.14 , Issue.12 , pp. 1098-1103
    • Nodelman, I.M.1    Bowman, G.D.2
  • 98
    • 78651510784 scopus 로고    scopus 로고
    • Global regulation of H2A.Z localization by the INO80chromatin-remodeling enzyme is essential for genome integrity
    • Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL. 2011. Global regulation of H2A.Z localization by the INO80chromatin-remodeling enzyme is essential for genome integrity. Cell 144(2):200-13
    • (2011) Cell , vol.144 , Issue.2 , pp. 200-213
    • Papamichos-Chronakis, M.1    Watanabe, S.2    Rando, O.J.3    Peterson, C.L.4
  • 99
    • 67651101173 scopus 로고    scopus 로고
    • Chromatin remodelers act globally, sequence positions nucleosomes locally
    • Partensky PD, Narlikar GJ. 2009. Chromatin remodelers act globally, sequence positions nucleosomes locally. J. Mol. Biol. 391(1):12-25
    • (2009) J. Mol. Biol. , vol.391 , Issue.1 , pp. 12-25
    • Partensky, P.D.1    Narlikar, G.J.2
  • 100
    • 84873643234 scopus 로고    scopus 로고
    • Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the chd1 chromatin remodeler
    • Patel A, Chakravarthy S, Morrone S, Nodelman IM, McKnight JN, Bowman GD. 2013. Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler. Nucleic Acids Res. 41(3):1637-48
    • (2013) Nucleic Acids Res. , vol.41 , Issue.3 , pp. 1637-1648
    • Patel, A.1    Chakravarthy, S.2    Morrone, S.3    Nodelman, I.M.4    McKnight, J.N.5    Bowman, G.D.6
  • 101
    • 0029008807 scopus 로고
    • Yeast TATA binding protein interaction with DNA: Fluorescence determination of oligomeric state, equilibrium binding, on-rate, and dissociation kinetics
    • Perez-Howard GM, Weil PA, Beechem JM. 1995. Yeast TATA binding protein interaction with DNA: fluorescence determination of oligomeric state, equilibrium binding, on-rate, and dissociation kinetics. Biochemistry 34(25):8005-17
    • (1995) Biochemistry , vol.34 , Issue.25 , pp. 8005-8017
    • Perez-Howard, G.M.1    Weil, P.A.2    Beechem, J.M.3
  • 102
    • 0033847208 scopus 로고    scopus 로고
    • Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases
    • Phelan ML, Schnitzler GR, Kingston RE. 2000. Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases. Mol. Cell. Biol. 20(17):6380-89
    • (2000) Mol. Cell. Biol. , vol.20 , Issue.17 , pp. 6380-6389
    • Phelan, M.L.1    Schnitzler, G.R.2    Kingston, R.E.3
  • 103
    • 0033082238 scopus 로고    scopus 로고
    • Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits
    • Phelan ML, Sif S, Narlikar GJ, Kingston RE. 1999. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3(2):247-53
    • (1999) Mol. Cell , vol.3 , Issue.2 , pp. 247-253
    • Phelan, M.L.1    Sif, S.2    Narlikar, G.J.3    Kingston, R.E.4
  • 104
    • 0028791330 scopus 로고
    • Mechanism of protein access to specific DNA sequences in chromatin: A dynamic equilibrium model for gene regulation
    • Polach KJ, Widom J. 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254(2):130-49
    • (1995) J. Mol. Biol. , vol.254 , Issue.2 , pp. 130-149
    • Polach, K.J.1    Widom, J.2
  • 105
    • 84899646418 scopus 로고    scopus 로고
    • The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme
    • Racki LR, Naber N, Pate E, Leonard JD, Cooke R, Narlikar GJ. 2014. The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme. J. Mol. Biol. 426(10):2034-44
    • (2014) J. Mol. Biol. , vol.426 , Issue.10 , pp. 2034-2044
    • Racki, L.R.1    Naber, N.2    Pate, E.3    Leonard, J.D.4    Cooke, R.5    Narlikar, G.J.6
  • 106
    • 72949099482 scopus 로고    scopus 로고
    • The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
    • Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, et al. 2009. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462(7276):1016-21
