메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast

Author keywords

Fed batch cultivation; Metabolic engineering; Mevalonate pathway; Microbial cell factories; Overflow metabolism; Saccharomyces cerevisiae; Sesquiterpene; Synthetic biology; Transcription regulation

Indexed keywords

CARBON; CELL ENGINEERING; INDUSTRIAL CHEMICALS; METABOLISM; PHYSIOLOGY; PRODUCTIVITY; TRANSCRIPTION; YEAST;

EID: 85014725396     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-0728-x     Document Type: Article
Times cited : (53)

References (80)
  • 1
    • 84960460639 scopus 로고    scopus 로고
    • Engineering cellular metabolism
    • 1:CAS:528:DC%2BC28XktFGqu7o%3D
    • Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164(6):1185-97.
    • (2016) Cell , vol.164 , Issue.6 , pp. 1185-1197
    • Nielsen, J.1    Keasling, J.D.2
  • 2
    • 84908529904 scopus 로고    scopus 로고
    • Metabolic engineering for the production of hydrocarbon fuels
    • 1:CAS:528:DC%2BC2cXhslags7fK
    • Lee SY, Kim HM, Cheon S. Metabolic engineering for the production of hydrocarbon fuels. Curr Opin Biotechnol. 2015;33:15-22.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 15-22
    • Lee, S.Y.1    Kim, H.M.2    Cheon, S.3
  • 3
    • 84925494179 scopus 로고    scopus 로고
    • Metabolic engineering of strains: From industrial-scale to lab-scale chemical production
    • 1:CAS:528:DC%2BC2cXhvFKmtLjM
    • Sun J, Alper HS. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. J Ind Microbiol Biotechnol. 2015;42(3):423-36.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , Issue.3 , pp. 423-436
    • Sun, J.1    Alper, H.S.2
  • 5
    • 33744512606 scopus 로고    scopus 로고
    • Directed evolution of enzymes and biosynthetic pathways
    • 1:CAS:528:DC%2BD28Xltlelt7Y%3D
    • Johannes TW, Zhao H. Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol. 2006;9(3):261-7.
    • (2006) Curr Opin Microbiol , vol.9 , Issue.3 , pp. 261-267
    • Johannes, T.W.1    Zhao, H.2
  • 6
    • 84929429110 scopus 로고    scopus 로고
    • Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation
    • Peng B, Huang S, Liu T, Geng A. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb Cell Fact. 2015;14:70.
    • (2015) Microb Cell Fact , vol.14 , pp. 70
    • Peng, B.1    Huang, S.2    Liu, T.3    Geng, A.4
  • 7
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • 1:CAS:528:DC%2BC38XhsFWktbrJ
    • Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012;40(18):e142.
    • (2012) Nucleic Acids Res , vol.40 , Issue.18 , pp. e142
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 8
    • 24644515752 scopus 로고    scopus 로고
    • Tuning genetic control through promoter engineering
    • 1:CAS:528:DC%2BD2MXhtVWktLnI
    • Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA. 2005;102(36):12678-83.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.36 , pp. 12678-12683
    • Alper, H.1    Fischer, C.2    Nevoigt, E.3    Stephanopoulos, G.4
  • 9
    • 77952888809 scopus 로고    scopus 로고
    • Toward design-based engineering of industrial microbes
    • 1:CAS:528:DC%2BC3cXntVSlurw%3D
    • Tyo KE, Kocharin K, Nielsen J. Toward design-based engineering of industrial microbes. Curr Opin Microbiol. 2010;13(3):255-62.
    • (2010) Curr Opin Microbiol , vol.13 , Issue.3 , pp. 255-262
    • Tyo, K.E.1    Kocharin, K.2    Nielsen, J.3
  • 10
    • 33747078696 scopus 로고    scopus 로고
    • Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes
    • 1:CAS:528:DC%2BD28XnvVygt7s%3D
    • Pfleger BF, Pitera DJ, Smolke CD, Keasling JD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol. 2006;24(8):1027-32.
    • (2006) Nat Biotechnol , vol.24 , Issue.8 , pp. 1027-1032
    • Pfleger, B.F.1    Pitera, D.J.2    Smolke, C.D.3    Keasling, J.D.4
  • 11
    • 38149142675 scopus 로고    scopus 로고
    • Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae
    • Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol. 2007;1:18.
