-
1
-
-
42049094200
-
Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease
-
Haugarvoll K, Rademakers R, Kachergus JM, et al. Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology. 2008;70:1456–1460.
-
(2008)
Neurology
, vol.70
, pp. 1456-1460
-
-
Haugarvoll, K.1
Rademakers, R.2
Kachergus, J.M.3
-
2
-
-
50049104725
-
Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study
-
Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease:a case-control study. Lancet Neurol. 2008;7:583–590.
-
(2008)
Lancet Neurol
, vol.7
, pp. 583-590
-
-
Healy, D.G.1
Falchi, M.2
O’Sullivan, S.S.3
-
3
-
-
84952334344
-
Linking a genome-wide association study signal to a LRRK2 coding variant in Parkinson’s disease
-
Foo JN, Chung SJ, Tan LC, et al. Linking a genome-wide association study signal to a LRRK2 coding variant in Parkinson’s disease. Mov Disord. 2016;31:484–487.
-
(2016)
Mov Disord
, vol.31
, pp. 484-487
-
-
Foo, J.N.1
Chung, S.J.2
Tan, L.C.3
-
4
-
-
85019650937
-
Genome-wide association study of Parkinson’s disease in East Asians
-
Foo JN, Tan LC, Irwan ID, et al. Genome-wide association study of Parkinson’s disease in East Asians. Hum Mol Genet. 2017;26:226–232.
-
(2017)
Hum Mol Genet
, vol.26
, pp. 226-232
-
-
Foo, J.N.1
Tan, L.C.2
Irwan, I.D.3
-
5
-
-
84946057538
-
Differential effect of caffeine intake in subjects with genetic susceptibility to Parkinson’s disease
-
Kumar PM, Paing SS, Li H, et al. Differential effect of caffeine intake in subjects with genetic susceptibility to Parkinson’s disease. Sci Rep. 2015;5:15492.
-
(2015)
Sci Rep
, vol.5
, pp. 15492
-
-
Kumar, P.M.1
Paing, S.S.2
Li, H.3
-
6
-
-
84947936383
-
Greater motor progression in patients with Parkinson disease who carry LRRK2 risk variants
-
Oosterveld LP, Allen JC, Jr., Ng EY, et al. Greater motor progression in patients with Parkinson disease who carry LRRK2 risk variants. Neurology. 2015;85:1039–1042.
-
(2015)
Neurology
, vol.85
, pp. 1039-1042
-
-
Oosterveld, L.P.1
Allen, J.C.2
Ng, E.Y.3
-
7
-
-
80052965333
-
Rare and common LRRK2 exonic variants in Parkinson’s disease
-
Tan EK., Rare and common LRRK2 exonic variants in Parkinson’s disease. Lancet Neurol. 2011;10:869–870.
-
(2011)
Lancet Neurol
, vol.10
, pp. 869-870
-
-
Tan, E.K.1
-
8
-
-
84887875465
-
Genetic testing of LRRK2 in Parkinson’s disease: is there a clinical role?
-
Buhat DM, Tan EK. Genetic testing of LRRK2 in Parkinson’s disease:is there a clinical role? Parkinsonism Relat Disord. 2014;20(Suppl 1):S54–6.
-
(2014)
Parkinsonism Relat Disord
, vol.20
, pp. S54-S56
-
-
Buhat, D.M.1
Tan, E.K.2
-
9
-
-
84949651389
-
Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson’s disease
-
Infante J, Prieto C, Sierra M, et al. Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson’s disease. Neurobiol Aging. 2016;38(214):e1–5.
-
(2016)
Neurobiol Aging
, vol.38
, Issue.214
, pp. e1-e5
-
-
Infante, J.1
Prieto, C.2
Sierra, M.3
-
10
-
-
84874720265
-
Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations
-
Sheng Z, Zhang S, Bustos D, et al. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med. 2012;4:164ra1.
-
(2012)
Sci Transl Med
, vol.4
, pp. 164ra1
-
-
Sheng, Z.1
Zhang, S.2
Bustos, D.3
-
11
-
-
28044460070
-
Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity
-
West AB, Moore DJ, Biskup S, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102:16842–16847.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 16842-16847
-
-
West, A.B.1
Moore, D.J.2
Biskup, S.3
-
12
-
-
84973350290
-
Antioxidants inhibit neuronal toxicity in Parkinson’s disease-linked LRRK2
-
Angeles DC, Ho P, Dymock BW, et al. Antioxidants inhibit neuronal toxicity in Parkinson’s disease-linked LRRK2. Ann Clin Transl Neurol. 2016;3:288–294.
