메뉴 건너뛰기




Volumn 284, Issue 2, 2017, Pages 183-195

Mitochondrial biogenesis and clearance: a balancing act

Author keywords

autophagy; mitochondrial biogenesis; mitophagy; nuclear respiratory factors; Parkin

Indexed keywords

ASSOCIATED WITH STRESS 1; BNIP3 LIKE 13 PROTEIN; BNIP3 LIKE PROTEIN; CYCLIC AMP; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; FUN14 DOMAIN CONTAINING PROTEIN 1; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MITOGEN ACTIVATED PROTEIN KINASE 1; MITOGEN ACTIVATED PROTEIN KINASE 14; NUCLEAR FACTOR ERYTHROID 2 LIKE 1; NUCLEAR FACTOR ERYTHROID 2 LIKE 2; PARKIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1BETA; PHOSPHATASE; PROPEPTIDE OF PHOSPHATASE AND TENSIN HOMOLOG INDUCED KINASE 1; PROTEIN; PROTEIN BCL 2; PROTEIN BNIP3; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR NRF1; TRANSCRIPTION FACTOR NRF2; UNCLASSIFIED DRUG; ARGONAUTE PROTEIN; EIF2C2 PROTEIN, HUMAN; IRON; MITOCHONDRIAL PROTEIN; NFE2L1 PROTEIN, HUMAN;

EID: 84981517030     PISSN: 1742464X     EISSN: 17424658     Source Type: Journal    
DOI: 10.1111/febs.13820     Document Type: Review
Times cited : (344)

References (89)
  • 1
    • 84887387419 scopus 로고    scopus 로고
    • After the banquet: mitochondrial biogenesis, mitophagy, and cell survival
    • &
    • Zhu J, Wang KZ & Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9, 1663–1676.
    • (2013) Autophagy , vol.9 , pp. 1663-1676
    • Zhu, J.1    Wang, K.Z.2    Chu, C.T.3
  • 2
    • 46749125376 scopus 로고    scopus 로고
    • Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
    • &
    • Ventura-Clapier R, Garnier A & Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79, 208–217.
    • (2008) Cardiovasc Res , vol.79 , pp. 208-217
    • Ventura-Clapier, R.1    Garnier, A.2    Veksler, V.3
  • 3
    • 84869051280 scopus 로고    scopus 로고
    • Mitochondrial disorders as windows into an ancient organelle
    • &
    • Vafai SB & Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383.
    • (2012) Nature , vol.491 , pp. 374-383
    • Vafai, S.B.1    Mootha, V.K.2
  • 4
    • 63449100136 scopus 로고    scopus 로고
    • Chapter 18 Analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits
    • &
    • McKenzie M, Lazarou M & Ryan MT (2009) Chapter 18 Analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. Methods Enzymol 456, 321–339.
    • (2009) Methods Enzymol , vol.456 , pp. 321-339
    • McKenzie, M.1    Lazarou, M.2    Ryan, M.T.3
  • 5
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F et al. (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189, 211–221.
    • (2010) J Cell Biol , vol.189 , pp. 211-221
    • Matsuda, N.1    Sato, S.2    Shiba, K.3    Okatsu, K.4    Saisho, K.5    Gautier, C.A.6    Sou, Y.S.7    Saiki, S.8    Kawajiri, S.9    Sato, F.10
  • 6
    • 84937061032 scopus 로고    scopus 로고
    • Influence of cytoplasmatic folding on mitochondrial import
    • &
    • Fraga H & Ventura S (2015) Influence of cytoplasmatic folding on mitochondrial import. Curr Med Chem 22, 2349–2359.
    • (2015) Curr Med Chem , vol.22 , pp. 2349-2359
    • Fraga, H.1    Ventura, S.2
  • 7
    • 84904191032 scopus 로고    scopus 로고
    • Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation
    • &
    • Schulz C & Rehling P (2014) Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation. Nat Commun 5, 4349.
    • (2014) Nat Commun , vol.5 , pp. 4349
    • Schulz, C.1    Rehling, P.2
  • 8
    • 0037058977 scopus 로고    scopus 로고
    • AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
    • &
    • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ & Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99, 15983–15987.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 15983-15987
    • Zong, H.1    Ren, J.M.2    Young, L.H.3    Pypaert, M.4    Mu, J.5    Birnbaum, M.J.6    Shulman, G.I.7
  • 9
    • 36749081539 scopus 로고    scopus 로고
    • mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • &
    • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK & Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450, 736–740.
