메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

MTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1

Author keywords

[No Author keywords available]

Indexed keywords

BECLIN 1; LEUCINE RICH REPEAT KINASE 2; MAP1LC3A PROTEIN, HUMAN; MICROTUBULE ASSOCIATED PROTEIN; PROTEIN KINASE INHIBITOR; SERINE THREONINE PROTEIN KINASE ULK1; TARGET OF RAPAMYCIN KINASE;

EID: 84991112144     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep35106     Document Type: Article
Times cited : (71)

References (61)
  • 1
    • 85027920043 scopus 로고    scopus 로고
    • Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance
    • Hernandez, D. G., Reed, X., Singleton, A. B. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem, doi: 10. 1111/jnc. 13593 (2016).
    • (2016) J Neurochem
    • Hernandez, D.G.1    Reed, X.2    Singleton, A.B.3
  • 2
    • 8844266996 scopus 로고    scopus 로고
    • Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease
    • Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595-600, doi: 10. 1016/j. neuron. 2004. 10. 023 (2004).
    • (2004) Neuron , vol.44 , pp. 595-600
    • Paisan-Ruiz, C.1
  • 3
    • 84873453232 scopus 로고    scopus 로고
    • The genetics of Parkinson's disease: Progress and therapeutic implications
    • Singleton, A. B., Farrer, M. J., Bonifati, V. The genetics of Parkinson's disease: progress and therapeutic implications. Mov Disord 28, 14-23, doi: 10. 1002/mds. 25249 (2013).
    • (2013) Mov Disord , vol.28 , pp. 14-23
    • Singleton, A.B.1    Farrer, M.J.2    Bonifati, V.3
  • 4
    • 8844233579 scopus 로고    scopus 로고
    • Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology
    • Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607, doi: 10. 1016/j. neuron. 2004. 11. 005 (2004).
    • (2004) Neuron , vol.44 , pp. 601-607
    • Zimprich, A.1
  • 5
    • 84939599004 scopus 로고    scopus 로고
    • Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease
    • Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 46, 989-993, doi: 10. 1038/ng. 3043 (2014).
    • (2014) Nat Genet , vol.46 , pp. 989-993
    • Nalls, M.A.1
  • 6
    • 84868336049 scopus 로고    scopus 로고
    • Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease
    • Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119-124, doi: 10. 1038/nature11582 (2012).
    • (2012) Nature , vol.491 , pp. 119-124
    • Jostins, L.1
  • 7
    • 84999232865 scopus 로고    scopus 로고
    • A missense LRRK2 variant is a risk factor for excessive inflammatory responses in leprosy
    • Fava, V. M. et al. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. Plos Negl Trop Dis 10, e0004412, doi: 10. 1371/journal. pntd. 0004412 (2016).
    • (2016) Plos Negl Trop Dis , vol.10 , pp. e0004412
    • Fava, V.M.1
  • 8
    • 74049127960 scopus 로고    scopus 로고
    • Genomewide association study of leprosy
    • Zhang, F. R. et al. Genomewide association study of leprosy. N Engl J Med 361, 2609-2618, doi: 10. 1056/NEJMoa0903753 (2009).
    • (2009) N Engl J Med , vol.361 , pp. 2609-2618
    • Zhang, F.R.1
  • 9
    • 84859929853 scopus 로고    scopus 로고
    • The LRRK2 G2019S mutation is associated with Parkinson disease and concomitant non-skin cancers
    • Inzelberg, R. et al. The LRRK2 G2019S mutation is associated with Parkinson disease and concomitant non-skin cancers. Neurology 78, 781-786, doi: 10. 1212/WNL. 0b013e318249f673 (2012).
    • (2012) Neurology , vol.78 , pp. 781-786
    • Inzelberg, R.1
  • 10
    • 84921044518 scopus 로고    scopus 로고
    • Higher frequency of certain cancers in LRRK2 G2019S mutation carriers with Parkinson disease: A pooled analysis
    • Agalliu, I. et al. Higher frequency of certain cancers in LRRK2 G2019S mutation carriers with Parkinson disease: a pooled analysis. JAMA Neurol 72, 58-65, doi: 10. 1001/jamaneurol. 2014. 1973 (2015).