-
(2016)
Ann Clin Transl Neurol
, vol.3
, pp. 288-294
-
-
Angeles, D.C.1
Ho, P.2
Dymock, B.W.3
-
13
-
-
48249145829
-
Molecular biology changes associated with LRRK2 mutations in Parkinson’s disease
-
Lu YW, Tan EK. Molecular biology changes associated with LRRK2 mutations in Parkinson’s disease. J Neurosci Res. 2008;86:1895–1901.
-
(2008)
J Neurosci Res
, vol.86
, pp. 1895-1901
-
-
Lu, Y.W.1
Tan, E.K.2
-
14
-
-
84901346503
-
Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila
-
Angeles DC, Ho P, Chua LL, et al. Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Hum Mol Genet. 2014;23:3157–3165.
-
(2014)
Hum Mol Genet
, vol.23
, pp. 3157-3165
-
-
Angeles, D.C.1
Ho, P.2
Chua, L.L.3
-
15
-
-
84887945830
-
Targeting leucine-rich repeat kinase 2 in Parkinson’s disease
-
Chan SL, Angeles DC, Tan EK. Targeting leucine-rich repeat kinase 2 in Parkinson’s disease. Expert Opin Ther Targets. 2013;17:1471–1482.
-
(2013)
Expert Opin Ther Targets
, vol.17
, pp. 1471-1482
-
-
Chan, S.L.1
Angeles, D.C.2
Tan, E.K.3
-
16
-
-
84891776413
-
Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies
-
Skibinski G, Nakamura K, Cookson MR, et al. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J Neurosci. 2014;34:418–433.
-
(2014)
J Neurosci
, vol.34
, pp. 418-433
-
-
Skibinski, G.1
Nakamura, K.2
Cookson, M.R.3
-
17
-
-
83855160771
-
Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson’s disease mutations and LRRK2 pharmacological inhibition
-
Doggett EA, Zhao J, Mork CN, et al. Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson’s disease mutations and LRRK2 pharmacological inhibition. J Neurochem. 2012;120:37–45.
-
(2012)
J Neurochem
, vol.120
, pp. 37-45
-
-
Doggett, E.A.1
Zhao, J.2
Mork, C.N.3
-
18
-
-
77956674229
-
14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization
-
Nichols RJ, Dzamko N, Morrice NA, et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J. 2010;430:393–404.
-
(2010)
Biochem J
, vol.430
, pp. 393-404
-
-
Nichols, R.J.1
Dzamko, N.2
Morrice, N.A.3
-
19
-
-
77956655427
-
Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization
-
Dzamko N, Deak M, Hentati F, et al. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J. 2010;430:405–413.
-
(2010)
Biochem J
, vol.430
, pp. 405-413
-
-
Dzamko, N.1
Deak, M.2
Hentati, F.3
-
20
-
-
85006173271
-
LRRK2 levels and phosphorylation in Parkinson’s disease brain and cases with restricted Lewy bodies
-
Dzamko N, Gysbers AM, Bandopadhyay R, et al. LRRK2 levels and phosphorylation in Parkinson’s disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423–432.
-
(2017)
Mov Disord
, vol.32
, pp. 423-432
-
-
Dzamko, N.1
Gysbers, A.M.2
Bandopadhyay, R.3
-
21
-
-
0033681149
-
Chronic systemic pesticide exposure reproduces features of Parkinson’s disease
-
Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–1306.
-
(2000)
Nat Neurosci
, vol.3
, pp. 1301-1306
-
-
Betarbet, R.1
Sherer, T.B.2
MacKenzie, G.3
-
22
-
-
0033608811
-
Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss
-
Brooks AI, Chadwick CA, Gelbard HA, et al. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 1999;823:1–10.
-
(1999)
Brain Res
, vol.823
, pp. 1-10
-
-
Brooks, A.I.1
Chadwick, C.A.2
Gelbard, H.A.3
-
23
-
-
0000428532
-
3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists
-
Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature. 1957;180:1200.
-
(1957)
Nature
, vol.180
, pp. 1200
-
-
Carlsson, A.1
Lindqvist, M.2
Magnusson, T.3
-
24
-
-
0022403289
-
Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity
-
Heikkila RE, Nicklas WJ, Vyas I, et al. Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats:implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett. 1985;62:389–394.
-
(1985)
Neurosci Lett
, vol.62
, pp. 389-394
-
-
Heikkila, R.E.1
Nicklas, W.J.2
Vyas, I.3
-
25
-
-
0035091767
-
The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety
-
Przedborski S, Jackson-Lewis V, Naini AB, et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP):a technical review of its utility and safety. J Neurochem. 2001;76:1265–1274.
