메뉴 건너뛰기




Volumn 150, Issue 3, 2017, Pages 237-247

Understanding the regulation of pattern recognition receptors in inflammatory diseases – a ‘Nod’ in the right direction

Author keywords

inflammation; inflammatory bowel disease; NLR expression; NOD1; NOD2

Indexed keywords

CASPASE RECRUITMENT DOMAIN PROTEIN 15; CASPASE RECRUITMENT DOMAIN PROTEIN 4; EPIDERMAL GROWTH FACTOR RECEPTOR 2; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR; PATTERN RECOGNITION RECEPTOR; TRIPARTITE MOTIF PROTEIN; TRIPARTITE MOTIF PROTEIN 27; UNCLASSIFIED DRUG;

EID: 85006356511     PISSN: 00192805     EISSN: 13652567     Source Type: Journal    
DOI: 10.1111/imm.12677     Document Type: Review
Times cited : (45)

References (109)
  • 1
    • 63649108380 scopus 로고    scopus 로고
    • The roles of TLRs, RLRs and NLRs in pathogen recognition
    • Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21:317–37.
    • (2009) Int Immunol , vol.21 , pp. 317-337
    • Kawai, T.1    Akira, S.2
  • 2
    • 58049200723 scopus 로고    scopus 로고
    • Function of Nod-like receptors in microbial recognition and host defense
    • Franchi L, et al. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 2009; 227:106–28.
    • (2009) Immunol Rev , vol.227 , pp. 106-128
    • Franchi, L.1
  • 3
    • 35348932070 scopus 로고    scopus 로고
    • Intracellular NOD-like receptors in host defense and disease
    • Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity 2007; 27:549–59.
    • (2007) Immunity , vol.27 , pp. 549-559
    • Kanneganti, T.D.1    Lamkanfi, M.2    Nunez, G.3
  • 4
    • 40449140937 scopus 로고    scopus 로고
    • The NLR gene family: a standard nomenclature
    • Ting JP, et al. The NLR gene family: a standard nomenclature. Immunity 2008; 28:285–7.
    • (2008) Immunity , vol.28 , pp. 285-287
    • Ting, J.P.1
  • 5
    • 0035951792 scopus 로고    scopus 로고
    • Human Nod1 confers responsiveness to bacterial lipopolysaccharides
    • Inohara N, et al. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 2001; 276:2551–4.
    • (2001) J Biol Chem , vol.276 , pp. 2551-2554
    • Inohara, N.1
  • 6
    • 0035895992 scopus 로고    scopus 로고
    • Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB
    • Ogura Y, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J Biol Chem 2001; 276:4812–8.
    • (2001) J Biol Chem , vol.276 , pp. 4812-4818
    • Ogura, Y.1
  • 7
    • 44349171085 scopus 로고    scopus 로고
    • The Nod-like receptor (NLR) family: a tale of similarities and differences
    • Proell M, et al. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 2008; 3:e2119.
    • (2008) PLoS One , vol.3
    • Proell, M.1
  • 8
    • 22444433175 scopus 로고    scopus 로고
    • NLRs join TLRs as innate sensors of pathogens
    • Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol 2005; 26:447–54.
    • (2005) Trends Immunol , vol.26 , pp. 447-454
    • Martinon, F.1    Tschopp, J.2
  • 9
    • 84875169169 scopus 로고    scopus 로고
    • Alarmins, inflammasomes and immunity
    • Said-Sadier N, Ojcius DM. Alarmins, inflammasomes and immunity. Biomed J 2012; 35:437–49.
    • (2012) Biomed J , vol.35 , pp. 437-449
    • Said-Sadier, N.1    Ojcius, D.M.2
  • 10
    • 17644366913 scopus 로고    scopus 로고
    • NOD-LRR proteins: role in host-microbial interactions and inflammatory disease
    • Inohara N, et al. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 2005; 74:355–83.
    • (2005) Annu Rev Biochem , vol.74 , pp. 355-383
    • Inohara, N.1
  • 11
    • 66149086936 scopus 로고    scopus 로고
    • NOD-like receptors: role in innate immunity and inflammatory disease
    • Chen G, et al. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 2009; 4:365–98.
    • (2009) Annu Rev Pathol , vol.4 , pp. 365-398
    • Chen, G.1
  • 12
    • 0038824980 scopus 로고    scopus 로고
    • An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid
    • Chamaillard M, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 4:702–7.