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3    Vazquez, F.4    Mootha, V.K.5    Puigserver, P.6
  • 13
    • 84925581414 scopus 로고    scopus 로고
    • GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis
    • &
    • Yang ZF, Drumea K, Mott S, Wang J & Rosmarin AG (2014) GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol Cell Biol 34, 3194–3201.
    • (2014) Mol Cell Biol , vol.34 , pp. 3194-3201
    • Yang, Z.F.1    Drumea, K.2    Mott, S.3    Wang, J.4    Rosmarin, A.G.5
  • 14
    • 84887149480 scopus 로고    scopus 로고
    • Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases
    • &
    • Satoh J, Kawana N & Yamamoto Y (2013) Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Reg Syst Biol 7, 139–152.
    • (2013) Gene Reg Syst Biol , vol.7 , pp. 139-152
    • Satoh, J.1    Kawana, N.2    Yamamoto, Y.3
  • 15
    • 77649275112 scopus 로고    scopus 로고
    • Role of Nrf1 in antioxidant response element-mediated gene expression and beyond
    • &
    • Biswas M & Chan JY (2010) Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol 244, 16–20.
    • (2010) Toxicol Appl Pharmacol , vol.244 , pp. 16-20
    • Biswas, M.1    Chan, J.Y.2
  • 16
    • 84951325892 scopus 로고    scopus 로고
    • Competition between DNA methylation and transcription factors determines binding of NRF1
    • &
    • Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L & Schubeler D (2015) Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579.
    • (2015) Nature , vol.528 , pp. 575-579
    • Domcke, S.1    Bardet, A.F.2    Adrian Ginno, P.3    Hartl, D.4    Burger, L.5    Schubeler, D.6
  • 17
    • 77950488564 scopus 로고    scopus 로고
    • Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication
    • &
    • Bruni F, Polosa PL, Gadaleta MN, Cantatore P & Roberti M (2010) Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J Biol Chem 285, 3939–3948.
    • (2010) J Biol Chem , vol.285 , pp. 3939-3948
    • Bruni, F.1    Polosa, P.L.2    Gadaleta, M.N.3    Cantatore, P.4    Roberti, M.5
  • 19
    • 58149328569 scopus 로고    scopus 로고
    • Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1
    • &
    • Piantadosi CA, Carraway MS, Babiker A & Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103, 1232–1240.
    • (2008) Circ Res , vol.103 , pp. 1232-1240
    • Piantadosi, C.A.1    Carraway, M.S.2    Babiker, A.3    Suliman, H.B.4
  • 21
    • 84885944468 scopus 로고    scopus 로고
    • The emerging role of the Nrf2-Keap1 signaling pathway in cancer
    • &
    • Jaramillo MC & Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27, 2179–2191.
    • (2013) Genes Dev , vol.27 , pp. 2179-2191
    • Jaramillo, M.C.1    Zhang, D.D.2
  • 22
    • 78751703950 scopus 로고    scopus 로고
    • Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
    • &
    • Taguchi K, Motohashi H & Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes to Cells 16, 123–140.
    • (2011) Genes to Cells , vol.16 , pp. 123-140
    • Taguchi, K.1    Motohashi, H.2    Yamamoto, M.3
  • 23
    • 84930632378 scopus 로고    scopus 로고
    • Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans
    • &
    • Palikaras K, Lionaki E & Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528.
    • (2015) Nature , vol.521 , pp. 525-528
    • Palikaras, K.1    Lionaki, E.2    Tavernarakis, N.3
  • 26
    • 33745807575 scopus 로고    scopus 로고
    • Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function
    • &
    • Wang W & Chan JY (2006) Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem 281, 19676–19687.
    • (2006) J Biol Chem , vol.281 , pp. 19676-19687
    • Wang, W.1    Chan, J.Y.2
  • 27
    • 84904990897 scopus 로고    scopus 로고
    • Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97
    • &
    • Sha Z & Goldberg AL (2014) Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Current Biol 24, 1573–1583.
    • (2014) Current Biol , vol.24 , pp. 1573-1583
    • Sha, Z.1    Goldberg, A.L.2
  • 28
    • 46849094545 scopus 로고    scopus 로고
    • Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature
    • &
    • LeMoine CM, Genge CE & Moyes CD (2008) Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J Exp Biol 211, 1448–1455.
    • (2008) J Exp Biol , vol.211 , pp. 1448-1455
    • LeMoine, C.M.1    Genge, C.E.2    Moyes, C.D.3
  • 30
    • 77955415616 scopus 로고    scopus 로고
    • PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha
    • Shao D, Liu Y, Liu X, Zhu L, Cui Y, Cui A, Qiao A, Kong X, Liu Y, Chen Q et al. (2010) PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion 10, 516–527.