-
(2001)
J Neurochem
, vol.76
, pp. 1265-1274
-
-
Przedborski, S.1
Jackson-Lewis, V.2
Naini, A.B.3
-
26
-
-
84865535547
-
Use of viral vectors to create animal models for Parkinson’s disease
-
Low K, Aebischer P. Use of viral vectors to create animal models for Parkinson’s disease. Neurobiol Dis. 2012;48:189–201.
-
(2012)
Neurobiol Dis
, vol.48
, pp. 189-201
-
-
Low, K.1
Aebischer, P.2
-
27
-
-
77956441086
-
Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease
-
Lee BD, Shin JH, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med. 2010;16:998–1000.
-
(2010)
Nat Med
, vol.16
, pp. 998-1000
-
-
Lee, B.D.1
Shin, J.H.2
VanKampen, J.3
-
28
-
-
78751522558
-
A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2
-
Dusonchet J, Kochubey O, Stafa K, et al. A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2. J Neurosci. 2011;31:907–912.
-
(2011)
J Neurosci
, vol.31
, pp. 907-912
-
-
Dusonchet, J.1
Kochubey, O.2
Stafa, K.3
-
29
-
-
84924251953
-
Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson’s disease
-
Tsika E, Nguyen AP, Dusonchet J, et al. Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis. 2015;77:49–61.
-
(2015)
Neurobiol Dis
, vol.77
, pp. 49-61
-
-
Tsika, E.1
Nguyen, A.P.2
Dusonchet, J.3
-
30
-
-
84964345977
-
Targeting the cannabinoid CB2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice
-
Palomo-Garo C, Gomez-Galvez Y, Garcia C, et al. Targeting the cannabinoid CB2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice. Pharmacol Res. 2016;110:181–192.
-
(2016)
Pharmacol Res
, vol.110
, pp. 181-192
-
-
Palomo-Garo, C.1
Gomez-Galvez, Y.2
Garcia, C.3
-
31
-
-
84861552733
-
LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors
-
Hinkle KM, Yue M, Behrouz B, et al. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener. 2012;7:25.
-
(2012)
Mol Neurodegener
, vol.7
, pp. 25
-
-
Hinkle, K.M.1
Yue, M.2
Behrouz, B.3
-
32
-
-
84879129926
-
Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis
-
Ness D, Ren Z, Gardai S, et al. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis. Plos One. 2013;8:e66164.
-
(2013)
Plos One
, vol.8
, pp. e66164
-
-
Ness, D.1
Ren, Z.2
Gardai, S.3
-
33
-
-
84893527711
-
Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs
-
Baptista MA, Dave KD, Frasier MA, et al. Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. Plos One. 2013;8:e80705.
-
(2013)
Plos One
, vol.8
, pp. e80705
-
-
Baptista, M.A.1
Dave, K.D.2
Frasier, M.A.3
-
34
-
-
79952918505
-
Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2
-
Deng X, Dzamko N, Prescott A, et al. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol. 2011;7:203–205.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 203-205
-
-
Deng, X.1
Dzamko, N.2
Prescott, A.3
-
35
-
-
84957419608
-
MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition
-
Fell MJ, Mirescu C, Basu K, et al. MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition. J Pharmacol Exp Ther. 2015;355:397–409.
-
(2015)
J Pharmacol Exp Ther
, vol.355
, pp. 397-409
-
-
Fell, M.J.1
Mirescu, C.2
Basu, K.3
-
36
-
-
84939145610
-
Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates alpha-synuclein gene-induced neurodegeneration
-
Daher JP, Abdelmotilib HA, Hu X, et al. Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates alpha-synuclein gene-induced neurodegeneration. J Biol Chem. 2015;290:19433–19444.
-
(2015)
J Biol Chem
, vol.290
, pp. 19433-19444
-
-
Daher, J.P.1
Abdelmotilib, H.A.2
Hu, X.3
-
37
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
-
38
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920.
-
(2007)
Science
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
Vodyanik, M.A.2
Smuga-Otto, K.3
-
39
-
-
70350732790
-
A chemical platform for improved induction of human iPSCs
-
Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs. Nat Methods. 2009;6:805–808.
-
(2009)
Nat Methods
, vol.6
, pp. 805-808
-
-
Lin, T.1
Ambasudhan, R.2
Yuan, X.3
-
40
-
-
55849117368
-
Generation of mouse induced pluripotent stem cells without viral vectors
-
Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–953.