    • (2003) Nat Immunol , vol.4 , pp. 702-707
    • Chamaillard, M.1
  • 13
    • 0038615855 scopus 로고    scopus 로고
    • Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan
    • Girardin SE, et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 2003; 300:1584–7.
    • (2003) Science , vol.300 , pp. 1584-1587
    • Girardin, S.E.1
  • 14
    • 0012722659 scopus 로고    scopus 로고
    • Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection
    • Girardin SE, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278:8869–72.
    • (2003) J Biol Chem , vol.278 , pp. 8869-8872
    • Girardin, S.E.1
  • 15
    • 0037458665 scopus 로고    scopus 로고
    • Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn′s disease
    • Inohara N, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn′s disease. J Biol Chem 2003; 278:5509–12.
    • (2003) J Biol Chem , vol.278 , pp. 5509-5512
    • Inohara, N.1
  • 16
    • 79955017553 scopus 로고    scopus 로고
    • Cutting edge: primary innate immune cells respond efficiently to polymeric peptidoglycan, but not to peptidoglycan monomers
    • Iyer JK, Coggeshall KM. Cutting edge: primary innate immune cells respond efficiently to polymeric peptidoglycan, but not to peptidoglycan monomers. J Immunol 2011; 186:3841–5.
    • (2011) J Immunol , vol.186 , pp. 3841-3845
    • Iyer, J.K.1    Coggeshall, K.M.2
  • 17
    • 84907960394 scopus 로고    scopus 로고
    • NOD2 stimulation by Staphylococcus aureus-derived peptidoglycan is boosted by Toll-like receptor 2 costimulation with lipoproteins in dendritic cells
    • Schaffler H, et al. NOD2 stimulation by Staphylococcus aureus-derived peptidoglycan is boosted by Toll-like receptor 2 costimulation with lipoproteins in dendritic cells. Infect Immun 2014; 82:4681–8.
    • (2014) Infect Immun , vol.82 , pp. 4681-4688
    • Schaffler, H.1
  • 18
    • 0032982467 scopus 로고    scopus 로고
    • Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium
    • Fiocca R, et al. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 1999; 188:220–6.
    • (1999) J Pathol , vol.188 , pp. 220-226
    • Fiocca, R.1
  • 19
    • 69949125920 scopus 로고    scopus 로고
    • pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling
    • Lee J, et al. pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J Biol Chem 2009; 284:23818–29.
    • (2009) J Biol Chem , vol.284 , pp. 23818-23829
    • Lee, J.1
  • 20
    • 9244245293 scopus 로고    scopus 로고
    • Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island
    • Viala J, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004; 5:1166–74.
    • (2004) Nat Immunol , vol.5 , pp. 1166-1174
    • Viala, J.1
  • 21
    • 7644234401 scopus 로고    scopus 로고
    • hPepT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells
    • Vavricka SR, et al. hPepT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 2004; 127:1401–9.
    • (2004) Gastroenterology , vol.127 , pp. 1401-1409
    • Vavricka, S.R.1
  • 22
    • 78649380201 scopus 로고    scopus 로고
    • Cell–cell propagation of NF-κB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection
    • Kasper CA, et al. Cell–cell propagation of NF-κB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection. Immunity 2010; 33:804–16.
    • (2010) Immunity , vol.33 , pp. 804-816
    • Kasper, C.A.1
  • 23
    • 23644448266 scopus 로고    scopus 로고
    • Regulation of Nod1 by Hsp90 chaperone complex
    • Hahn JS. Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 2005; 579:4513–9.
    • (2005) FEBS Lett , vol.579 , pp. 4513-4519
    • Hahn, J.S.1
  • 24
    • 84869219130 scopus 로고    scopus 로고
    • Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components
    • Lee K-H, et al. Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components. J Biol Chem 2012; 287:39800–11.
    • (2012) J Biol Chem , vol.287 , pp. 39800-39811
    • Lee, K.-H.1
  • 25
    • 84903840466 scopus 로고    scopus 로고
    • Hsp70 binds to and stabilizes Nod2, an innate immune receptor involved in Crohn's disease
    • Mohanan V, Grimes CL. Hsp70 binds to and stabilizes Nod2, an innate immune receptor involved in Crohn's disease. J Biol Chem 2014; 289:18987–98.