    • (2007) BMC Syst Biol , vol.1 , pp. 18
    • Cakir, T.1    Kirdar, B.2    Onsan, Z.I.3    Ulgen, K.O.4    Nielsen, J.5
  • 14
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXhsFyitrg%3D
    • Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:117.
    • (2012) Microb Cell Fact , vol.11 , pp. 117
    • Scalcinati, G.1    Partow, S.2    Siewers, V.3    Schalk, M.4    Daviet, L.5    Nielsen, J.6
  • 15
    • 84948065021 scopus 로고    scopus 로고
    • Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed
    • 1:CAS:528:DC%2BC2MXhsVagtL%2FF
    • Tippmann S, Scalcinati G, Siewers V, Nielsen J. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng. 2016;113(1):72-81.
    • (2016) Biotechnol Bioeng , vol.113 , Issue.1 , pp. 72-81
    • Tippmann, S.1    Scalcinati, G.2    Siewers, V.3    Nielsen, J.4
  • 16
    • 84856389651 scopus 로고    scopus 로고
    • Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
    • 1:CAS:528:DC%2BC38XhsFaisLw%3D
    • Westfall P, Pitera D, Lenihan J, Eng D, Woolard F, Regentin R. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA. 2012;109:E111-8.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E111-E118
    • Westfall, P.1    Pitera, D.2    Lenihan, J.3    Eng, D.4    Woolard, F.5    Regentin, R.6
  • 18
    • 62849084758 scopus 로고    scopus 로고
    • Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli
    • 1:CAS:528:DC%2BD1MXjvVWjtr8%3D
    • Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J Biotechnol. 2009;140(3-4):218-26.
    • (2009) J Biotechnol , vol.140 , Issue.3-4 , pp. 218-226
    • Yoon, S.H.1    Lee, S.H.2    Das, A.3    Ryu, H.K.4    Jang, H.J.5    Kim, J.Y.6    Oh, D.K.7    Keasling, J.D.8    Kim, S.W.9
  • 20
    • 85009121364 scopus 로고    scopus 로고
    • Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria
    • Choi SY, Lee HJ, Choi J, Kim J, Sim SJ, Um Y, Kim Y, Lee TS, Keasling JD, Woo HM. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnol Biofuels. 2016;9(1):202.
    • (2016) Biotechnol Biofuels , vol.9 , Issue.1 , pp. 202
    • Choi, S.Y.1    Lee, H.J.2    Choi, J.3    Kim, J.4    Sim, S.J.5    Um, Y.6    Kim, Y.7    Lee, T.S.8    Keasling, J.D.9    Woo, H.M.10
  • 21
    • 79952114061 scopus 로고    scopus 로고
    • Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3cXhsVGjsr%2FP
    • Chen F, Zhou J, Shi Z, Liu L, Du G. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Wei sheng wu xue bao=Acta Microbiol Sinica. 2010;50(9):1172-9.
    • (2010) Wei Sheng Wu Xue Bao=Acta Microbiol Sinica , vol.50 , Issue.9 , pp. 1172-1179
    • Chen, F.1    Zhou, J.2    Shi, Z.3    Liu, L.4    Du, G.5
  • 23
    • 85008145461 scopus 로고    scopus 로고
    • A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC28XitFWnt7nN
    • Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metab Eng. 2017;39:209-19.
    • (2017) Metab Eng , vol.39 , pp. 209-219
    • Peng, B.1    Plan, M.R.2    Chrysanthopoulos, P.3    Hodson, M.P.4    Nielsen, L.K.5    Vickers, C.E.6
  • 24
    • 84888839377 scopus 로고    scopus 로고
    • Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXhsl2js7%2FP
    • Liu J, Zhang W, Du G, Chen J, Zhou J. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol. 2013;168(4):446-51.
    • (2013) J Biotechnol , vol.168 , Issue.4 , pp. 446-451
    • Liu, J.1    Zhang, W.2    Du, G.3    Chen, J.4    Zhou, J.5
  • 25
    • 0031962865 scopus 로고    scopus 로고
    • Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast
    • 1:CAS:528:DyaK1cXhtVantbY%3D
    • Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol. 1998;49(1):66-71.