-
(2008)
Science
, vol.322
, pp. 949-953
-
-
Okita, K.1
Nakagawa, M.2
Hyenjong, H.3
-
41
-
-
55849115999
-
Induced pluripotent stem cells generated without viral integration
-
Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–949.
-
(2008)
Science
, vol.322
, pp. 945-949
-
-
Stadtfeld, M.1
Nagaya, M.2
Utikal, J.3
-
42
-
-
77958536106
-
Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
-
Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–630.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 618-630
-
-
Warren, L.1
Manos, P.D.2
Ahfeldt, T.3
-
43
-
-
62149125434
-
Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling
-
Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–280.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 275-280
-
-
Chambers, S.M.1
Fasano, C.A.2
Papapetrou, E.P.3
-
44
-
-
84862777308
-
Direct reprogramming of fibroblasts into neural stem cells by defined factors
-
Han DW, Tapia N, Hermann A, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012;10:465–472.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 465-472
-
-
Han, D.W.1
Tapia, N.2
Hermann, A.3
-
45
-
-
84859555919
-
Direct conversion of fibroblasts into stably expandable neural stem cells
-
Thier M, Worsdorfer P, Lakes YB, et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. 2012;10:473–479.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 473-479
-
-
Thier, M.1
Worsdorfer, P.2
Lakes, Y.B.3
-
46
-
-
79952172335
-
LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress
-
Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell. 2011;8:267–280.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 267-280
-
-
Nguyen, H.N.1
Byers, B.2
Cord, B.3
-
47
-
-
84887004639
-
Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation
-
Su YC, Qi X. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet. 2013;22:4545–4561.
-
(2013)
Hum Mol Genet
, vol.22
, pp. 4545-4561
-
-
Su, Y.C.1
Qi, X.2
-
48
-
-
84875640261
-
Interplay of LRRK2 with chaperone-mediated autophagy
-
Orenstein SJ, Kuo SH, Tasset I, et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013;16:394–406.
-
(2013)
Nat Neurosci
, vol.16
, pp. 394-406
-
-
Orenstein, S.J.1
Kuo, S.H.2
Tasset, I.3
-
49
-
-
84887506882
-
LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction
-
Sanders LH, Laganiere J, Cooper O, et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients:reversal by gene correction. Neurobiol Dis. 2014;62:381–386.
-
(2014)
Neurobiol Dis
, vol.62
, pp. 381-386
-
-
Sanders, L.H.1
Laganiere, J.2
Cooper, O.3
-
50
-
-
84949513552
-
Neurite aggregation and calcium dysfunction in ipsc-derived sensory neurons with Parkinson’s disease-related LRRK2 G2019S mutation
-
Schwab AJ, Ebert AD. Neurite aggregation and calcium dysfunction in ipsc-derived sensory neurons with Parkinson’s disease-related LRRK2 G2019S mutation. Stem Cell Reports. 2015;5:1039–1052.
-
(2015)
Stem Cell Reports
, vol.5
, pp. 1039-1052
-
-
Schwab, A.J.1
Ebert, A.D.2
-
51
-
-
84996537122
-
Mutations in LRRK2 impair NF-kappaB pathway in iPSC-derived neurons
-
De Maturana L, Lang R,V, Zubiarrain A, et al. Mutations in LRRK2 impair NF-kappaB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295.
-
(2016)
J Neuroinflammation
, vol.13
, pp. 295
-
-
De Maturana, L.1
Lang, R.V.2
Zubiarrain, A.3
-
52
-
-
84941886639
-
I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3beta signaling pathway
-
Ohta E, Nihira T, Uchino A, et al. I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3beta signaling pathway. Hum Mol Genet. 2015;24:4879–4900.• An interesting report depicting in vitro results from patient-derived iPSC and its corresponding postmortem pathology from the same patient.
-
(2015)
Hum Mol Genet
, vol.24
, pp. 4879-4900
-
-
Ohta, E.1
Nihira, T.2
Uchino, A.3
-
53
-
-
84863584524
-
Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease
-
Cooper O, Seo H, Andrabi S, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 2012;4:141ra90.
-
(2012)
Sci Transl Med
, vol.4
, pp. 141ra90
-
-
Cooper, O.1
Seo, H.2
Andrabi, S.3
-
54
-
-
84869877601
-
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2
-
Liu GH, Qu J, Suzuki K, et al. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature. 2012;491:603–607.