    • (2015) JAMA Neurol , vol.72 , pp. 58-65
    • Agalliu, I.1
  • 11
    • 84874541806 scopus 로고    scopus 로고
    • GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2
    • Biosa, A. et al. GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2. Hum Mol Genet 22, 1140-1156, doi: 10. 1093/hmg/dds522 (2013).
    • (2013) Hum Mol Genet , vol.22 , pp. 1140-1156
    • Biosa, A.1
  • 12
    • 84860389765 scopus 로고    scopus 로고
    • Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTPbinding activities
    • Webber, P. J. et al. Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTPbinding activities. J Mol Biol 412, 94-110, doi: 10. 1016/j. jmb. 2011. 07. 033 (2011).
    • (2011) J Mol Biol , vol.412 , pp. 94-110
    • Webber, P.J.1
  • 13
    • 84884819157 scopus 로고    scopus 로고
    • Autophagosome formation - The role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage
    • Wirth, M., Joachim, J., Tooze, S. A. Autophagosome formation-the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol 23, 301-309, doi: 10. 1016/j. semcancer. 2013. 05. 007 (2013).
    • (2013) Semin Cancer Biol , vol.23 , pp. 301-309
    • Wirth, M.1    Joachim, J.2    Tooze, S.A.3
  • 14
    • 39549117093 scopus 로고    scopus 로고
    • Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells
    • Plowey, E. D., Cherra, S. J. 3rd., Liu, Y. J., Chu, C. T. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105, 1048-1056, doi: 10. 1111/j. 1471-4159. 2008. 05217. x (2008).
    • (2008) J Neurochem , vol.105 , pp. 1048-1056
    • Plowey, E.D.1    Cherra, S.J.2    Liu, Y.J.3    Chu, C.T.4
  • 15
    • 70349991886 scopus 로고    scopus 로고
    • LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model
    • Alegre-Abarrategui, J. et al. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18, 4022-4034, doi: 10. 1093/hmg/ddp346 (2009).
    • (2009) Hum Mol Genet , vol.18 , pp. 4022-4034
    • Alegre-Abarrategui, J.1
  • 16
    • 84902163498 scopus 로고    scopus 로고
    • Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy
    • Schapansky, J., Nardozzi, J. D., Felizia, F., LaVoie, M. J. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet 23, 4201-4214, doi: 10. 1093/hmg/ddu138 (2014).
    • (2014) Hum Mol Genet , vol.23 , pp. 4201-4214
    • Schapansky, J.1    Nardozzi, J.D.2    Felizia, F.3    LaVoie, M.J.4
  • 17
    • 84862907943 scopus 로고    scopus 로고
    • Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP
    • Gomez-Suaga, P. et al. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 21, 511-525, doi: 10. 1093/hmg/ddr481 (2012).
    • (2012) Hum Mol Genet , vol.21 , pp. 511-525
    • Gomez-Suaga, P.1
  • 18
    • 84882754673 scopus 로고    scopus 로고
    • Inhibition of LRRK2 kinase activity stimulates macroautophagy
    • Manzoni, C. et al. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta 1833, 2900-2910, doi: 10. 1016/j. bbamcr. 2013. 07. 020 (2013).
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 2900-2910
    • Manzoni, C.1
  • 19
    • 84906850990 scopus 로고    scopus 로고
    • The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: Involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling
    • Saez-Atienzar, S. et al. The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death Dis 5, e1368, doi: 10. 1038/cddis. 2014. 320 (2014).
    • (2014) Cell Death Dis , vol.5 , pp. e1368
    • Saez-Atienzar, S.1
  • 20
    • 84872362045 scopus 로고    scopus 로고
    • The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway
    • Bravo-San Pedro, J. M. et al. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci 70, 121-136, doi: 10. 1007/s00018-012-1061-y (2013).