    • (2014) J Biol Chem , vol.289 , pp. 18987-18998
    • Mohanan, V.1    Grimes, C.L.2
  • 26
    • 45549093755 scopus 로고    scopus 로고
    • A NOD2-NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide
    • Hsu LC, et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 2008; 105:7803–8.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 7803-7808
    • Hsu, L.C.1
  • 27
    • 33846936219 scopus 로고    scopus 로고
    • RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs
    • Park JH, et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 2007; 178:2380–6.
    • (2007) J Immunol , vol.178 , pp. 2380-2386
    • Park, J.H.1
  • 28
    • 38549084725 scopus 로고    scopus 로고
    • A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation
    • Hasegawa M, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J 2008; 27:373–83.
    • (2008) EMBO J , vol.27 , pp. 373-383
    • Hasegawa, M.1
  • 29
    • 0030610362 scopus 로고    scopus 로고
    • A cytokine-responsive IκB kinase that activates the transcription factor NF-κB
    • DiDonato JA, et al. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 1997; 388:548–54.
    • (1997) Nature , vol.388 , pp. 548-554
    • DiDonato, J.A.1
  • 30
    • 0032568792 scopus 로고    scopus 로고
    • Complementation cloning of NEMO, a component of the IκB kinase complex Essential for NF-κB activation
    • Yamaoka S, et al. Complementation cloning of NEMO, a component of the IκB kinase complex Essential for NF-κB activation. Cell 1998; 93:1231–40.
    • (1998) Cell , vol.93 , pp. 1231-1240
    • Yamaoka, S.1
  • 31
    • 48549102504 scopus 로고    scopus 로고
    • NOD-like receptors (NLRs): bona fide intracellular microbial sensors
    • Shaw MH, et al. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol 2008; 20:377–82.
    • (2008) Curr Opin Immunol , vol.20 , pp. 377-382
    • Shaw, M.H.1
  • 32
    • 84870242006 scopus 로고    scopus 로고
    • The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling
    • Vandenabeele P, Bertrand MJ. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 2012; 12:833–44.
    • (2012) Nat Rev Immunol , vol.12 , pp. 833-844
    • Vandenabeele, P.1    Bertrand, M.J.2
  • 33
    • 79959271087 scopus 로고    scopus 로고
    • Intestinal homeostasis and its breakdown in inflammatory bowel disease
    • Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011; 474:298–306.
    • (2011) Nature , vol.474 , pp. 298-306
    • Maloy, K.J.1    Powrie, F.2
  • 34
    • 84888375628 scopus 로고    scopus 로고
    • Expression of inflammatory genes in the colon of ulcerative colitis patients varies with activity both at the mRNA and protein level
    • Verma R, Verma N, Paul J. Expression of inflammatory genes in the colon of ulcerative colitis patients varies with activity both at the mRNA and protein level. Eur Cytokine Netw 2013; 24:130–8.
    • (2013) Eur Cytokine Netw , vol.24 , pp. 130-138
    • Verma, R.1    Verma, N.2    Paul, J.3
  • 35
    • 0037347741 scopus 로고    scopus 로고
    • Classification of small bowel Crohn's subtypes based on multimodality imaging
    • Maglinte DD, et al. Classification of small bowel Crohn's subtypes based on multimodality imaging. Radiol Clin North Am 2003; 41:285–303.
    • (2003) Radiol Clin North Am , vol.41 , pp. 285-303
    • Maglinte, D.D.1
  • 36
    • 0035978533 scopus 로고    scopus 로고
    • A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease
    • Ogura Y, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411:603–6.
    • (2001) Nature , vol.411 , pp. 603-606
    • Ogura, Y.1
  • 37
    • 0035978651 scopus 로고    scopus 로고
    • Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
    • Hugot J-P, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411:599–603.
    • (2001) Nature , vol.411 , pp. 599-603
    • Hugot, J.-P.1
  • 39
    • 34249017939 scopus 로고    scopus 로고
    • Prevalence of CARD15//NOD2 mutations in Caucasian healthy people
    • Hugot J-P, et al. Prevalence of CARD15//NOD2 mutations in Caucasian healthy people. Am J Gastroenterol 2007; 102:1259–67.
    • (2007) Am J Gastroenterol , vol.102 , pp. 1259-1267
    • Hugot, J.-P.1
  • 40
    • 80053055841 scopus 로고    scopus 로고
    • Cutting edge: Crohn's disease-associated Nod2 mutation limits production of proinflammatory cytokines to protect the host from Enterococcus faecalis-induced lethality
    • Kim Y-G, et al. Cutting edge: Crohn's disease-associated Nod2 mutation limits production of proinflammatory cytokines to protect the host from Enterococcus faecalis-induced lethality. J Immunol 2011; 187:2849–52.