-
(2012)
Nature
, vol.491
, pp. 603-607
-
-
Liu, G.H.1
Qu, J.2
Suzuki, K.3
-
56
-
-
84865149238
-
GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor
-
Reith AD, Bamborough P, Jandu K, et al. GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg Med Chem Lett. 2012;22:5625–5629.
-
(2012)
Bioorg Med Chem Lett
, vol.22
, pp. 5625-5629
-
-
Reith, A.D.1
Bamborough, P.2
Jandu, K.3
-
57
-
-
84862777331
-
Characterization of TAE684 as a potent LRRK2 kinase inhibitor
-
Zhang J, Deng X, Choi HG, et al. Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorg Med Chem Lett. 2012;22:1864–1869.
-
(2012)
Bioorg Med Chem Lett
, vol.22
, pp. 1864-1869
-
-
Zhang, J.1
Deng, X.2
Choi, H.G.3
-
58
-
-
84929310825
-
Discovery of a pyrrolopyrimidine (JH-II-127), a highly potent, selective, and brain penetrant LRRK2 inhibitor
-
Hatcher JM, Zhang J, Choi HG, et al. Discovery of a pyrrolopyrimidine (JH-II-127), a highly potent, selective, and brain penetrant LRRK2 inhibitor. ACS Med Chem Lett. 2015;6:584–589.
-
(2015)
ACS Med Chem Lett
, vol.6
, pp. 584-589
-
-
Hatcher, J.M.1
Zhang, J.2
Choi, H.G.3
-
59
-
-
84870051317
-
Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors
-
Estrada AA, Liu X, Baker-Glenn C, et al. Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2012;55:9416–9433.
-
(2012)
J Med Chem
, vol.55
, pp. 9416-9433
-
-
Estrada, A.A.1
Liu, X.2
Baker-Glenn, C.3
-
60
-
-
84922674609
-
Effect of selective LRRK2 kinase inhibition on nonhuman primate lung
-
Fuji RN, Flagella M, Baca M, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7:273ra15.•• This study highlights the importance of examining the potential safety risks of LRRK2 inhibitors in complex mammalian models compared to the commonly used murine models.
-
(2015)
Sci Transl Med
, vol.7
, pp. 273ra15
-
-
Fuji, R.N.1
Flagella, M.2
Baca, M.3
-
61
-
-
84894097684
-
Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors
-
Estrada AA, Chan BK, Baker-Glenn C, et al. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2014;57:921–936.
-
(2014)
J Med Chem
, vol.57
, pp. 921-936
-
-
Estrada, A.A.1
Chan, B.K.2
Baker-Glenn, C.3
-
62
-
-
84920809166
-
Discovery and preclinical profiling of 3-[4-(Morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor
-
Henderson JL, Kormos BL, Hayward MM, et al. Discovery and preclinical profiling of 3-[4-(Morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J Med Chem. 2015;58:419–432.
-
(2015)
J Med Chem
, vol.58
, pp. 419-432
-
-
Henderson, J.L.1
Kormos, B.L.2
Hayward, M.M.3
-
63
-
-
84861595545
-
Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain
-
Friedman LG, Lachenmayer ML, Wang J, et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci. 2012;32:7585–7593.
-
(2012)
J Neurosci
, vol.32
, pp. 7585-7593
-
-
Friedman, L.G.1
Lachenmayer, M.L.2
Wang, J.3
-
64
-
-
77953090478
-
Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice
-
Tong Y, Yamaguchi H, Giaime E, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A. 2010;107:9879–9884.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 9879-9884
-
-
Tong, Y.1
Yamaguchi, H.2
Giaime, E.3
-
65
-
-
84991112144
-
mTOR independent regulation of macroautophagy by leucine rich repeat kinase 2 via beclin-1
-
Manzoni C, Mamais A, Roosen DA, et al. mTOR independent regulation of macroautophagy by leucine rich repeat kinase 2 via beclin-1. Sci Rep. 2016;6:35106.
-
(2016)
Sci Rep
, vol.6
, pp. 35106
-
-
Manzoni, C.1
Mamais, A.2
Roosen, D.A.3
-
66
-
-
84992340883
-
Interplay between leucine-rich repeat kinase 2 (LRRK2) and p62/SQSTM-1 in selective autophagy
-
Park S, Han S, Choi I, et al. Interplay between leucine-rich repeat kinase 2 (LRRK2) and p62/SQSTM-1 in selective autophagy. Plos One. 2016;11:e0163029.