    • (2013) Cell Mol Life Sci , vol.70 , pp. 121-136
    • Bravo-San Pedro, J.M.1
  • 21
    • 84888852586 scopus 로고    scopus 로고
    • Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation
    • Manzoni, C. et al. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochem Biophys Res Commun 441, 862-866, doi: 10. 1016/j. bbrc. 2013. 10. 159 (2013).
    • (2013) Biochem Biophys Res Commun , vol.441 , pp. 862-866
    • Manzoni, C.1
  • 22
    • 84860510280 scopus 로고    scopus 로고
    • Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease
    • Sanchez-Danes, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Mol Med 4, 380-395, doi: 10. 1002/emmm. 201200215 (2012).
    • (2012) EMBO Mol Med , vol.4 , pp. 380-395
    • Sanchez-Danes, A.1
  • 23
    • 84863294414 scopus 로고    scopus 로고
    • Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway
    • Tong, Y. et al. Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 7, 2, doi: 10. 1186/1750-1326-7-2 (2012).
    • (2012) Mol Neurodegener , vol.7 , pp. 2
    • Tong, Y.1
  • 24
    • 84875640261 scopus 로고    scopus 로고
    • Interplay of LRRK2 with chaperone-mediated autophagy
    • Orenstein, S. J. et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16, 394-406, doi: 10. 1038/nn. 3350 (2013).
    • (2013) Nat Neurosci , vol.16 , pp. 394-406
    • Orenstein, S.J.1
  • 25
    • 84961311181 scopus 로고    scopus 로고
    • LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism
    • Arranz, A. M. et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci 128, 541-552, doi: 10. 1242/jcs. 158196 (2015).
    • (2015) J Cell Sci , vol.128 , pp. 541-552
    • Arranz, A.M.1
  • 26
    • 84954386359 scopus 로고    scopus 로고
    • LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate
    • Belluzzi, E. et al. LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Mol Neurodegener 11, 1, doi: 10. 1186/s13024-015-0066-z (2016).
    • (2016) Mol Neurodegener , vol.11 , pp. 1
    • Belluzzi, E.1
  • 27
    • 84923380012 scopus 로고    scopus 로고
    • Phosphorylation of LRRK2 by casein kinase 1alpha regulates trans-Golgi clustering via differential interaction with ARHGEF7
    • Chia, R. et al. Phosphorylation of LRRK2 by casein kinase 1alpha regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nat Commun 5, 5827, doi: 10. 1038/ncomms6827 (2014).
    • (2014) Nat Commun , vol.5 , pp. 5827
    • Chia, R.1
  • 28
    • 84866510734 scopus 로고    scopus 로고
    • LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis
    • Matta, S. et al. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 75, 1008-1021, doi: 10. 1016/j. neuron. 2012. 08. 022 (2012).
    • (2012) Neuron , vol.75 , pp. 1008-1021
    • Matta, S.1
  • 29
    • 84958020018 scopus 로고    scopus 로고
    • Autophagy and alpha-Synuclein: Relevance to Parkinson's disease and related synucleopathies
    • Xilouri, M., Brekk, O. R., Stefanis, L. Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies. Mov Disord 31, 178-192, doi: 10. 1002/mds. 26477 (2016).
    • (2016) Mov Disord , vol.31 , pp. 178-192
    • Xilouri, M.1    Brekk, O.R.2    Stefanis, L.3
  • 30
    • 84942441789 scopus 로고    scopus 로고
    • Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression
    • Henry, A. G. et al. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet 24, 6013-6028, doi: 10. 1093/hmg/ddv314 (2015).
    • (2015) Hum Mol Genet , vol.24 , pp. 6013-6028
    • Henry, A.G.1
  • 31
    • 84856632181 scopus 로고    scopus 로고
    • LRRK2 inhibition attenuates microglial inflammatory responses
    • Moehle, M. S. et al. LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32, 1602-1611, doi: 10. 1523/JNEUROSCI. 5601-11. 2012 (2012).