    • (2010) Mitochondrion , vol.10 , pp. 516-527
    • Shao, D.1    Liu, Y.2    Liu, X.3    Zhu, L.4    Cui, Y.5    Cui, A.6    Qiao, A.7    Kong, X.8    Liu, Y.9    Chen, Q.10
  • 33
    • 84932611086 scopus 로고    scopus 로고
    • Transcription factor Tfe3 directly regulates Pgc-1alpha in muscle
    • &
    • Salma N, Song JS, Arany Z & Fisher DE (2015) Transcription factor Tfe3 directly regulates Pgc-1alpha in muscle. J Cell Physiol 230, 2330–2336.
    • (2015) J Cell Physiol , vol.230 , pp. 2330-2336
    • Salma, N.1    Song, J.S.2    Arany, Z.3    Fisher, D.E.4
  • 34
    • 84869232993 scopus 로고    scopus 로고
    • Molecular pathways: the metabolic regulator estrogen-related receptor alpha as a therapeutic target in cancer
    • &
    • Chang CY & McDonnell DP (2012) Molecular pathways: the metabolic regulator estrogen-related receptor alpha as a therapeutic target in cancer. Clin Cancer Res 18, 6089–6095.
    • (2012) Clin Cancer Res , vol.18 , pp. 6089-6095
    • Chang, C.Y.1    McDonnell, D.P.2
  • 38
    • 84878658572 scopus 로고    scopus 로고
    • The nascent polypeptide-associated complex is a key regulator of proteostasis
    • &
    • Kirstein-Miles J, Scior A, Deuerling E & Morimoto RI (2013) The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J 32, 1451–1468.
    • (2013) EMBO J , vol.32 , pp. 1451-1468
    • Kirstein-Miles, J.1    Scior, A.2    Deuerling, E.3    Morimoto, R.I.4
  • 39
    • 84923367527 scopus 로고    scopus 로고
    • OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria
    • &
    • Lesnik C, Cohen Y, Atir-Lande A, Schuldiner M & Arava Y (2014) OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nat Commun 5, 5711.
    • (2014) Nat Commun , vol.5 , pp. 5711
    • Lesnik, C.1    Cohen, Y.2    Atir-Lande, A.3    Schuldiner, M.4    Arava, Y.5
  • 42
    • 84931561092 scopus 로고    scopus 로고
    • Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography
    • &
    • Pfeffer S, Woellhaf MW, Herrmann JM & Forster F (2015) Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat Commun 6, 6019.
    • (2015) Nat Commun , vol.6 , pp. 6019
    • Pfeffer, S.1    Woellhaf, M.W.2    Herrmann, J.M.3    Forster, F.4
  • 43
    • 84953249297 scopus 로고    scopus 로고
    • Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis
    • &
    • Kuzmenko A, Derbikova K, Salvatori R, Tankov S, Atkinson GC, Tenson T, Ott M, Kamenski P & Hauryliuk V (2016) Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Sci Rep 6, 18749.
    • (2016) Sci Rep , vol.6 , pp. 18749
    • Kuzmenko, A.1    Derbikova, K.2    Salvatori, R.3    Tankov, S.4    Atkinson, G.C.5    Tenson, T.6    Ott, M.7    Kamenski, P.8    Hauryliuk, V.9
  • 44
    • 84905389814 scopus 로고    scopus 로고
    • MicroRNA directly enhances mitochondrial translation during muscle differentiation
    • Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y et al. (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607–619.
    • (2014) Cell , vol.158 , pp. 607-619
    • Zhang, X.1    Zuo, X.2    Yang, B.3    Li, Z.4    Xue, Y.5    Zhou, Y.6    Huang, J.7    Zhao, X.8    Zhou, J.9    Yan, Y.10
  • 45
    • 84901020290 scopus 로고    scopus 로고
    • miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo
    • &
    • Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A & Steenbergen C (2014) miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 9, e96820.
    • (2014) PLoS One , vol.9
    • Das, S.1    Bedja, D.2    Campbell, N.3    Dunkerly, B.4    Chenna, V.5    Maitra, A.6    Steenbergen, C.7
  • 46
    • 84857546393 scopus 로고    scopus 로고
    • Control of mitochondrial activity by miRNAs
    • &
    • Li P, Jiao J, Gao G & Prabhakar BS (2012) Control of mitochondrial activity by miRNAs. J Cell Biochem 113, 1104–1110.