    • (1998) Appl Microbiol Biotechnol , vol.49 , Issue.1 , pp. 66-71
    • Polakowski, T.1    Stahl, U.2    Lang, C.3
  • 26
    • 38449112770 scopus 로고    scopus 로고
    • Production of plant sesquiterpenes in Saccharomyces cerevisiae: Effect of ERG9 repression on sesquiterpene biosynthesis
    • 1:CAS:528:DC%2BD1cXns1Wjug%3D%3D
    • Asadollahi MA, Maury J, Moller K, Nielsen KF, Schalk M, Clark A, Nielsen J. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng. 2008;99(3):666-77.
    • (2008) Biotechnol Bioeng , vol.99 , Issue.3 , pp. 666-677
    • Asadollahi, M.A.1    Maury, J.2    Moller, K.3    Nielsen, K.F.4    Schalk, M.5    Clark, A.6    Nielsen, J.7
  • 27
    • 84862827747 scopus 로고    scopus 로고
    • Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode
    • 1:CAS:528:DC%2BC38XisFyjurg%3D
    • Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng. 2012;14(2):91-103.
    • (2012) Metab Eng , vol.14 , Issue.2 , pp. 91-103
    • Scalcinati, G.1    Knuf, C.2    Partow, S.3    Chen, Y.4    Maury, J.5    Schalk, M.6    Daviet, L.7    Nielsen, J.8    Siewers, V.9
  • 28
    • 0012926979 scopus 로고    scopus 로고
    • Effect of specific growth rate on fermentative capacity of baker's yeast
    • Van Hoek P, Van Dijken JP, Pronk JT. Effect of specific growth rate on fermentative capacity of baker's yeast. Appl Environ Microbiol. 1998;64(11):4226-33.
    • (1998) Appl Environ Microbiol , vol.64 , Issue.11 , pp. 4226-4233
    • Van Hoek, P.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 29
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXhtFylsrnL
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2008;72(3):379-412.
    • (2008) Microbiol Mol Biol Rev , vol.72 , Issue.3 , pp. 379-412
    • Nevoigt, E.1
  • 30
    • 0035810693 scopus 로고    scopus 로고
    • The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium
    • Görgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng. 2001;73:238-45.
    • (2001) Biotechnol Bioeng , vol.73 , pp. 238-245
    • Görgens, J.F.1    Van Zyl, W.H.2    Knoetze, J.H.3    Hahn-Hägerdal, B.4
  • 31
    • 84961223765 scopus 로고    scopus 로고
    • Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications
    • 1:CAS:528:DC%2BC28XktVehsro%3D
    • Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34(8):652-64.
    • (2016) Trends Biotechnol , vol.34 , Issue.8 , pp. 652-664
    • Wu, G.1    Yan, Q.2    Jones, J.A.3    Tang, Y.J.4    Fong, S.S.5    Koffas, M.A.6
  • 32
    • 84875138991 scopus 로고    scopus 로고
    • Engineered quorum sensing using pheromone-mediated cell-to-cell communication in saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC38XhvVKmsb7L
    • Williams TC, Nielsen LK, Vickers CE. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in saccharomyces cerevisiae. ACS Synth Biol. 2013;2(3):136-49.
    • (2013) ACS Synth Biol , vol.2 , Issue.3 , pp. 136-149
    • Williams, T.C.1    Nielsen, L.K.2    Vickers, C.E.3
  • 33
    • 84933508907 scopus 로고    scopus 로고
    • Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: A comparison of yeast promoter activities
    • Peng B, Williams T, Henry M, Nielsen L, Vickers C. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities. Microb Cell Fact. 2015;14(1):91.
    • (2015) Microb Cell Fact , vol.14 , Issue.1 , pp. 91
    • Peng, B.1    Williams, T.2    Henry, M.3    Nielsen, L.4    Vickers, C.5
  • 34
    • 84876789665 scopus 로고    scopus 로고
    • Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
    • Osterlund T, Nookaew I, Bordel S, Nielsen J. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol. 2013;7:36.
    • (2013) BMC Syst Biol , vol.7 , pp. 36
    • Osterlund, T.1    Nookaew, I.2    Bordel, S.3    Nielsen, J.4
  • 35
    • 0037474301 scopus 로고    scopus 로고
    • The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur
    • 1:CAS:528:DC%2BD3sXmt1Gqtw%3D%3D
    • Boer VM, de Winde JH, Pronk JT, Piper MD. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem. 2003;278(5):3265-74.