    • (2012) J Neurosci , vol.32 , pp. 1602-1611
    • Moehle, M.S.1
  • 32
    • 79952918505 scopus 로고    scopus 로고
    • Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2
    • Deng, X. et al. Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nat Chem Biol 7, 203-205, doi: 10. 1038/nchembio. 538 (2011).
    • (2011) Nat Chem Biol , vol.7 , pp. 203-205
    • Deng, X.1
  • 33
    • 84865149238 scopus 로고    scopus 로고
    • GSK2578215A; A potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor
    • Reith, A. D. et al. GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22, 5625-5629, doi: 10. 1016/j. bmcl. 2012. 06. 104 (2012).
    • (2012) Bioorg Med Chem Lett , vol.22 , pp. 5625-5629
    • Reith, A.D.1
  • 34
    • 85013763791 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
    • Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222, doi: 10. 1080/15548627. 2015. 1100356 (2016).
    • (2016) Autophagy , vol.12 , pp. 1-222
    • Klionsky, D.J.1
  • 35
    • 84929193242 scopus 로고    scopus 로고
    • Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification
    • Mauvezin, C., Nagy, P., Juhasz, G., Neufeld, T. P. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun 6, 7007, doi: 10. 1038/ncomms8007 (2015).
    • (2015) Nat Commun , vol.6 , pp. 7007
    • Mauvezin, C.1    Nagy, P.2    Juhasz, G.3    Neufeld, T.P.4
  • 36
    • 84954597402 scopus 로고    scopus 로고
    • Assessing mammalian autophagy
    • Tooze, S. A. et al. Assessing mammalian autophagy. Methods Mol Biol 1270, 155-165, doi: 10. 1007/978-1-4939-2309-0-12 (2015).
    • (2015) Methods Mol Biol , vol.1270 , pp. 155-165
    • Tooze, S.A.1
  • 37
    • 84962802365 scopus 로고    scopus 로고
    • Regulation of autophagy by signaling through the Atg1/ULK1 Complex
    • Papinski, D., Kraft, C. Regulation of Autophagy By Signaling Through the Atg1/ULK1 Complex. J Mol Biol, doi: 10. 1016/j. jmb. 2016. 03. 030 (2016).
    • (2016) J Mol Biol
    • Papinski, D.1    Kraft, C.2
  • 38
    • 84865712631 scopus 로고    scopus 로고
    • Modulating macroautophagy: A neuronal perspective
    • Johnson, C. W., Melia, T. J., Yamamoto, A. Modulating macroautophagy: a neuronal perspective. Future Med Chem 4, 1715-1731, doi: 10. 4155/fmc. 12. 112 (2012).
    • (2012) Future Med Chem , vol.4 , pp. 1715-1731
    • Johnson, C.W.1    Melia, T.J.2    Yamamoto, A.3
  • 39
    • 84856070973 scopus 로고    scopus 로고
    • LRRK2 and human disease: A complicated question or a question of complexes?
    • Lewis, P. A., Manzoni, C. LRRK2 and human disease: a complicated question or a question of complexes? Sci Signal 5, 2, doi: 10. 1126/scisignal. 2002680 (2012).
    • (2012) Sci Signal , vol.5 , pp. 2
    • Lewis, P.A.1    Manzoni, C.2
  • 40
    • 84961944001 scopus 로고    scopus 로고
    • Digesting the expanding mechanisms of autophagy
    • Ktistakis, N. T., Tooze, S. A. Digesting the Expanding Mechanisms of Autophagy. Trends Cell Biol, doi: 10. 1016/j. tcb. 2016. 03. 006 (2016).
    • (2016) Trends Cell Biol
    • Ktistakis, N.T.1    Tooze, S.A.2
  • 41
    • 84856800302 scopus 로고    scopus 로고
    • Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks
    • Alers, S., Loffler, A. S., Wesselborg, S., Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32, 2-11, doi: 10. 1128/MCB. 06159-11 (2012).