-
(2016)
Plos One
, vol.11
, pp. e0163029
-
-
Park, S.1
Han, S.2
Choi, I.3
-
67
-
-
84988569312
-
Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation
-
Lobbestael E, Civiero L, De Wit T, et al. Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation. Sci Rep. 2016;6:33897.
-
(2016)
Sci Rep
, vol.6
, pp. 33897
-
-
Lobbestael, E.1
Civiero, L.2
De Wit, T.3
-
68
-
-
84902163498
-
Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy
-
Schapansky J, Nardozzi JD, Felizia F, et al. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet. 2014;23:4201–4214.
-
(2014)
Hum Mol Genet
, vol.23
, pp. 4201-4214
-
-
Schapansky, J.1
Nardozzi, J.D.2
Felizia, F.3
-
69
-
-
84873281274
-
RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk
-
MacLeod DA, Rhinn H, Kuwahara T, et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron. 2013;77:425–439.
-
(2013)
Neuron
, vol.77
, pp. 425-439
-
-
MacLeod, D.A.1
Rhinn, H.2
Kuwahara, T.3
-
70
-
-
84934967144
-
Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson’s disease
-
Rivero-Rios P, Gomez-Suaga P, Fernandez B, et al. Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson’s disease. Biochem Soc Trans. 2015;43:390–395.
-
(2015)
Biochem Soc Trans
, vol.43
, pp. 390-395
-
-
Rivero-Rios, P.1
Gomez-Suaga, P.2
Fernandez, B.3
-
71
-
-
30444436194
-
Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons
-
Carney DS, Davies BA, Horazdovsky BF. Vps9 domain-containing proteins:activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol. 2006;16:27–35.
-
(2006)
Trends Cell Biol
, vol.16
, pp. 27-35
-
-
Carney, D.S.1
Davies, B.A.2
Horazdovsky, B.F.3
-
72
-
-
0037598589
-
Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release
-
Wucherpfennig T, Wilsch-Brauninger M, Gonzalez-Gaitan M. Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol. 2003;161:609–624.
-
(2003)
J Cell Biol
, vol.161
, pp. 609-624
-
-
Wucherpfennig, T.1
Wilsch-Brauninger, M.2
Gonzalez-Gaitan, M.3
-
73
-
-
46549089664
-
LRRK2 regulates synaptic vesicle endocytosis
-
Shin N, Jeong H, Kwon J, et al. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008;314:2055–2065.
-
(2008)
Exp Cell Res
, vol.314
, pp. 2055-2065
-
-
Shin, N.1
Jeong, H.2
Kwon, J.3
-
74
-
-
24144442691
-
Rab conversion as a mechanism of progression from early to late endosomes
-
Rink J, Ghigo E, Kalaidzidis Y, et al. Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005;122:735–749.
-
(2005)
Cell
, vol.122
, pp. 735-749
-
-
Rink, J.1
Ghigo, E.2
Kalaidzidis, Y.3
-
75
-
-
84863241584
-
Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning
-
Dodson MW, Zhang T, Jiang C, et al. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet. 2012;21:1350–1363.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 1350-1363
-
-
Dodson, M.W.1
Zhang, T.2
Jiang, C.3
-
76
-
-
84958567797
-
Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases
-
Steger M, Tonelli F, Ito G, et al. Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 2016;5.
-
(2016)
Elife
, vol.5
-
-
Steger, M.1
Tonelli, F.2
Ito, G.3
-
77
-
-
70350653779
-
Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson’s disease
-
Nichols RJ, Dzamko N, Hutti JE, et al. Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson’s disease. Biochem J. 2009;424:47–60.
-
(2009)
Biochem J
, vol.424
, pp. 47-60
-
-
Nichols, R.J.1
Dzamko, N.2
Hutti, J.E.3
-
78
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–1065.
-
(2012)
Science
, vol.337
, pp. 1062-1065
-
-
Youle, R.J.1
Van Der Bliek, A.M.2
-
79
-
-
84859259002
-
LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1
-
Wang X, Yan MH, Fujioka H, et al. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21:1931–1944.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 1931-1944
-
-
Wang, X.1
Yan, M.H.2
Fujioka, H.3
-
80
-
-
84863728713
-
Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via dynamin-like protein
-
Niu J, Yu M, Wang C, et al. Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via dynamin-like protein. J Neurochem. 2012;122:650–658.
-
(2012)
J Neurochem
, vol.122
, pp. 650-658
-
-
Niu, J.1
Yu, M.2
Wang, C.3
-
81
-
-
84901017315
-
Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model
-
Yang S, Xia C, Li S, et al. Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model. Cell Death Dis. 2014;5:e1217.