    • (2003) J Biol Chem , vol.278 , Issue.5 , pp. 3265-3274
    • Boer, V.M.1    De Winde, J.H.2    Pronk, J.T.3    Piper, M.D.4
  • 36
    • 84862817382 scopus 로고    scopus 로고
    • Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC38XjvVWntrk%3D
    • Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH, Zhao H. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109(8):2082-92.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.8 , pp. 2082-2092
    • Sun, J.1    Shao, Z.2    Zhao, H.3    Nair, N.4    Wen, F.5    Xu, J.H.6    Zhao, H.7
  • 37
    • 84901815137 scopus 로고    scopus 로고
    • Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose
    • 1:CAS:528:DC%2BC2cXhtFansr3L
    • Cao L, Tang X, Zhang X, Zhang J, Tian X, Wang J, Xiong M, Xiao W. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab Eng. 2014;24:150-9.
    • (2014) Metab Eng , vol.24 , pp. 150-159
    • Cao, L.1    Tang, X.2    Zhang, X.3    Zhang, J.4    Tian, X.5    Wang, J.6    Xiong, M.7    Xiao, W.8
  • 38
    • 0023640630 scopus 로고
    • Yeast metallothionein and applications in biotechnology
    • 1:CAS:528:DyaL2sXmtlClt7c%3D
    • Butt TR, Ecker DJ. Yeast metallothionein and applications in biotechnology. Microbiol Rev. 1987;51(3):351-64.
    • (1987) Microbiol Rev , vol.51 , Issue.3 , pp. 351-364
    • Butt, T.R.1    Ecker, D.J.2
  • 39
    • 0023464759 scopus 로고
    • GAL1-GAL10 divergent promoter region of Saccharomyces cerevisiae contains negative control elements in addition to functionally separate and possibly overlapping upstream activating sequences
    • 1:CAS:528:DyaL1cXhvVWhsrw%3D
    • West RW Jr, Chen SM, Putz H, Butler G, Banerjee M. GAL1-GAL10 divergent promoter region of Saccharomyces cerevisiae contains negative control elements in addition to functionally separate and possibly overlapping upstream activating sequences. Genes Dev. 1987;1(10):1118-31.
    • (1987) Genes Dev , vol.1 , Issue.10 , pp. 1118-1131
    • West, R.W.1    Chen, S.M.2    Putz, H.3    Butler, G.4    Banerjee, M.5
  • 40
    • 18944370824 scopus 로고    scopus 로고
    • Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis
    • 1:CAS:528:DC%2BD2MXkslemsb4%3D
    • Lee KM, DaSilva NA. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast (Chichester, England). 2005;22(6):431-40.
    • (2005) Yeast (Chichester, England) , vol.22 , Issue.6 , pp. 431-440
    • Lee, K.M.1    DaSilva, N.A.2
  • 41
    • 78149328427 scopus 로고    scopus 로고
    • Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3cXhtlOhs7nI
    • Partow S, Siewers V, Bjorn S, Nielsen J, Maury J. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast (Chichester, England). 2010;27(11):955-64.
    • (2010) Yeast (Chichester, England) , vol.27 , Issue.11 , pp. 955-964
    • Partow, S.1    Siewers, V.2    Bjorn, S.3    Nielsen, J.4    Maury, J.5
  • 42
    • 84929155610 scopus 로고    scopus 로고
    • Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae
    • Williams TC, Espinosa MI, Nielsen LK, Vickers CE. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:43.
    • (2015) Microb Cell Fact , vol.14 , pp. 43
    • Williams, T.C.1    Espinosa, M.I.2    Nielsen, L.K.3    Vickers, C.E.4
  • 43
    • 84899021567 scopus 로고    scopus 로고
    • Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC2cXls1Ois7Y%3D
    • McIsaac RS, Gibney PA, Chandran SS, Benjamin KR, Botstein D. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Res. 2014;42(6):e48.