    • (2012) Mol Cell Biol , vol.32 , pp. 2-11
    • Alers, S.1    Loffler, A.S.2    Wesselborg, S.3    Stork, B.4
  • 42
    • 84877323647 scopus 로고    scopus 로고
    • Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2
    • McAlpine, F., Williamson, L. E., Tooze, S. A., Chan, E. Y. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9, 361-373, doi: 10. 4161/auto. 23066 (2013).
    • (2013) Autophagy , vol.9 , pp. 361-373
    • McAlpine, F.1    Williamson, L.E.2    Tooze, S.A.3    Chan, E.Y.4
  • 43
    • 84355162283 scopus 로고    scopus 로고
    • Canonical and non-canonical autophagy: Variations on a common theme of selfeating?
    • Codogno, P., Mehrpour, M., Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of selfeating? Nat Rev Mol Cell Biol 13, 7-12, doi: 10. 1038/nrm3249 (2012).
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 7-12
    • Codogno, P.1    Mehrpour, M.2    Proikas-Cezanne, T.3
  • 44
    • 82855170845 scopus 로고    scopus 로고
    • Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation
    • Mauthe, M. et al. Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy 7, 1448-1461 (2011).
    • (2011) Autophagy , vol.7 , pp. 1448-1461
    • Mauthe, M.1
  • 45
    • 69249153394 scopus 로고    scopus 로고
    • A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1
    • Wang, J. et al. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 284, 21412-21424, doi: 10. 1074/jbc. M109. 026013 (2009).
    • (2009) J Biol Chem , vol.284 , pp. 21412-21424
    • Wang, J.1
  • 46
    • 79960585318 scopus 로고    scopus 로고
    • Ammonia-induced autophagy is independent of ULK1/ULK2 kinases
    • Cheong, H., Lindsten, T., Wu, J., Lu, C., Thompson, C. B. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA 108, 11121-11126, doi: 10. 1073/pnas. 1107969108 (2011).
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 11121-11126
    • Cheong, H.1    Lindsten, T.2    Wu, J.3    Lu, C.4    Thompson, C.B.5
  • 47
    • 82855170846 scopus 로고    scopus 로고
    • Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction
    • Alers, S. et al. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy 7, 1423-1433 (2011).
    • (2011) Autophagy , vol.7 , pp. 1423-1433
    • Alers, S.1
  • 48
    • 34248994604 scopus 로고    scopus 로고
    • Small molecules enhance autophagy and reduce toxicity in Huntington's disease models
    • Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 3, 331-338, doi: 10. 1038/nchembio883 (2007).
    • (2007) Nat Chem Biol , vol.3 , pp. 331-338
    • Sarkar, S.1
  • 49
    • 84912122968 scopus 로고    scopus 로고
    • Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-induced mitochondrial depolarization and autophagy
    • Su, Y. C., Guo, X., Qi, X. Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-induced mitochondrial depolarization and autophagy. Biochim Biophys Acta 1852, 12-21, doi: 10. 1016/j. bbadis. 2014. 11. 009 (2015).
    • (2015) Biochim Biophys Acta , vol.1852 , pp. 12-21
    • Su, Y.C.1    Guo, X.2    Qi, X.3
  • 50
    • 85117876522 scopus 로고    scopus 로고
    • Regulation of the autophagic bcl-2/beclin 1 interaction
    • Decuypere, J. P., Parys, J. B., Bultynck, G. Regulation of the autophagic bcl-2/beclin 1 interaction. Cells 1, 284-312, doi: 10. 3390/cells1030284 (2012).
    • (2012) Cells , vol.1 , pp. 284-312
    • Decuypere, J.P.1    Parys, J.B.2    Bultynck, G.3
  • 51
    • 85003048223 scopus 로고    scopus 로고
    • The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation
    • Wei, Y. et al. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife 4, doi: 10. 7554/eLife. 05289 (2015).