    • (2009) Nature , vol.462 , Issue.7276 , pp. 1016-1021
    • Racki, L.R.1    Yang, J.G.2    Naber, N.3    Partensky, P.D.4    Acevedo, A.5
  • 107
    • 84884214357 scopus 로고    scopus 로고
    • Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement
    • Ranjan A, Mizuguchi G, Fitz Gerald PC, Wei D, Wang F, et al. 2013. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell 154(6):1232-45
    • (2013) Cell , vol.154 , Issue.6 , pp. 1232-1245
    • Ranjan, A.1    Mizuguchi, G.2    Fitz Gerald, P.C.3    Wei, D.4    Wang, F.5
  • 108
    • 84937411433 scopus 로고    scopus 로고
    • H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement in budding yeast
    • Ranjan A, Wang F, Mizuguchi G, Wei D, Huang Y, Wu C. 2015. H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement in budding yeast. eLife 4:e06845
    • (2015) ELife , vol.4 , pp. e06845
    • Ranjan, A.1    Wang, F.2    Mizuguchi, G.3    Wei, D.4    Huang, Y.5    Wu, C.6
  • 109
    • 78149447722 scopus 로고    scopus 로고
    • The ATP-dependent remodeler RSC transfers histone dimers and octamers through the rapid formation of an unstable encounter intermediate
    • Rowe CE, Narlikar GJ. 2010. The ATP-dependent remodeler RSC transfers histone dimers and octamers through the rapid formation of an unstable encounter intermediate. Biochemistry 49(45):9882-90
    • (2010) Biochemistry , vol.49 , Issue.45 , pp. 9882-9890
    • Rowe, C.E.1    Narlikar, G.J.2
  • 110
    • 0037102562 scopus 로고    scopus 로고
    • Chromatin remodeling by RSC involves ATP-dependent DNA translocation
    • Saha A, Wittmeyer J, Cairns BR. 2002. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16(16):2120-34
    • (2002) Genes Dev. , vol.16 , Issue.16 , pp. 2120-2134
    • Saha, A.1    Wittmeyer, J.2    Cairns, B.R.3
  • 111
    • 26944461283 scopus 로고    scopus 로고
    • Chromatin remodeling through directional DNA translocation from an internal nucleosomal site
    • Saha A, Wittmeyer J, Cairns BR. 2005. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12(9):747-55
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , Issue.9 , pp. 747-755
    • Saha, A.1    Wittmeyer, J.2    Cairns, B.R.3
  • 112
    • 33745790132 scopus 로고    scopus 로고
    • Chromatin remodelling: The industrial revolution of DNA around histones
    • Saha A, Wittmeyer J, Cairns BR. 2006. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7(6):437-47
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , Issue.6 , pp. 437-447
    • Saha, A.1    Wittmeyer, J.2    Cairns, B.R.3
  • 113
    • 49949083837 scopus 로고    scopus 로고
    • DNA binding to RecD: Role of the 1B domain in SF1B helicase activity
    • Saikrishnan K, Griffiths SP, Cook N, Court R, Wigley DB. 2008. DNA binding to RecD: role of the 1B domain in SF1B helicase activity. EMBO J. 27(16):2222-29
    • (2008) EMBO J. , vol.27 , Issue.16 , pp. 2222-2229
    • Saikrishnan, K.1    Griffiths, S.P.2    Cook, N.3    Court, R.4    Wigley, D.B.5
  • 114
    • 0032504102 scopus 로고    scopus 로고
    • Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state
    • Schnitzler G, Sif S, Kingston RE. 1998. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94(1):17-27
    • (1998) Cell , vol.94 , Issue.1 , pp. 17-27
    • Schnitzler, G.1    Sif, S.2    Kingston, R.E.3
  • 115
    • 4544266390 scopus 로고    scopus 로고
    • Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex
    • Schwanbeck R, Xiao H, Wu C. 2004. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279(38):39933-41
    • (2004) J. Biol. Chem. , vol.279 , Issue.38 , pp. 39933-39941
    • Schwanbeck, R.1    Xiao, H.2    Wu, C.3
  • 116
    • 68349125112 scopus 로고    scopus 로고
    • What controls nucleosome positions?