    • (2014) Nucleic Acids Res , vol.42 , Issue.6 , pp. e48
    • McIsaac, R.S.1    Gibney, P.A.2    Chandran, S.S.3    Benjamin, K.R.4    Botstein, D.5
  • 44
    • 77956676759 scopus 로고    scopus 로고
    • 23 yeast mutant and plasmid collections
    • 1:CAS:528:DyaK1cXjs1aku70%3D
    • Entian K-D, Kötter P. 23 yeast mutant and plasmid collections. Methods Microbiol. 1998;26:431-49.
    • (1998) Methods Microbiol , vol.26 , pp. 431-449
    • Entian, K.-D.1    Kötter, P.2
  • 45
    • 0026512939 scopus 로고
    • Multifunctional yeast high-copy-number shuttle vectors
    • 1:CAS:528:DyaK38XhvVyrs7s%3D
    • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992;110(1):119-22.
    • (1992) Gene , vol.110 , Issue.1 , pp. 119-122
    • Christianson, T.W.1    Sikorski, R.S.2    Dante, M.3    Shero, J.H.4    Hieter, P.5
  • 46
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • 1:CAS:528:DC%2BD2sXhvVyktb0%3D
    • Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng. 2007;9(2):160-8.
    • (2007) Metab Eng , vol.9 , Issue.2 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.K.4    Keasling, J.D.5
  • 47
    • 57049089897 scopus 로고    scopus 로고
    • Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid
    • Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol. 2008;8:83.
    • (2008) BMC Biotechnol , vol.8 , pp. 83
    • Ro, D.K.1    Ouellet, M.2    Paradise, E.M.3    Burd, H.4    Eng, D.5    Paddon, C.J.6    Newman, J.D.7    Keasling, J.D.8
  • 48
  • 49
    • 0021706595 scopus 로고
    • Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: Effects on carbon-controlled regulation of the galactose/melibiose pathway genes
    • 1:CAS:528:DyaL2cXls1Cks74%3D
    • Torchia TE, Hamilton RW, Cano CL, Hopper JE. Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol Cell Biol. 1984;4(8):1521-7.
    • (1984) Mol Cell Biol , vol.4 , Issue.8 , pp. 1521-1527
    • Torchia, T.E.1    Hamilton, R.W.2    Cano, C.L.3    Hopper, J.E.4
  • 50
    • 0025944734 scopus 로고
    • Control of yeast GAL genes by MIG1 repressor: A transcriptional cascade in the glucose response
    • 1:CAS:528:DyaK38Xhs1Kjsg%3D%3D
    • Nehlin JO, Carlberg M, Ronne H. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 1991;10(11):3373-7.
    • (1991) EMBO J , vol.10 , Issue.11 , pp. 3373-3377
    • Nehlin, J.O.1    Carlberg, M.2    Ronne, H.3
  • 51
    • 84917707014 scopus 로고    scopus 로고
    • Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae
    • Xie W, Ye L, Lv X, Xu H, Yu H. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng. 2014;28C:8-18.
    • (2014) Metab Eng , vol.28 , pp. 8-18
    • Xie, W.1    Ye, L.2    Lv, X.3    Xu, H.4    Yu, H.5
  • 52
    • 0033231014 scopus 로고    scopus 로고
    • A 'distributed degron' allows regulated entry into the ER degradation pathway
    • 1:CAS:528:DyaK1MXns1entr8%3D
    • Gardner RG, Hampton RY. A 'distributed degron' allows regulated entry into the ER degradation pathway. EMBO J. 1999;18(21):5994-6004.
    • (1999) EMBO J , vol.18 , Issue.21 , pp. 5994-6004
    • Gardner, R.G.1    Hampton, R.Y.2
  • 53
    • 84871384382 scopus 로고    scopus 로고
    • Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXhsFyit7c%3D
    • Ignea C, Trikka FA, Kourtzelis I, Argiriou A, Kanellis AK, Kampranis SC, Makris AM. Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:162.
    • (2012) Microb Cell Fact , vol.11 , pp. 162
    • Ignea, C.1    Trikka, F.A.2    Kourtzelis, I.3    Argiriou, A.4    Kanellis, A.K.5    Kampranis, S.C.6    Makris, A.M.7
  • 54
    • 0026052738 scopus 로고
    • PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter
    • 1:CAS:528:DyaK38Xht1amsbw%3D
    • Hohmann S. PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr Genet. 1991;20(5):373-8.