    • (2015) Elife , vol.4
    • Wei, Y.1
  • 52
    • 65649142038 scopus 로고    scopus 로고
    • The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro
    • Gloeckner, C. J., Schumacher, A., Boldt, K., Ueffing, M. The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109, 959-968, doi: 10. 1111/j. 1471-4159. 2009. 06024. x (2009).
    • (2009) J Neurochem , vol.109 , pp. 959-968
    • Gloeckner, C.J.1    Schumacher, A.2    Boldt, K.3    Ueffing, M.4
  • 53
    • 77953543377 scopus 로고    scopus 로고
    • The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond
    • Funderburk, S. F., Wang, Q. J., Yue, Z. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol 20, 355-362, doi: 10. 1016/j. tcb. 2010. 03. 002 (2010).
    • (2010) Trends Cell Biol , vol.20 , pp. 355-362
    • Funderburk, S.F.1    Wang, Q.J.2    Yue, Z.3
  • 54
    • 64049086758 scopus 로고    scopus 로고
    • Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
    • Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11, 385-396, doi: 10. 1038/ncb1846 (2009).
    • (2009) Nat Cell Biol , vol.11 , pp. 385-396
    • Matsunaga, K.1
  • 55
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11, 468-476, doi: 10. 1038/ncb1854 (2009).
    • (2009) Nat Cell Biol , vol.11 , pp. 468-476
    • Zhong, Y.1
  • 56
    • 67650270918 scopus 로고    scopus 로고
    • Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL
    • Zalckvar, E., Berissi, H., Eisenstein, M., Kimchi, A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720-722 (2009).
    • (2009) Autophagy , vol.5 , pp. 720-722
    • Zalckvar, E.1    Berissi, H.2    Eisenstein, M.3    Kimchi, A.4
  • 57
    • 61849102389 scopus 로고    scopus 로고
    • DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy
    • Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10, 285-292, doi: 10. 1038/embor. 2008. 246 (2009).
    • (2009) EMBO Rep , vol.10 , pp. 285-292
    • Zalckvar, E.1
  • 58
    • 84974784616 scopus 로고    scopus 로고
    • LRRK2 autophosphorylation enhances its GTPase activity
    • Liu, Z., Mobley, J. A., DeLucas, L. J., Kahn, R. A., West, A. B. LRRK2 autophosphorylation enhances its GTPase activity. FASEB J 30, 336-347, doi: 10. 1096/fj. 15-277095 (2016).
    • (2016) FASEB J , vol.30 , pp. 336-347
    • Liu, Z.1    Mobley, J.A.2    DeLucas, L.J.3    Kahn, R.A.4    West, A.B.5
  • 59
    • 84938203296 scopus 로고    scopus 로고
    • Cellular processes associated with LRRK2 function and dysfunction
    • Wallings, R., Manzoni, C., Bandopadhyay, R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J 282, 2806-2826, doi: 10. 1111/febs. 13305 (2015).
    • (2015) FEBS J , vol.282 , pp. 2806-2826
    • Wallings, R.1    Manzoni, C.2    Bandopadhyay, R.3
  • 60
    • 84926486250 scopus 로고    scopus 로고
    • Computational analysis of the LRRK2 interactome
    • Manzoni, C., Denny, P., Lovering, R. C., Lewis, P. A. Computational analysis of the LRRK2 interactome. PeerJ 3, e778, doi: 10. 7717/peerj. 778 (2015).
    • (2015) Peer J , vol.3 , pp. e778
    • Manzoni, C.1    Denny, P.2    Lovering, R.C.3    Lewis, P.A.4
  • 61
    • 84875774701 scopus 로고    scopus 로고
    • Isolation and culture of mouse cortical astrocytes
    • Schildge, S., Bohrer, C., Beck, K., Schachtrup, C. Isolation and culture of mouse cortical astrocytes. J Vis Exp, doi: 10. 3791/50079 (2013).
    • (2013) J Vis Exp
    • Schildge, S.1    Bohrer, C.2    Beck, K.3    Schachtrup, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.