    • Segal E, Widom J. 2009. What controls nucleosome positions? Trends Genet. 25(8):335-43
    • (2009) Trends Genet. , vol.25 , Issue.8 , pp. 335-343
    • Segal, E.1    Widom, J.2
  • 118
    • 0042671282 scopus 로고    scopus 로고
    • Involvement of actin-related proteins in ATP-dependent chromatin remodeling
    • Shen X, Ranallo R, Choi E, Wu C. 2003. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12(1):147-55
    • (2003) Mol. Cell , vol.12 , Issue.1 , pp. 147-155
    • Shen, X.1    Ranallo, R.2    Choi, E.3    Wu, C.4
  • 119
    • 0025144957 scopus 로고
    • Effects of DNA sequence and histone-histone interactions on nucleosome placement
    • Shrader TE, Crothers DM. 1990. Effects of DNA sequence and histone-histone interactions on nucleosome placement. J. Mol. Biol. 216(1):69-84
    • (1990) J. Mol. Biol. , vol.216 , Issue.1 , pp. 69-84
    • Shrader, T.E.1    Crothers, D.M.2
  • 120
    • 84876871047 scopus 로고    scopus 로고
    • Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put
    • Simon JA, Kingston RE. 2013. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49(5):808-24
    • (2013) Mol. Cell , vol.49 , Issue.5 , pp. 808-824
    • Simon, J.A.1    Kingston, R.E.2
  • 121
  • 122
    • 34548638261 scopus 로고    scopus 로고
    • Structure and mechanism of helicases and nucleic acid translocases
    • Singleton MR, Dillingham MS, Wigley DB. 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76:23-50
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 23-50
    • Singleton, M.R.1    Dillingham, M.S.2    Wigley, D.B.3
  • 123
    • 79958858041 scopus 로고    scopus 로고
    • The RSC chromatin remodelling ATPase translocates DNA with high force and small step size
    • Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. 2011. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 30(12):2364-72
    • (2011) EMBO J. , vol.30 , Issue.12 , pp. 2364-2372
    • Sirinakis, G.1    Clapier, C.R.2    Gao, Y.3    Viswanathan, R.4    Cairns, B.R.5    Zhang, Y.6
  • 124
    • 84919480794 scopus 로고    scopus 로고
    • The RSC complex localizes to coding sequences to regulate pol II and histone occupancy
    • Spain MM, Ansari SA, Pathak R, Palumbo MJ, Morse RH, Govind CK. 2014. The RSC complex localizes to coding sequences to regulate Pol II and histone occupancy. Mol. Cell 56(5):653-66
    • (2014) Mol. Cell , vol.56 , Issue.5 , pp. 653-666
    • Spain, M.M.1    Ansari, S.A.2    Pathak, R.3    Palumbo, M.J.4    Morse, R.H.5    Govind, C.K.6
  • 125
    • 33745221438 scopus 로고    scopus 로고
    • Analysis of nucleosome repositioning by yeast ISWI and chd1 chromatin remodeling complexes
    • Stockdale C, Flaus A, Ferreira H, Owen-Hughes T. 2006. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281(24):16279-88
    • (2006) J. Biol. Chem. , vol.281 , Issue.24 , pp. 16279-16288
    • Stockdale, C.1    Flaus, A.2    Ferreira, H.3    Owen-Hughes, T.4
  • 126
    • 0026584599 scopus 로고
    • Structure of the recA protein-ADP complex
    • Story RM, Steitz TA. 1992. Structure of the recA protein-ADP complex. Nature 355(6358):374-76
    • (1992) Nature , vol.355 , Issue.6358 , pp. 374-376
    • Story, R.M.1    Steitz, T.A.2
  • 128
  • 129
    • 0033664380 scopus 로고    scopus 로고
    • Crystal structure of a nucleosome core particle containing the variant histone H2A.Z
    • Suto RK, Clarkson MJ, Tremethick DJ, Luger K. 2000. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Mol. Biol. 7(12):1121-24
    • (2000) Nat. Struct. Mol. Biol. , vol.7 , Issue.12 , pp. 1121-1124
    • Suto, R.K.1    Clarkson, M.J.2    Tremethick, D.J.3    Luger, K.4
  • 130
    • 84904051114 scopus 로고    scopus 로고
    • Chromatin dynamics: Interplay between remodeling enzymes and histone modifications
    • Swygert SG, Peterson CL. 2014. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim. Biophys. Acta 1839(8):728-36
    • (2014) Biochim. Biophys. Acta , vol.1839 , Issue.8 , pp. 728-736
    • Swygert, S.G.1    Peterson, C.L.2
  • 131
    • 80051748137 scopus 로고    scopus 로고
    • Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF
    • Torigoe SE, Urwin DL, Ishii H, Smith DE, Kadonaga JT. 2011. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol. Cell 43(4):638-48