    • (2011) J Immunol , vol.187 , pp. 2849-2852
    • Kim, Y.-G.1
  • 41
    • 10744222688 scopus 로고    scopus 로고
    • Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis
    • Ogura Y, et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 2003; 52:1591–7.
    • (2003) Gut , vol.52 , pp. 1591-1597
    • Ogura, Y.1
  • 42
    • 78650099360 scopus 로고    scopus 로고
    • Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases
    • Frank DN, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:179–84.
    • (2011) Inflamm Bowel Dis , vol.17 , pp. 179-184
    • Frank, D.N.1
  • 43
    • 7244257312 scopus 로고    scopus 로고
    • NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression
    • Wehkamp J, et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 2004; 53:1658–64.
    • (2004) Gut , vol.53 , pp. 1658-1664
    • Wehkamp, J.1
  • 44
    • 29144483937 scopus 로고    scopus 로고
    • Reduced Paneth cell α-defensins in ileal Crohn's disease
    • Wehkamp J, et al. Reduced Paneth cell α-defensins in ileal Crohn's disease. Proc Natl Acad Sci USA 2005; 102:18129–34.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 18129-18134
    • Wehkamp, J.1
  • 45
    • 46349102893 scopus 로고    scopus 로고
    • Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease
    • Simms LA, et al. Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 2008; 57:903–10.
    • (2008) Gut , vol.57 , pp. 903-910
    • Simms, L.A.1
  • 46
    • 84921280208 scopus 로고    scopus 로고
    • The central role of the gut microbiota in chronic inflammatory diseases
    • Ferreira CM, et al. The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res 2014; 2014:12.
    • (2014) J Immunol Res , vol.2014 , pp. 12
    • Ferreira, C.M.1
  • 47
    • 0037302961 scopus 로고    scopus 로고
    • Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon
    • Seksik P, et al. Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 2003; 52:237–42.
    • (2003) Gut , vol.52 , pp. 237-242
    • Seksik, P.1
  • 48
    • 2342442430 scopus 로고    scopus 로고
    • Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease
    • Ott SJ, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004; 53:685–93.
    • (2004) Gut , vol.53 , pp. 685-693
    • Ott, S.J.1
  • 49
    • 30944466824 scopus 로고    scopus 로고
    • Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach
    • Manichanh C, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006; 55:205–11.
    • (2006) Gut , vol.55 , pp. 205-211
    • Manichanh, C.1
  • 50
    • 84860510071 scopus 로고    scopus 로고
    • Diversity and distribution of sulphate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease
    • Jia W, et al. Diversity and distribution of sulphate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease. FEMS Immunol Med Microbiol 2012; 65:55–68.
    • (2012) FEMS Immunol Med Microbiol , vol.65 , pp. 55-68
    • Jia, W.1
  • 51
    • 80052580369 scopus 로고    scopus 로고
    • Nod2 is essential for temporal development of intestinal microbial communities
    • Rehman A, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011; 60:1354–62.
    • (2011) Gut , vol.60 , pp. 1354-1362
    • Rehman, A.1
  • 52
    • 84857365925 scopus 로고    scopus 로고
    • Nod2: a key regulator linking microbiota to intestinal mucosal immunity
    • Biswas A, Petnicki-Ocwieja T, Kobayashi KS. Nod2: a key regulator linking microbiota to intestinal mucosal immunity. J Mol Med (Berl) 2012; 90:15–24.
    • (2012) J Mol Med (Berl) , vol.90 , pp. 15-24
    • Biswas, A.1    Petnicki-Ocwieja, T.2    Kobayashi, K.S.3
  • 53
    • 84907597189 scopus 로고    scopus 로고
    • Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus
    • Ramanan D, et al. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 2014; 41:311–24.
    • (2014) Immunity , vol.41 , pp. 311-324
    • Ramanan, D.1
  • 54
    • 70349468054 scopus 로고    scopus 로고
    • Nod2 is required for the regulation of commensal microbiota in the intestine
    • Petnicki-Ocwieja T, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 2009; 106:15813–8.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 15813-15818
    • Petnicki-Ocwieja, T.1
  • 55
    • 84893110419 scopus 로고    scopus 로고
    • Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years?
    • Hold GL, et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014; 20:1192–210.