    • (1991) Curr Genet , vol.20 , Issue.5 , pp. 373-378
    • Hohmann, S.1
  • 56
    • 79952109824 scopus 로고    scopus 로고
    • Development of sucrose-utilizing Escherichia coli K-12 strain by cloning beta-fructofuranosidases and its application for l-threonine production
    • 1:CAS:528:DC%2BC3cXhtFyqt7jP
    • Lee JW, Choi S, Park JH, Vickers CE, Nielsen LK, Lee SY. Development of sucrose-utilizing Escherichia coli K-12 strain by cloning beta-fructofuranosidases and its application for l-threonine production. Appl Microbiol Biotechnol. 2010;88(4):905-13.
    • (2010) Appl Microbiol Biotechnol , vol.88 , Issue.4 , pp. 905-913
    • Lee, J.W.1    Choi, S.2    Park, J.H.3    Vickers, C.E.4    Nielsen, L.K.5    Lee, S.Y.6
  • 57
    • 84864945585 scopus 로고    scopus 로고
    • A transferable sucrose utilization approach for non-sucrose-utilizing Escherichia coli strains
    • 1:CAS:528:DC%2BC38XhtF2itbzM
    • Bruschi M, Boyes SJ, Sugiarto H, Nielsen LK, Vickers CE. A transferable sucrose utilization approach for non-sucrose-utilizing Escherichia coli strains. Biotechnol Adv. 2012;30(5):1001-10.
    • (2012) Biotechnol Adv , vol.30 , Issue.5 , pp. 1001-1010
    • Bruschi, M.1    Boyes, S.J.2    Sugiarto, H.3    Nielsen, L.K.4    Vickers, C.E.5
  • 58
    • 78650900723 scopus 로고    scopus 로고
    • The genome sequence of E. coli W (ATCC 9637): Comparative genome analysis and an improved genome-scale reconstruction of E. coli
    • 1:CAS:528:DC%2BC3MXosVKltg%3D%3D
    • Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genom. 2011;12:9.
    • (2011) BMC Genom , vol.12 , pp. 9
    • Archer, C.T.1    Kim, J.F.2    Jeong, H.3    Park, J.H.4    Vickers, C.E.5    Lee, S.Y.6    Nielsen, L.K.7
  • 59
    • 0020078214 scopus 로고
    • Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase
    • 1:CAS:528:DyaL38XhtFKrt7Y%3D
    • Carlson M, Botstein D. Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell. 1982;28(1):145-54.
    • (1982) Cell , vol.28 , Issue.1 , pp. 145-154
    • Carlson, M.1    Botstein, D.2
  • 60
    • 0032508638 scopus 로고    scopus 로고
    • Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux
    • 1:CAS:528:DyaK1cXmtFOrsb8%3D
    • Meijer MM, Boonstra J, Verkleij AJ, Verrips CT. Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem. 1998;273(37):24102-7.
    • (1998) J Biol Chem , vol.273 , Issue.37 , pp. 24102-24107
    • Meijer, M.M.1    Boonstra, J.2    Verkleij, A.J.3    Verrips, C.T.4
  • 62
    • 84865350728 scopus 로고    scopus 로고
    • Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC38XnsFyjs7Y%3D
    • Brennan TC, Turner CD, Kromer JO, Nielsen LK. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109(10):2513-22.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.10 , pp. 2513-2522
    • Brennan, T.C.1    Turner, C.D.2    Kromer, J.O.3    Nielsen, L.K.4
  • 64
    • 0035902443 scopus 로고    scopus 로고
    • Instability of repetitive DNA sequences: The role of replication in multiple mechanisms
    • 1:CAS:528:DC%2BD3MXls1Wisrw%3D
    • Bzymek M, Lovett ST. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA. 2001;98(15):8319-25.
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.15 , pp. 8319-8325
    • Bzymek, M.1    Lovett, S.T.2
  • 65
    • 84988808483 scopus 로고    scopus 로고
    • Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC28XhsFGrt73L
    • Lv X, Wang F, Zhou P, Ye L, Xie W, Xu H, Yu H. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun. 2016;7:12851.
    • (2016) Nat Commun , vol.7 , pp. 12851
    • Lv, X.1    Wang, F.2    Zhou, P.3    Ye, L.4    Xie, W.5    Xu, H.6    Yu, H.7
  • 66
    • 0021710272 scopus 로고
    • Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae
    • 1:CAS:528:DyaL2cXmt1ertbc%3D
    • Yocum RR, Hanley S, West R Jr, Ptashne M. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol. 1984;4(10):1985-98.