-
(2014)
Cell Death Dis
, vol.5
, pp. e1217
-
-
Yang, S.1
Xia, C.2
Li, S.3
-
82
-
-
84897586124
-
Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily
-
Stafa K, Tsika E, Moser R, et al. Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet. 2014;23:2055–2077.
-
(2014)
Hum Mol Genet
, vol.23
, pp. 2055-2077
-
-
Stafa, K.1
Tsika, E.2
Moser, R.3
-
83
-
-
84994834600
-
Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease
-
Hsieh CH, Shaltouki A, Gonzalez AE, et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell. 2016;19:709–724.
-
(2016)
Cell Stem Cell
, vol.19
, pp. 709-724
-
-
Hsieh, C.H.1
Shaltouki, A.2
Gonzalez, A.E.3
-
84
-
-
84941635707
-
LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase
-
Choi I, Kim B, Byun JW, et al. LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase. Nat Commun. 2015;6:8255.
-
(2015)
Nat Commun
, vol.6
, pp. 8255
-
-
Choi, I.1
Kim, B.2
Byun, J.W.3
-
85
-
-
84920426451
-
Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations
-
Godena VK, Brookes-Hocking N, Moller A, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun. 2014;5:5245.
-
(2014)
Nat Commun
, vol.5
, pp. 5245
-
-
Godena, V.K.1
Brookes-Hocking, N.2
Moller, A.3
-
86
-
-
84955212896
-
Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain
-
Civiero L, Cirnaru MD, Beilina A, et al. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem. 2015;135:1242–1256.
-
(2015)
J Neurochem
, vol.135
, pp. 1242-1256
-
-
Civiero, L.1
Cirnaru, M.D.2
Beilina, A.3
-
87
-
-
84856404449
-
LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth
-
Kawakami F, Yabata T, Ohta E, et al. LRRK2 phosphorylates tubulin-associated tau but not the free molecule:LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. Plos One. 2012;7:e30834.
-
(2012)
Plos One
, vol.7
, pp. e30834
-
-
Kawakami, F.1
Yabata, T.2
Ohta, E.3
-
88
-
-
84939467302
-
Physiologically relevant factors influence tau phosphorylation by leucine-rich repeat kinase 2
-
Hamm M, Bailey R, Shaw G, et al. Physiologically relevant factors influence tau phosphorylation by leucine-rich repeat kinase 2. J Neurosci Res. 2015;93:1567–1580.
-
(2015)
J Neurosci Res
, vol.93
, pp. 1567-1580
-
-
Hamm, M.1
Bailey, R.2
Shaw, G.3
-
89
-
-
84939609978
-
LRRK2 facilitates tau phosphorylation through strong interaction with tau and cdk5
-
Shanley MR, Hawley D, Leung S, et al. LRRK2 facilitates tau phosphorylation through strong interaction with tau and cdk5. Biochemistry. 2015;54:5198–5208.
-
(2015)
Biochemistry
, vol.54
, pp. 5198-5208
-
-
Shanley, M.R.1
Hawley, D.2
Leung, S.3
-
90
-
-
84930155887
-
LRRK2 promotes tau accumulation, aggregation and release
-
Guerreiro PS, Gerhardt E, Lopes Da Fonseca T, et al. LRRK2 promotes tau accumulation, aggregation and release. Mol Neurobiol. 2016;53:3124–3135.
-
(2016)
Mol Neurobiol
, vol.53
, pp. 3124-3135
-
-
Guerreiro, P.S.1
Gerhardt, E.2
Lopes Da Fonseca, T.3
-
91
-
-
84940421908
-
Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate
-
Krumova P, Reyniers L, Meyer M, et al. Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate. Faseb J. 2015;29:2980–2992.
-
(2015)
Faseb J
, vol.29
, pp. 2980-2992
-
-
Krumova, P.1
Reyniers, L.2
Meyer, M.3
-
92
-
-
84891923527
-
A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation
-
Law BM, Spain VA, Leinster VH, et al. A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation. J Biol Chem. 2014;289:895–908.
-
(2014)
J Biol Chem
, vol.289
, pp. 895-908
-
-
Law, B.M.1
Spain, V.A.2
Leinster, V.H.3
-
93
-
-
84949650757
-
Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-kappaB p50 signaling in cultured microglia cells
-
Russo I, Berti G, Plotegher N, et al. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-kappaB p50 signaling in cultured microglia cells. J Neuroinflammation. 2015;12:230.