    • (2014) World J Gastroenterol , vol.20 , pp. 1192-1210
    • Hold, G.L.1
  • 56
    • 84873695476 scopus 로고    scopus 로고
    • Autophagy and intestinal homeostasis
    • Patel KK, Stappenbeck TS. Autophagy and intestinal homeostasis. Annu Rev Physiol 2013; 75:241–62.
    • (2013) Annu Rev Physiol , vol.75 , pp. 241-262
    • Patel, K.K.1    Stappenbeck, T.S.2
  • 57
    • 77950994646 scopus 로고    scopus 로고
    • Autophagy: cellular and molecular mechanisms
    • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221:3–12.
    • (2010) J Pathol , vol.221 , pp. 3-12
    • Glick, D.1    Barth, S.2    Macleod, K.F.3
  • 58
    • 77957682295 scopus 로고    scopus 로고
    • ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
    • 1641 e1-2
    • Homer CR, et al. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 2010; 139: 1630–41, 1641 e1-2.
    • (2010) Gastroenterology , vol.139 , pp. 1630-1641
    • Homer, C.R.1
  • 59
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11:55–62.
    • (2010) Nat Immunol , vol.11 , pp. 55-62
    • Travassos, L.H.1
  • 60
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production
    • Saitoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 2008; 456:264–8.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1
  • 61
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010; 16:90–7.
    • (2010) Nat Med , vol.16 , pp. 90-97
    • Cooney, R.1
  • 62
    • 84887524897 scopus 로고    scopus 로고
    • The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner
    • Sorbara MT, et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 2013; 39:858–73.
    • (2013) Immunity , vol.39 , pp. 858-873
    • Sorbara, M.T.1
  • 63
    • 84896811079 scopus 로고    scopus 로고
    • ATG16L1 and NOD2 polymorphisms enhance phagocytosis in monocytes of Crohn's disease patients
    • Wolfkamp SC, et al. ATG16L1 and NOD2 polymorphisms enhance phagocytosis in monocytes of Crohn's disease patients. World J Gastroenterol 2014; 20:2664–72.
    • (2014) World J Gastroenterol , vol.20 , pp. 2664-2672
    • Wolfkamp, S.C.1
  • 64
    • 0022213722 scopus 로고
    • Familial granulomatous arthritis, iritis, and rash
    • Blau EB. Familial granulomatous arthritis, iritis, and rash. J Pediatr 1985; 107:689–93.
    • (1985) J Pediatr , vol.107 , pp. 689-693
    • Blau, E.B.1
  • 65
    • 19244364857 scopus 로고    scopus 로고
    • Genetic linkage of familial granulomatous inflammatory arthritis, skin rash, and uveitis to chromosome 16
    • Tromp G, et al. Genetic linkage of familial granulomatous inflammatory arthritis, skin rash, and uveitis to chromosome 16. Am J Hum Genet 1996; 59:1097–107.
    • (1996) Am J Hum Genet , vol.59 , pp. 1097-1107
    • Tromp, G.1
  • 66
    • 17944372335 scopus 로고    scopus 로고
    • CARD15 mutations in Blau syndrome
    • Miceli-Richard C, et al. CARD15 mutations in Blau syndrome. Nat Genet 2001; 29:19–20.
    • (2001) Nat Genet , vol.29 , pp. 19-20
    • Miceli-Richard, C.1
  • 67
    • 84919628687 scopus 로고    scopus 로고
    • Blau syndrome-associated Nod2 mutation alters expression of full-length NOD2 and limits responses to muramyl dipeptide in knock-in mice
    • Dugan J, et al. Blau syndrome-associated Nod2 mutation alters expression of full-length NOD2 and limits responses to muramyl dipeptide in knock-in mice. J Immunol 2015; 194:349–57.
    • (2015) J Immunol , vol.194 , pp. 349-357
    • Dugan, J.1
  • 68
    • 59649115416 scopus 로고    scopus 로고
    • Expression, regulation, and signaling of the pattern-recognition receptor nucleotide-binding oligomerization domain 2 in rheumatoid arthritis synovial fibroblasts
    • Ospelt C, et al. Expression, regulation, and signaling of the pattern-recognition receptor nucleotide-binding oligomerization domain 2 in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2009; 60:355–63.
    • (2009) Arthritis Rheum , vol.60 , pp. 355-363
    • Ospelt, C.1
  • 69
    • 84860439543 scopus 로고    scopus 로고
    • The pattern-recognition receptor nucleotide-binding oligomerization domain-containing protein 1 promotes production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts
    • Yokota K, et al. The pattern-recognition receptor nucleotide-binding oligomerization domain-containing protein 1 promotes production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2012; 64:1329–37.