    • (1984) Mol Cell Biol , vol.4 , Issue.10 , pp. 1985-1998
    • Yocum, R.R.1    Hanley, S.2    West, R.3    Ptashne, M.4
  • 67
    • 84865972260 scopus 로고    scopus 로고
    • Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms
    • 1:CAS:528:DC%2BC3sXhsFyitrw%3D
    • Paczia N, Nilgen A, Lehmann T, Gatgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Fact. 2012;11:122.
    • (2012) Microb Cell Fact , vol.11 , pp. 122
    • Paczia, N.1    Nilgen, A.2    Lehmann, T.3    Gatgens, J.4    Wiechert, W.5    Noack, S.6
  • 68
    • 33847785682 scopus 로고    scopus 로고
    • Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2sXisVShsbY%3D
    • Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2007;104(7):2402-7.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.7 , pp. 2402-2407
    • Vemuri, G.N.1    Eiteman, M.A.2    McEwen, J.E.3    Olsson, L.4    Nielsen, J.5
  • 69
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1MXps1Wqu7k%3D
    • Hou J, Lages NF, Oldiges M, Vemuri GN. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng. 2009;11(4-5):253-61.
    • (2009) Metab Eng , vol.11 , Issue.4-5 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 70
    • 75649152860 scopus 로고    scopus 로고
    • Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations
    • 1:CAS:528:DC%2BC3cXntVygsQ%3D%3D
    • Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol Biol Cell. 2010;21(1):198-211.
    • (2010) Mol Biol Cell , vol.21 , Issue.1 , pp. 198-211
    • Boer, V.M.1    Crutchfield, C.A.2    Bradley, P.H.3    Botstein, D.4    Rabinowitz, J.D.5
  • 71
    • 17444409958 scopus 로고    scopus 로고
    • Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2MXksFagtrc%3D
    • Seker T, Moller K, Nielsen J. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2005;67(1):119-24.
    • (2005) Appl Microbiol Biotechnol , vol.67 , Issue.1 , pp. 119-124
    • Seker, T.1    Moller, K.2    Nielsen, J.3
  • 74
    • 71449083602 scopus 로고    scopus 로고
    • Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1MXhs1Wht7zP
    • Heyland J, Fu J, Blank LM. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology. 2009;155(12):3827-37.
    • (2009) Microbiology , vol.155 , Issue.12 , pp. 3827-3837
    • Heyland, J.1    Fu, J.2    Blank, L.M.3
  • 77
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeast: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • 1:CAS:528:DyaK38Xlt1Oqurk%3D
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeast: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast (Chichester, England). 1992;8(7):501-17.
    • (1992) Yeast (Chichester, England) , vol.8 , Issue.7 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 78
    • 0034608677 scopus 로고    scopus 로고
    • Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast
    • van Hoek P, de Hulster E, van Dijken JP, Pronk JT. Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. Biotechnol Bioeng. 2000;68(5):517-23.
    • (2000) Biotechnol Bioeng , vol.68 , Issue.5 , pp. 517-523
    • Van Hoek, P.1    De Hulster, E.2    Van Dijken, J.P.3    Pronk, J.T.4
  • 79
    • 77954457415 scopus 로고    scopus 로고
    • Towards quantitative metabolomics of mammalian cells: Development of a metabolite extraction protocol
    • 1:CAS:528:DC%2BC3cXos1yisb0%3D
    • Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem. 2010;404(2):155-64.
    • (2010) Anal Biochem , vol.404 , Issue.2 , pp. 155-164
    • Dietmair, S.1    Timmins, N.E.2    Gray, P.P.3    Nielsen, L.K.4    Kromer, J.O.5
  • 80
    • 84855419323 scopus 로고    scopus 로고
    • Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC38XlsVOruw%3D%3D
    • Peng B, Shen Y, Li X, Chen X, Hou J, Bao X. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng. 2012;14(1):9-18.
    • (2012) Metab Eng , vol.14 , Issue.1 , pp. 9-18
    • Peng, B.1    Shen, Y.2    Li, X.3    Chen, X.4    Hou, J.5    Bao, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.