-
1
-
-
66749091546
-
Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
-
Bengtsson O., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2:9.
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 9
-
-
Bengtsson, O.1
Hahn-Hagerdal, B.2
Gorwa-Grauslund, M.F.3
-
2
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts B.B., Bellerose R.J., Chang M.C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 2011, 7:222-227.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.3
-
3
-
-
84879119602
-
Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
-
Demeke M.M., Dietz H., Li Y., Foulquie-Moreno M.R., Mutturi S., Deprez S., Den Abt T., Bonini B.M., Liden G., Dumortier F., Verplaetse A., Boles E., Thevelein J.M. Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 2013, 6:89.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 89
-
-
Demeke, M.M.1
Dietz, H.2
Li, Y.3
Foulquie-Moreno, M.R.4
Mutturi, S.5
Deprez, S.6
Den Abt, T.7
Bonini, B.M.8
Liden, G.9
Dumortier, F.10
Verplaetse, A.11
Boles, E.12
Thevelein, J.M.13
-
4
-
-
84887769375
-
Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis
-
Feng X., Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb. Cell Fact. 2013, 12:114.
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 114
-
-
Feng, X.1
Zhao, H.2
-
5
-
-
79551670374
-
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
-
Ha S.J., Galazka J.M., Kim S.R., Choi J.H., Yang X., Seo J.H., Glass N.L., Cate J.H., Jin Y.S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:504-509.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 504-509
-
-
Ha, S.J.1
Galazka, J.M.2
Kim, S.R.3
Choi, J.H.4
Yang, X.5
Seo, J.H.6
Glass, N.L.7
Cate, J.H.8
Jin, Y.S.9
-
6
-
-
34447620451
-
Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
-
Hou J., Shen Y., Li X.P., Bao X.M. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Lett. Appl. Microbiol. 2007, 45:184-189.
-
(2007)
Lett. Appl. Microbiol.
, vol.45
, pp. 184-189
-
-
Hou, J.1
Shen, Y.2
Li, X.P.3
Bao, X.M.4
-
7
-
-
0021887676
-
Emerging technology for fermenting d-Xylose
-
Jeffries T.W. Emerging technology for fermenting d-Xylose. Trends Biotechnol. 1985, 3:208-212.
-
(1985)
Trends Biotechnol.
, vol.3
, pp. 208-212
-
-
Jeffries, T.W.1
-
8
-
-
33947156343
-
Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis
-
Jeffries T.W., Grigoriev I.V., Grimwood J., Laplaza J.M., Aerts A., Salamov A., Schmutz J., Lindquist E., Dehal P., Shapiro H., Jin Y.S., Passoth V., Richardson P.M. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 2007, 25:319-326.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 319-326
-
-
Jeffries, T.W.1
Grigoriev, I.V.2
Grimwood, J.3
Laplaza, J.M.4
Aerts, A.5
Salamov, A.6
Schmutz, J.7
Lindquist, E.8
Dehal, P.9
Shapiro, H.10
Jin, Y.S.11
Passoth, V.12
Richardson, P.M.13
-
9
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity
-
Jin Y.S., Ni H., Laplaza J.M., Jeffries T.W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69:495-503.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.2
Laplaza, J.M.3
Jeffries, T.W.4
-
10
-
-
0035458838
-
Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
-
Johansson B., Christensson C., Hobley T., Hahn-Hagerdal B. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 2001, 67:4249-4255.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 4249-4255
-
-
Johansson, B.1
Christensson, C.2
Hobley, T.3
Hahn-Hagerdal, B.4
-
11
-
-
84862231336
-
High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
-
Kim S.R., Ha S.J., Kong I.I., Jin Y.S. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 2012, 14:336-343.
-
(2012)
Metab. Eng.
, vol.14
, pp. 336-343
-
-
Kim, S.R.1
Ha, S.J.2
Kong, I.I.3
Jin, Y.S.4
-
12
-
-
84862812426
-
Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
-
Kim S.R., Ha S.J., Wei N., Oh E.J., Jin Y.S. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012, 30:274-282.
-
(2012)
Trends Biotechnol.
, vol.30
, pp. 274-282
-
-
Kim, S.R.1
Ha, S.J.2
Wei, N.3
Oh, E.J.4
Jin, Y.S.5
-
13
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PloS One 2013, 8:e57048.
-
(2013)
PloS One
, vol.8
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.4
Wei, N.5
Arkin, A.P.6
Jin, Y.S.7
-
14
-
-
84859480640
-
Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
-
Lee S.H., Kodaki T., Park Y.C., Seo J.H. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J. Biotechnol. 2012, 158:184-191.
-
(2012)
J. Biotechnol.
, vol.158
, pp. 184-191
-
-
Lee, S.H.1
Kodaki, T.2
Park, Y.C.3
Seo, J.H.4
-
15
-
-
84866172183
-
Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae
-
Lee S.M., Jellison T., Alper H.S. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78:5708-5716.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 5708-5716
-
-
Lee, S.M.1
Jellison, T.2
Alper, H.S.3
-
16
-
-
38649127524
-
Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing
-
Liang L., Zhang J., Lin Z. Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing. Microb. Cell Fact. 2007, 6:36.