    • (2012) Arthritis Rheum , vol.64 , pp. 1329-1337
    • Yokota, K.1
  • 70
    • 84953858006 scopus 로고    scopus 로고
    • Expression and activity of NOD1 and NOD2/RIPK2 signalling in mononuclear cells from patients with rheumatoid arthritis
    • Franca R., et al. Expression and activity of NOD1 and NOD2/RIPK2 signalling in mononuclear cells from patients with rheumatoid arthritis. Scand J Rheumatol 2015; 45:8–12.
    • (2015) Scand J Rheumatol , vol.45 , pp. 8-12
    • Franca, R.1
  • 71
    • 77956423918 scopus 로고    scopus 로고
    • Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis?
    • Bogefors J, et al. Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis? Allergy 2010; 65:1222–6.
    • (2010) Allergy , vol.65 , pp. 1222-1226
    • Bogefors, J.1
  • 72
    • 84892712950 scopus 로고    scopus 로고
    • The expression of NOD1 and NOD2 and the regulation of glucocorticoids on them in allergic rhinitis
    • Hu S, et al. The expression of NOD1 and NOD2 and the regulation of glucocorticoids on them in allergic rhinitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2013; 27:393–6.
    • (2013) Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi , vol.27 , pp. 393-396
    • Hu, S.1
  • 73
    • 0033552883 scopus 로고    scopus 로고
    • Atherosclerosis – an inflammatory disease
    • Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340:115–26.
    • (1999) N Engl J Med , vol.340 , pp. 115-126
    • Ross, R.1
  • 74
    • 84856791579 scopus 로고    scopus 로고
    • NOD2 is highly expressed in Behcet disease with pulmonary manifestations
    • Hamzaoui K, et al. NOD2 is highly expressed in Behcet disease with pulmonary manifestations. J Inflamm 2012; 9:3.
    • (2012) J Inflamm , vol.9 , pp. 3
    • Hamzaoui, K.1
  • 75
    • 79955591866 scopus 로고    scopus 로고
    • Nod1 ligands induce site-specific vascular inflammation
    • Nishio H, et al. Nod1 ligands induce site-specific vascular inflammation. Arterioscler Thromb Vasc Biol 2011; 31:1093–9.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 1093-1099
    • Nishio, H.1
  • 76
    • 84920501880 scopus 로고    scopus 로고
    • −/− mice
    • −/− mice. J Immunol 2015; 194:773–80.
    • (2015) J Immunol , vol.194 , pp. 773-780
    • Kanno, S.1
  • 77
    • 84883304324 scopus 로고    scopus 로고
    • NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis
    • Liu H-Q, et al. NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33:2193–201.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 2193-2201
    • Liu, H.-Q.1
  • 78
    • 80053259945 scopus 로고    scopus 로고
    • NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes
    • Zhao L, et al. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2011; 301:E587–98.
    • (2011) Am J Physiol Endocrinol Metab , vol.301 , pp. E587-E598
    • Zhao, L.1
  • 79
    • 27444443876 scopus 로고    scopus 로고
    • Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement
    • Grundy SM, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112:2735–52.
    • (2005) Circulation , vol.112 , pp. 2735-2752
    • Grundy, S.M.1
  • 80
    • 84933183345 scopus 로고    scopus 로고
    • Increased NOD1, but not NOD2, activity in subcutaneous adipose tissue from patients with metabolic syndrome
    • Zhou Y-J, et al. Increased NOD1, but not NOD2, activity in subcutaneous adipose tissue from patients with metabolic syndrome. Obesity 2015; 23:1394–400.
    • (2015) Obesity , vol.23 , pp. 1394-1400
    • Zhou, Y.-J.1
  • 81
    • 84904411015 scopus 로고    scopus 로고
    • NOD1 expression is increased in the adipose tissue of women with gestational diabetes
    • Lappas M. NOD1 expression is increased in the adipose tissue of women with gestational diabetes. J Endocrinol 2014; 222:99–112.
    • (2014) J Endocrinol , vol.222 , pp. 99-112
    • Lappas, M.1
  • 82
    • 40449136493 scopus 로고    scopus 로고
    • The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals
    • Hitotsumatsu O, et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 2008; 28:381–90.