    • (2011) Mol. Cell , vol.43 , Issue.4 , pp. 638-648
    • Torigoe, S.E.1    Urwin, D.L.2    Ishii, H.3    Smith, D.E.4    Kadonaga, J.T.5
  • 132
    • 84884228389 scopus 로고    scopus 로고
    • Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex
    • Tosi A, Haas C, Herzog F, Gilmozzi A, Berninghausen O, et al. 2013. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154(6):1207-19
    • (2013) Cell , vol.154 , Issue.6 , pp. 1207-1219
    • Tosi, A.1    Haas, C.2    Herzog, F.3    Gilmozzi, A.4    Berninghausen, O.5
  • 133
    • 0029562736 scopus 로고
    • Purification and properties of an ATP-dependent nucleosome remodeling factor
    • Tsukiyama T, Wu C. 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83(6):1011-20
    • (1995) Cell , vol.83 , Issue.6 , pp. 1011-1020
    • Tsukiyama, T.1    Wu, C.2
  • 134
    • 27844607415 scopus 로고    scopus 로고
    • Chromatin remodelling at aDNAdouble-strand break site in saccharomyces cerevisiae
    • Tsukuda T, Fleming AB, Nickoloff JA, Osley MA. 2005. Chromatin remodelling at aDNAdouble-strand break site in Saccharomyces cerevisiae. Nature 438:379-83
    • (2005) Nature , vol.438 , pp. 379-383
    • Tsukuda, T.1    Fleming, A.B.2    Nickoloff, J.A.3    Osley, M.A.4
  • 135
    • 79251545788 scopus 로고    scopus 로고
    • The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor
    • Udugama M, Sabri A, Bartholomew B. 2011. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31(4):662-73
    • (2011) Mol. Cell. Biol. , vol.31 , Issue.4 , pp. 662-673
    • Udugama, M.1    Sabri, A.2    Bartholomew, B.3
  • 136
    • 0029066360 scopus 로고
    • Position effect variegation in drosophila is associated with an altered chromatin structure
    • Wallrath LL, Elgin SC. 1995. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 9(10):1263-77
    • (1995) Genes Dev. , vol.9 , Issue.10 , pp. 1263-1277
    • Wallrath, L.L.1    Elgin, S.C.2
  • 137
    • 76049127469 scopus 로고    scopus 로고
    • Asf1-like structure of the conserved yaf9 YEATS domain and role in H2A.Z deposition and acetylation
    • Wang AY, Schulze JM, Skordalakes E, Gin JW, Berger JM, et al. 2009. Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation. PNAS 106(51):21573-78
    • (2009) PNAS , vol.106 , Issue.51 , pp. 21573-21578
    • Wang, A.Y.1    Schulze, J.M.2    Skordalakes, E.3    Gin, J.W.4    Berger, J.M.5
  • 138
    • 84876313606 scopus 로고    scopus 로고
    • A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme
    • Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL. 2013. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340(6129):195-99
    • (2013) Science , vol.340 , Issue.6129 , pp. 195-199
    • Watanabe, S.1    Radman-Livaja, M.2    Rando, O.J.3    Peterson, C.L.4
  • 140
    • 0035704707 scopus 로고    scopus 로고
    • Role of DNA sequence in nucleosome stability and dynamics
    • Widom J. 2001. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34(3):269-324
    • (2001) Q. Rev. Biophys. , vol.34 , Issue.3 , pp. 269-324
    • Widom, J.1
  • 141
    • 84871340015 scopus 로고    scopus 로고
    • Bacterial DNA repair: Recent insights into the mechanism of rec BCD, add AB and adn AB
    • Wigley DB. 2013. Bacterial DNA repair: recent insights into the mechanism of Rec BCD, Add AB and Adn AB. Nat. Rev. Microbiol. 11(1):9-13
    • (2013) Nat. Rev. Microbiol. , vol.11 , Issue.1 , pp. 9-13
    • Wigley, D.B.1
  • 142
    • 79960647770 scopus 로고    scopus 로고
    • Structure and mechanism of the Swi2/Snf2 remodeller mot1 in complex with its substrate TBP
    • Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, et al. 2011. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature 475(7356):403-7
    • (2011) Nature , vol.475 , Issue.7356 , pp. 403-407
    • Wollmann, P.1    Cui, S.2    Viswanathan, R.3    Berninghausen, O.4    Wells, M.N.5
  • 143
    • 28544442465 scopus 로고    scopus 로고
    • Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange
    • Wu W-H, Alami S, Luk E, Wu C-H, Sen S, et al. 2005. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat. Struct. Mol. Biol. 12(12):1064-71
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , Issue.12 , pp. 1064-1071