-
(2007)
Microb. Cell Fact.
, vol.6
, pp. 36
-
-
Liang, L.1
Zhang, J.2
Lin, Z.3
-
17
-
-
77955663173
-
Mechanisms of ethanol tolerance in Saccharomyces cerevisiae
-
Ma M., Liu Z.L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2010, 87:829-845.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.87
, pp. 829-845
-
-
Ma, M.1
Liu, Z.L.2
-
18
-
-
84860836081
-
Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae
-
Matsushika A., Goshima T., Fujii T., Inoue H., Sawayama S., Yano S. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme Microb. Technol. 2012, 51:16-25.
-
(2012)
Enzyme Microb. Technol.
, vol.51
, pp. 16-25
-
-
Matsushika, A.1
Goshima, T.2
Fujii, T.3
Inoue, H.4
Sawayama, S.5
Yano, S.6
-
19
-
-
53649084361
-
Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
-
Matsushika A., Sawayama S. Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J. Biosci. Bioeng. 2008, 106:306-309.
-
(2008)
J. Biosci. Bioeng.
, vol.106
, pp. 306-309
-
-
Matsushika, A.1
Sawayama, S.2
-
20
-
-
79955524639
-
Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase
-
Matsushika A., Sawayama S. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Enzyme Microb. Technol. 2011, 48:466-471.
-
(2011)
Enzyme Microb. Technol.
, vol.48
, pp. 466-471
-
-
Matsushika, A.1
Sawayama, S.2
-
21
-
-
80052037221
-
Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
-
Parachin N.S., Bergdahl B., van Niel E.W., Gorwa-Grauslund M.F. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng. 2011, 13:508-517.
-
(2011)
Metab. Eng.
, vol.13
, pp. 508-517
-
-
Parachin, N.S.1
Bergdahl, B.2
van Niel, E.W.3
Gorwa-Grauslund, M.F.4
-
22
-
-
84855419323
-
Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
-
Peng B., Shen Y., Li X., Chen X., Hou J., Bao X. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab. Eng. 2012, 14:9-18.
-
(2012)
Metab. Eng.
, vol.14
, pp. 9-18
-
-
Peng, B.1
Shen, Y.2
Li, X.3
Chen, X.4
Hou, J.5
Bao, X.6
-
23
-
-
70349964350
-
Automated design of synthetic ribosome binding sites to control protein expression
-
Salis H.M., Mirsky E.A., Voigt C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 2009, 27:946-950.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 946-950
-
-
Salis, H.M.1
Mirsky, E.A.2
Voigt, C.A.3
-
24
-
-
33646873502
-
Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose
-
Salusjarvi L., Pitkanen J.P., Aristidou A., Ruohonen L., Penttila M. Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl. Biochem. Biotechnol. 2006, 128:237-261.
-
(2006)
Appl. Biochem. Biotechnol.
, vol.128
, pp. 237-261
-
-
Salusjarvi, L.1
Pitkanen, J.P.2
Aristidou, A.3
Ruohonen, L.4
Penttila, M.5
-
25
-
-
79959256040
-
Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag
-
Slininger P.J., Thompson S.R., Weber S., Liu Z.L., Moon J. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Biotechnol. Bioeng. 2011, 108:1801-1815.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 1801-1815
-
-
Slininger, P.J.1
Thompson, S.R.2
Weber, S.3
Liu, Z.L.4
Moon, J.5
-
26
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
-
Walfridsson M., Hallborn J., Penttila M., Keranen S., Hahn-Hagerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 1995, 61:4184-4190.
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttila, M.3
Keranen, S.4
Hahn-Hagerdal, B.5
-
27
-
-
34948882785
-
Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
-
Watanabe S., Abu Saleh A., Pack S.P., Annaluru N., Kodaki T., Makino K. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 2007, 153:3044-3054.
-
(2007)
Microbiology
, vol.153
, pp. 3044-3054
-
-
Watanabe, S.1
Abu Saleh, A.2
Pack, S.P.3
Annaluru, N.4
Kodaki, T.5
Makino, K.6
-
28
-
-
80052377729
-
Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations
-
Xiong M., Chen G., Barford J. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour. Technol. 2011, 102:9206-9215.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 9206-9215
-
-
Xiong, M.1
Chen, G.2
Barford, J.3
-
29
-
-
84869043924
-
Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
-
Zhou H., Cheng J.S., Wang B.L., Fink G.R., Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14:611-622.
-
(2012)
Metab. Eng.
, vol.14
, pp. 611-622
-
-
Zhou, H.1
Cheng, J.S.2
Wang, B.L.3
Fink, G.R.4
Stephanopoulos, G.5
|