    • (2012) J Cell Biochem , vol.113 , pp. 1104-1110
    • Li, P.1    Jiao, J.2    Gao, G.3    Prabhakar, B.S.4
  • 47
    • 84871342129 scopus 로고    scopus 로고
    • MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3
    • &
    • Yamamoto H, Morino K, Nishio Y, Ugi S, Yoshizaki T, Kashiwagi A & Maegawa H (2012) MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am J Physiol Endocrinol Metab 303, E1419–E1427.
    • (2012) Am J Physiol Endocrinol Metab , vol.303 , pp. E1419-E1427
    • Yamamoto, H.1    Morino, K.2    Nishio, Y.3    Ugi, S.4    Yoshizaki, T.5    Kashiwagi, A.6    Maegawa, H.7
  • 48
    • 84899103245 scopus 로고    scopus 로고
    • MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle
    • &
    • Mohamed JS, Hajira A, Pardo PS & Boriek AM (2014) MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle. Diabetes 63, 1546–1559.
    • (2014) Diabetes , vol.63 , pp. 1546-1559
    • Mohamed, J.S.1    Hajira, A.2    Pardo, P.S.3    Boriek, A.M.4
  • 50
    • 84944881051 scopus 로고    scopus 로고
    • MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise
    • &
    • Xu Y, Zhao C, Sun X, Liu Z & Zhang J (2015) MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise. Biochem Biophys Res Commun 467, 103–108.
    • (2015) Biochem Biophys Res Commun , vol.467 , pp. 103-108
    • Xu, Y.1    Zhao, C.2    Sun, X.3    Liu, Z.4    Zhang, J.5
  • 51
    • 38549101188 scopus 로고    scopus 로고
    • Quality control of mitochondria: protection against neurodegeneration and ageing
    • &
    • Tatsuta T & Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27, 306–314.
    • (2008) EMBO J , vol.27 , pp. 306-314
    • Tatsuta, T.1    Langer, T.2
  • 53
    • 84908085343 scopus 로고    scopus 로고
    • A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
    • &
    • Sugiura A, McLelland GL, Fon EA & McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33, 2142–2156.
    • (2014) EMBO J , vol.33 , pp. 2142-2156
    • Sugiura, A.1    McLelland, G.L.2    Fon, E.A.3    McBride, H.M.4
  • 54
    • 84880376355 scopus 로고    scopus 로고
    • Emerging regulation and functions of autophagy
    • &
    • Boya P, Reggiori F & Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15, 713–720.
    • (2013) Nat Cell Biol , vol.15 , pp. 713-720
    • Boya, P.1    Reggiori, F.2    Codogno, P.3
  • 55
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: renovation of cells and tissues
    • &
    • Mizushima N & Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147, 728–741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 56
    • 84910648789 scopus 로고    scopus 로고
    • Emerging role of selective autophagy in human diseases
    • &
    • Mizumura K, Choi AM & Ryter SW (2014) Emerging role of selective autophagy in human diseases. Front Pharmacol 5, 244.
    • (2014) Front Pharmacol , vol.5 , pp. 244
    • Mizumura, K.1    Choi, A.M.2    Ryter, S.W.3
  • 58
    • 84953848628 scopus 로고    scopus 로고
    • Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy
    • &
    • Meissner C, Lorenz H, Hehn B & Lemberg MK (2015) Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 11, 1484–1498.
    • (2015) Autophagy , vol.11 , pp. 1484-1498
    • Meissner, C.1    Lorenz, H.2    Hehn, B.3    Lemberg, M.K.4
  • 60
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • &
    • Lazarou M, Jin SM, Kane LA & Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22, 320–333.
    • (2012) Dev Cell , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 61
    • 84866072587 scopus 로고    scopus 로고
    • PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
    • Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M et al. (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3, 1016.
    • (2012) Nat Commun , vol.3 , pp. 1016
    • Okatsu, K.1    Oka, T.2    Iguchi, M.3    Imamura, K.4    Kosako, H.5    Tani, N.6    Kimura, M.7    Go, E.8    Koyano, F.9    Funayama, M.10
  • 63
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • &
    • Chen Y & Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475.
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 67
    • 84861733247 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
    • &
    • Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S & Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287, 19094–19104.
    • (2012) J Biol Chem , vol.287 , pp. 19094-19104
    • Hanna, R.A.1    Quinsay, M.N.2    Orogo, A.M.3    Giang, K.4    Rikka, S.5    Gustafsson, A.B.6
  • 68
    • 84879138893 scopus 로고    scopus 로고
    • Selective escape of proteins from the mitochondria during mitophagy
    • &
    • Saita S, Shirane M & Nakayama KI (2013) Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 4, 1410.