    • Wu, W.-H.1    Alami, S.2    Luk, E.3    Wu, C.-H.4    Sen, S.5
  • 144
    • 65249187832 scopus 로고    scopus 로고
    • Nterminus of swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex
    • Wu W-H, Wu C-H, Ladurner A, Mizuguchi G, Wei D, et al. 2009. Nterminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex. J. Biol. Chem. 284(10):6200-7
    • (2009) J. Biol. Chem. , vol.284 , Issue.10 , pp. 6200-6207
    • Wu, W.-H.1    Wu, C.-H.2    Ladurner, A.3    Mizuguchi, G.4    Wei, D.5
  • 145
    • 33845356072 scopus 로고    scopus 로고
    • The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing
    • Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ. 2006. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13(12):1078-83
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , Issue.12 , pp. 1078-1083
    • Yang, J.G.1    Madrid, T.S.2    Sevastopoulos, E.3    Narlikar, G.J.4
  • 146
    • 34249877438 scopus 로고    scopus 로고
    • Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement
    • Yang X, Zaurin R, Beato M, Peterson CL. 2007. Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nat. Struct. Mol. Biol. 14(6):540-47
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , Issue.6 , pp. 540-547
    • Yang, X.1    Zaurin, R.2    Beato, M.3    Peterson, C.L.4
  • 147
    • 84862643713 scopus 로고    scopus 로고
    • Genome-wide nucleosome specificity and directionality of chromatin remodelers
    • Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. 2012. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149(7):1461-73
    • (2012) Cell , vol.149 , Issue.7 , pp. 1461-1473
    • Yen, K.1    Vinayachandran, V.2    Batta, K.3    Koerber, R.T.4    Pugh, B.F.5
  • 148
    • 0032477911 scopus 로고    scopus 로고
    • The 30-kDa C-terminal domain of the rec B protein is critical for the nuclease activity, but not the helicase activity, of the rec BCD enzyme from Escherichia coli
    • Yu M, Souaya J, Julin DA. 1998. The 30-kDa C-terminal domain of the Rec B protein is critical for the nuclease activity, but not the helicase activity, of the Rec BCD enzyme from Escherichia coli. PNAS 95(3):981-86
    • (1998) PNAS , vol.95 , Issue.3 , pp. 981-986
    • Yu, M.1    Souaya, J.2    Julin, D.A.3
  • 149
    • 84893129292 scopus 로고    scopus 로고
    • Mot1 redistributes TBP from TATA-containing to TATA-less promoters
    • Zentner GE, Henikoff S. 2013. Mot1 redistributes TBP from TATA-containing to TATA-less promoters. Mol. Cell. Biol. 33(24):4996-5004
    • (2013) Mol. Cell. Biol. , vol.33 , Issue.24 , pp. 4996-5004
    • Zentner, G.E.1    Henikoff, S.2
  • 150
    • 33947638345 scopus 로고    scopus 로고
    • DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC
    • Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, et al. 2006. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24(4):559-68
    • (2006) Mol. Cell , vol.24 , Issue.4 , pp. 559-568
    • Zhang, Y.1    Smith, C.L.2    Saha, A.3    Grill, S.W.4    Mihardja, S.5
  • 151
    • 79956316470 scopus 로고    scopus 로고
    • A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome
    • Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF. 2011. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332(6032):977-80
    • (2011) Science , vol.332 , Issue.6032 , pp. 977-980
    • Zhang, Z.1    Wippo, C.J.2    Wal, M.3    Ward, E.4    Korber, P.5    Pugh, B.F.6
  • 152
    • 35848931678 scopus 로고    scopus 로고
    • The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression
    • Zhou J, Fan JY, Rangasamy D, Tremethick DJ. 2007. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat. Struct. Mol. Biol. 14(11):1070-76
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , Issue.11 , pp. 1070-1076
    • Zhou, J.1    Fan, J.Y.2    Rangasamy, D.3    Tremethick, D.J.4
  • 153
    • 33744916194 scopus 로고    scopus 로고
    • Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
    • Zofall M, Persinger J, Kassabov SR, Bartholomew B. 2006. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13(4):339-46
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , Issue.4 , pp. 339-346
    • Zofall, M.1    Persinger, J.2    Kassabov, S.R.3    Bartholomew, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.