    • (2008) Immunity , vol.28 , pp. 381-390
    • Hitotsumatsu, O.1
  • 83
    • 79955018886 scopus 로고    scopus 로고
    • Genome-wide expression profiling identifies an impairment of negative feedback signals in the Crohn's disease-associated NOD2 variant L1007fsinsC
    • Billmann-Born S, et al. Genome-wide expression profiling identifies an impairment of negative feedback signals in the Crohn's disease-associated NOD2 variant L1007fsinsC. J Immunol 2011; 186:4027–38.
    • (2011) J Immunol , vol.186 , pp. 4027-4038
    • Billmann-Born, S.1
  • 84
    • 79955471681 scopus 로고    scopus 로고
    • Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases
    • Musone SL, et al. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun 2011; 12:176–82.
    • (2011) Genes Immun , vol.12 , pp. 176-182
    • Musone, S.L.1
  • 85
    • 0346656707 scopus 로고    scopus 로고
    • A genome scan in 260 inflammatory bowel disease-affected relative pairs
    • Barmada MM, et al. A genome scan in 260 inflammatory bowel disease-affected relative pairs. Inflamm Bowel Dis 2004; 10:513–20.
    • (2004) Inflamm Bowel Dis , vol.10 , pp. 513-520
    • Barmada, M.M.1
  • 86
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    • Bradbury LA, Brown MA. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661–78.
    • (2007) Nature , vol.447 , pp. 661-678
    • Bradbury, L.A.1    Brown, M.A.2
  • 87
    • 50149098200 scopus 로고    scopus 로고
    • Signature biomarkers in Crohn's disease: toward a molecular classification
    • Arsenescu R, et al. Signature biomarkers in Crohn's disease: toward a molecular classification. Mucosal Immunol 2008; 1:399–411.
    • (2008) Mucosal Immunol , vol.1 , pp. 399-411
    • Arsenescu, R.1
  • 88
    • 77954391573 scopus 로고    scopus 로고
    • Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis
    • Vereecke L, et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med 2010; 207:1513–23.
    • (2010) J Exp Med , vol.207 , pp. 1513-1523
    • Vereecke, L.1
  • 89
    • 0034730713 scopus 로고    scopus 로고
    • Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice
    • Lee EG, et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4.
    • (2000) Science , vol.289 , pp. 2350-2354
    • Lee, E.G.1
  • 90
    • 84903859326 scopus 로고    scopus 로고
    • The E3 ligase RNF34 is a novel negative regulator of the NOD1 pathway
    • Zhang R, et al. The E3 ligase RNF34 is a novel negative regulator of the NOD1 pathway. Cell Physiol Biochem 2014; 33:1954–62.
    • (2014) Cell Physiol Biochem , vol.33 , pp. 1954-1962
    • Zhang, R.1
  • 91
    • 84879761605 scopus 로고    scopus 로고
    • PSMA7 directly interacts with NOD1 and regulates its function
    • Yang L, et al. PSMA7 directly interacts with NOD1 and regulates its function. Cell Physiol Biochem 2013; 31:952–9.
    • (2013) Cell Physiol Biochem , vol.31 , pp. 952-959
    • Yang, L.1
  • 92
    • 84864053162 scopus 로고    scopus 로고
    • TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation
    • Zurek B, et al. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS One 2012; 7:e41255.
    • (2012) PLoS One , vol.7
    • Zurek, B.1
  • 93
    • 28844448136 scopus 로고    scopus 로고
    • A role for erbin in the regulation of Nod2-dependent NF-κB signaling
    • McDonald C, et al. A role for erbin in the regulation of Nod2-dependent NF-κB signaling. J Biol Chem 2005; 280:40301–9.
    • (2005) J Biol Chem , vol.280 , pp. 40301-40309
    • McDonald, C.1
  • 94
    • 33646941554 scopus 로고    scopus 로고
    • Role for erbin in bacterial activation of Nod2
    • Kufer TA, et al. Role for erbin in bacterial activation of Nod2. Infect Immun 2006; 74:3115–24.
    • (2006) Infect Immun , vol.74 , pp. 3115-3124
    • Kufer, T.A.1
  • 95
    • 84861634889 scopus 로고    scopus 로고
    • The nucleotide synthesis enzyme CAD inhibits NOD2 antibacterial function in human intestinal epithelial cells
    • e6
    • Richmond AL, et al. The nucleotide synthesis enzyme CAD inhibits NOD2 antibacterial function in human intestinal epithelial cells. Gastroenterology 2012; 142: 1483–92 e6.