    • (2013) Nat Commun , vol.4 , pp. 1410
    • Saita, S.1    Shirane, M.2    Nakayama, K.I.3
  • 70
    • 84929709305 scopus 로고    scopus 로고
    • The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway
    • &
    • Gao F, Chen D, Si J, Hu Q, Qin Z, Fang M & Wang G (2015) The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet 24, 2528–2538.
    • (2015) Hum Mol Genet , vol.24 , pp. 2528-2538
    • Gao, F.1    Chen, D.2    Si, J.3    Hu, Q.4    Qin, Z.5    Fang, M.6    Wang, G.7
  • 72
  • 73
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W et al. (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14, 177–185.
    • (2012) Nat Cell Biol , vol.14 , pp. 177-185
    • Liu, L.1    Feng, D.2    Chen, G.3    Chen, M.4    Zheng, Q.5    Song, P.6    Ma, Q.7    Zhu, C.8    Wang, R.9    Qi, W.10
  • 75
    • 84930659018 scopus 로고    scopus 로고
    • Cardiolipin and its different properties in mitophagy and apoptosis
    • &
    • Li XX, Tsoi B, Li YF, Kurihara H & He RR (2015) Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem 63, 301–311.
    • (2015) J Histochem Cytochem , vol.63 , pp. 301-311
    • Li, X.X.1    Tsoi, B.2    Li, Y.F.3    Kurihara, H.4    He, R.R.5
  • 78
    • 85020558944 scopus 로고    scopus 로고
    • Ceramide mediated lethal mitophagy: a novel cell death mechanism in FLT3 targeted therapy for acute myeloid leukemia
    • &
    • Dany M & Ogretmen B (2015) Ceramide mediated lethal mitophagy: a novel cell death mechanism in FLT3 targeted therapy for acute myeloid leukemia. FASEB J 29 (147), 1.
    • (2015) FASEB J , vol.29 , Issue.147 , pp. 1
    • Dany, M.1    Ogretmen, B.2
  • 79
    • 73649125823 scopus 로고    scopus 로고
    • Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression
    • &
    • Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA & Rucker RB (2010) Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285, 142–152.
    • (2010) J Biol Chem , vol.285 , pp. 142-152
    • Chowanadisai, W.1    Bauerly, K.A.2    Tchaparian, E.3    Wong, A.4    Cortopassi, G.A.5    Rucker, R.B.6
  • 80
    • 68749094302 scopus 로고    scopus 로고
    • cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis
    • &
    • De Rasmo D, Signorile A, Roca E & Papa S (2009) cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J 276, 4325–4333.
    • (2009) FEBS J , vol.276 , pp. 4325-4333
    • De Rasmo, D.1    Signorile, A.2    Roca, E.3    Papa, S.4
  • 82
    • 84864744900 scopus 로고    scopus 로고
    • Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
    • &
    • Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM & Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587–590.
    • (2012) Science , vol.337 , pp. 587-590
    • Nargund, A.M.1    Pellegrino, M.W.2    Fiorese, C.J.3    Baker, B.M.4    Haynes, C.M.5
  • 84
    • 84893500088 scopus 로고    scopus 로고
    • GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy
    • &
    • Scott I, Webster BR, Chan CK, Okonkwo JU, Han K & Sack MN (2014) GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J Biol Chem 289, 2864–2872.
    • (2014) J Biol Chem , vol.289 , pp. 2864-2872
    • Scott, I.1    Webster, B.R.2    Chan, C.K.3    Okonkwo, J.U.4    Han, K.5    Sack, M.N.6
  • 85
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • &
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM & Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 86
    • 21244477127 scopus 로고    scopus 로고
    • Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway
    • &
    • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS & Yan Z (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280, 19587–19593.
    • (2005) J Biol Chem , vol.280 , pp. 19587-19593
    • Akimoto, T.1    Pohnert, S.C.2    Li, P.3    Zhang, M.4    Gumbs, C.5    Rosenberg, P.B.6    Williams, R.S.7    Yan, Z.8
  • 87
    • 84940718214 scopus 로고    scopus 로고
    • Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways
    • &
    • Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T, Kang D & Kanki T (2015) Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332–343.
    • (2015) Autophagy , vol.11 , pp. 332-343
    • Hirota, Y.1    Yamashita, S.2    Kurihara, Y.3    Jin, X.4    Aihara, M.5    Saigusa, T.6    Kang, D.7    Kanki, T.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.