-
(2015)
J Neuroinflammation
, vol.12
, pp. 230
-
-
Russo, I.1
Berti, G.2
Plotegher, N.3
-
94
-
-
78149473340
-
LRRK2 is involved in the IFN-gamma response and host response to pathogens
-
Gardet A, Benita Y, Li C, et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol. 2010;185:5577–5585.
-
(2010)
J Immunol
, vol.185
, pp. 5577-5585
-
-
Gardet, A.1
Benita, Y.2
Li, C.3
-
95
-
-
84902360686
-
Interferon-gamma induces leucine-rich repeat kinase LRRK2 via extracellular signal-regulated kinase ERK5 in macrophages
-
Kuss M, Adamopoulou E, Kahle PJ. Interferon-gamma induces leucine-rich repeat kinase LRRK2 via extracellular signal-regulated kinase ERK5 in macrophages. J Neurochem. 2014;129:980–987.
-
(2014)
J Neurochem
, vol.129
, pp. 980-987
-
-
Kuss, M.1
Adamopoulou, E.2
Kahle, P.J.3
-
96
-
-
85018214550
-
The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins
-
Moehle MS, Daher JP, Hull TD, et al. The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins. Hum Mol Genet. 2015;24:4250–4267.
-
(2015)
Hum Mol Genet
, vol.24
, pp. 4250-4267
-
-
Moehle, M.S.1
Daher, J.P.2
Hull, T.D.3
-
97
-
-
84862497413
-
The kappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during toll-like receptor signaling
-
Dzamko N, Inesta-Vaquera F, Zhang J, et al. The kappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during toll-like receptor signaling. Plos One. 2012;7:e39132.
-
(2012)
Plos One
, vol.7
, pp. e39132
-
-
Dzamko, N.1
Inesta-Vaquera, F.2
Zhang, J.3
-
98
-
-
84858620880
-
Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity
-
Gillardon F, Schmid R, Draheim H. Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience. 2012;208:41–48.
-
(2012)
Neuroscience
, vol.208
, pp. 41-48
-
-
Gillardon, F.1
Schmid, R.2
Draheim, H.3
-
99
-
-
84856632181
-
LRRK2 inhibition attenuates microglial inflammatory responses
-
Moehle MS, Webber PJ, Tse T, et al. LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci. 2012;32:1602–1611.
-
(2012)
J Neurosci
, vol.32
, pp. 1602-1611
-
-
Moehle, M.S.1
Webber, P.J.2
Tse, T.3
-
100
-
-
84969921143
-
Inflammatory profile in LRRK2-associated prodromal and clinical PD
-
Brockmann K, Apel A, Schulte C, et al. Inflammatory profile in LRRK2-associated prodromal and clinical PD. J Neuroinflammation. 2016;13:122.• An interesting report comparing prodromal and clinical PD, which also shows the widening scope of current LRRK2 research.
-
(2016)
J Neuroinflammation
, vol.13
, pp. 122
-
-
Brockmann, K.1
Apel, A.2
Schulte, C.3
-
101
-
-
80054977424
-
Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons
-
Ramsden N, Perrin J, Ren Z, et al. Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons. ACS Chem Biol. 2011;6:1021–1028.
-
(2011)
ACS Chem Biol
, vol.6
, pp. 1021-1028
-
-
Ramsden, N.1
Perrin, J.2
Ren, Z.3
-
102
-
-
84893877488
-
Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1
-
Luerman GC, Nguyen C, Samaroo H, et al. Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem. 2014;128:561–576.•• Inhibitors are widely used in current research; this increases awareness about drugs’ off-target effects. This is highlighted as LRRK2-IN-1 was a commonly employed LRRK2 inhibitor until its off-target effects were reported.
-
(2014)
J Neurochem
, vol.128
, pp. 561-576
-
-
Luerman, G.C.1
Nguyen, C.2
Samaroo, H.3
-
103
-
-
33846562487
-
Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity
-
West AB, Moore DJ, Choi C, et al. Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet. 2007;16:223–232.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 223-232
-
-
West, A.B.1
Moore, D.J.2
Choi, C.3
-
104
-
-
20444489689
-
Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations
-
Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease:clinical manifestations. Mov Disord. 2005;20(Suppl 11):S11–6.
-
(2005)
Mov Disord
, vol.20
, pp. S11-S16
-
-
Jankovic, J.1
-
105
-
-
34248222587
-
Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease
-
Muller T, Russ H. Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin Pharmacother. 2006;7:1715–1730.
-
(2006)
Expert Opin Pharmacother
, vol.7
, pp. 1715-1730
-
-
Muller, T.1
Russ, H.2
|