    • (2012) Gastroenterology , vol.142 , pp. 1483-1492
    • Richmond, A.L.1
  • 96
    • 77953733399 scopus 로고    scopus 로고
    • Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling
    • von Kampen O, et al. Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling. J Biol Chem 2010; 285:19921–6.
    • (2010) J Biol Chem , vol.285 , pp. 19921-19926
    • von Kampen, O.1
  • 97
    • 84928012424 scopus 로고    scopus 로고
    • Association between CARD8 rs2043211 polymorphism and inflammatory bowel disease: a meta-analysis
    • Liu J, et al. Association between CARD8 rs2043211 polymorphism and inflammatory bowel disease: a meta-analysis. Immunol Invest 2015; 44:253–64.
    • (2015) Immunol Invest , vol.44 , pp. 253-264
    • Liu, J.1
  • 98
    • 84880141884 scopus 로고    scopus 로고
    • CARD8 gene encoding a protein of innate immunity is expressed in human atherosclerosis and associated with markers of inflammation
    • Paramel GV, et al. CARD8 gene encoding a protein of innate immunity is expressed in human atherosclerosis and associated with markers of inflammation. Clin Sci (Lond) 2013; 125:401–7.
    • (2013) Clin Sci (Lond) , vol.125 , pp. 401-407
    • Paramel, G.V.1
  • 99
    • 0042858341 scopus 로고    scopus 로고
    • Interferon-γ augments CARD4/NOD1 gene and protein expression through interferon regulatory factor-1 in intestinal epithelial cells
    • Hisamatsu T, Suzuki M, Podolsky DK. Interferon-γ augments CARD4/NOD1 gene and protein expression through interferon regulatory factor-1 in intestinal epithelial cells. J Biol Chem 2003; 278:32962–8.
    • (2003) J Biol Chem , vol.278 , pp. 32962-32968
    • Hisamatsu, T.1    Suzuki, M.2    Podolsky, D.K.3
  • 100
    • 0027207242 scopus 로고
    • Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation
    • Beg AA, et al. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation. Mol Cell Biol 1993; 13:3301–10.
    • (1993) Mol Cell Biol , vol.13 , pp. 3301-3310
    • Beg, A.A.1
  • 101
    • 0036828844 scopus 로고    scopus 로고
    • Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation
    • Gutierrez O, et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. J Biol Chem 2002; 277:41701–5.
    • (2002) J Biol Chem , vol.277 , pp. 41701-41705
    • Gutierrez, O.1
  • 102
    • 0037379915 scopus 로고    scopus 로고
    • TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells
    • Rosenstiel P, et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 2003; 124:1001–9.
    • (2003) Gastroenterology , vol.124 , pp. 1001-1009
    • Rosenstiel, P.1
  • 103
    • 0017886958 scopus 로고
    • Sodium butyrate inhibits histone deacetylation in cultured cells
    • Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978; 14:105–13.
    • (1978) Cell , vol.14 , pp. 105-113
    • Candido, E.P.1    Reeves, R.2    Davie, J.R.3
  • 104
    • 73249125168 scopus 로고    scopus 로고
    • Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan
    • Leung C-H, et al. Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan. Eur J Immunol 2009; 39:3529–37.
    • (2009) Eur J Immunol , vol.39 , pp. 3529-3537
    • Leung, C.-H.1
  • 105
    • 0026691619 scopus 로고
    • Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis
    • Scheppach W, et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103:51–6.
    • (1992) Gastroenterology , vol.103 , pp. 51-56
    • Scheppach, W.1
  • 106
    • 84870667053 scopus 로고    scopus 로고
    • Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders
    • Konsoula Z, Barile FA. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods 2012; 66:215–20.
    • (2012) J Pharmacol Toxicol Methods , vol.66 , pp. 215-220
    • Konsoula, Z.1    Barile, F.A.2
  • 107
    • 84983037030 scopus 로고    scopus 로고
    • Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes
    • Acevedo N, et al. Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes. Clin Epigenetics 2015; 7:34.
    • (2015) Clin Epigenetics , vol.7 , pp. 34
    • Acevedo, N.1
  • 108
    • 82555192432 scopus 로고    scopus 로고
    • DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts
    • Karouzakis E, et al. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun 2011; 12:643–52.
    • (2011) Genes Immun , vol.12 , pp. 643-652
    • Karouzakis, E.1
  • 109
    • 84899507731 scopus 로고    scopus 로고
    • Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation
    • Yamada Y, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med 2014; 33:1355–63.
    • (2014) Int J Mol Med , vol.33 , pp. 1355-1363
    • Yamada, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.