-
1
-
-
84887387419
-
After the banquet: mitochondrial biogenesis, mitophagy, and cell survival
-
&
-
Zhu J, Wang KZ & Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9, 1663–1676.
-
(2013)
Autophagy
, vol.9
, pp. 1663-1676
-
-
Zhu, J.1
Wang, K.Z.2
Chu, C.T.3
-
2
-
-
46749125376
-
Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
-
&
-
Ventura-Clapier R, Garnier A & Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79, 208–217.
-
(2008)
Cardiovasc Res
, vol.79
, pp. 208-217
-
-
Ventura-Clapier, R.1
Garnier, A.2
Veksler, V.3
-
3
-
-
84869051280
-
Mitochondrial disorders as windows into an ancient organelle
-
&
-
Vafai SB & Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383.
-
(2012)
Nature
, vol.491
, pp. 374-383
-
-
Vafai, S.B.1
Mootha, V.K.2
-
4
-
-
63449100136
-
Chapter 18 Analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits
-
&
-
McKenzie M, Lazarou M & Ryan MT (2009) Chapter 18 Analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. Methods Enzymol 456, 321–339.
-
(2009)
Methods Enzymol
, vol.456
, pp. 321-339
-
-
McKenzie, M.1
Lazarou, M.2
Ryan, M.T.3
-
5
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F et al. (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189, 211–221.
-
(2010)
J Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
-
6
-
-
84937061032
-
Influence of cytoplasmatic folding on mitochondrial import
-
&
-
Fraga H & Ventura S (2015) Influence of cytoplasmatic folding on mitochondrial import. Curr Med Chem 22, 2349–2359.
-
(2015)
Curr Med Chem
, vol.22
, pp. 2349-2359
-
-
Fraga, H.1
Ventura, S.2
-
7
-
-
84904191032
-
Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation
-
&
-
Schulz C & Rehling P (2014) Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation. Nat Commun 5, 4349.
-
(2014)
Nat Commun
, vol.5
, pp. 4349
-
-
Schulz, C.1
Rehling, P.2
-
8
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
&
-
Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ & Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99, 15983–15987.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 15983-15987
-
-
Zong, H.1
Ren, J.M.2
Young, L.H.3
Pypaert, M.4
Mu, J.5
Birnbaum, M.J.6
Shulman, G.I.7
-
9
-
-
36749081539
-
mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
&
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK & Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450, 736–740.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
10
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
-
11
-
-
0037066459
-
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
-
&
-
Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R & Williams RS (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296, 349–352.
-
(2002)
Science
, vol.296
, pp. 349-352
-
-
Wu, H.1
Kanatous, S.B.2
Thurmond, F.A.3
Gallardo, T.4
Isotani, E.5
Bassel-Duby, R.6
Williams, R.S.7
-
12
-
-
0347579845
-
Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide
-
Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S et al. (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299, 896–899.
-
(2003)
Science
, vol.299
, pp. 896-899
-
-
Nisoli, E.1
Clementi, E.2
Paolucci, C.3
Cozzi, V.4
Tonello, C.5
Sciorati, C.6
Bracale, R.7
Valerio, A.8
Francolini, M.9
Moncada, S.10
-
13
-
-
84925581414
-
GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis
-
&
-
Yang ZF, Drumea K, Mott S, Wang J & Rosmarin AG (2014) GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol Cell Biol 34, 3194–3201.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 3194-3201
-
-
Yang, Z.F.1
Drumea, K.2
Mott, S.3
Wang, J.4
Rosmarin, A.G.5
-
14
-
-
84887149480
-
Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases
-
&
-
Satoh J, Kawana N & Yamamoto Y (2013) Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Reg Syst Biol 7, 139–152.
-
(2013)
Gene Reg Syst Biol
, vol.7
, pp. 139-152
-
-
Satoh, J.1
Kawana, N.2
Yamamoto, Y.3
-
15
-
-
77649275112
-
Role of Nrf1 in antioxidant response element-mediated gene expression and beyond
-
&
-
Biswas M & Chan JY (2010) Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol 244, 16–20.
-
(2010)
Toxicol Appl Pharmacol
, vol.244
, pp. 16-20
-
-
Biswas, M.1
Chan, J.Y.2
-
16
-
-
84951325892
-
Competition between DNA methylation and transcription factors determines binding of NRF1
-
&
-
Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L & Schubeler D (2015) Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579.
-
(2015)
Nature
, vol.528
, pp. 575-579
-
-
Domcke, S.1
Bardet, A.F.2
Adrian Ginno, P.3
Hartl, D.4
Burger, L.5
Schubeler, D.6
-
17
-
-
77950488564
-
Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication
-
&
-
Bruni F, Polosa PL, Gadaleta MN, Cantatore P & Roberti M (2010) Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J Biol Chem 285, 3939–3948.
-
(2010)
J Biol Chem
, vol.285
, pp. 3939-3948
-
-
Bruni, F.1
Polosa, P.L.2
Gadaleta, M.N.3
Cantatore, P.4
Roberti, M.5
-
18
-
-
84910145057
-
A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function
-
Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO et al. (2014) A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab 20, 856–869.
-
(2014)
Cell Metab
, vol.20
, pp. 856-869
-
-
Ryu, D.1
Jo, Y.S.2
Lo Sasso, G.3
Stein, S.4
Zhang, H.5
Perino, A.6
Lee, J.U.7
Zeviani, M.8
Romand, R.9
Hottiger, M.O.10
-
19
-
-
58149328569
-
Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1
-
&
-
Piantadosi CA, Carraway MS, Babiker A & Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103, 1232–1240.
-
(2008)
Circ Res
, vol.103
, pp. 1232-1240
-
-
Piantadosi, C.A.1
Carraway, M.S.2
Babiker, A.3
Suliman, H.B.4
-
20
-
-
77957237159
-
Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis
-
Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW et al. (2010) Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 38, 5718–5734.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 5718-5734
-
-
Malhotra, D.1
Portales-Casamar, E.2
Singh, A.3
Srivastava, S.4
Arenillas, D.5
Happel, C.6
Shyr, C.7
Wakabayashi, N.8
Kensler, T.W.9
Wasserman, W.W.10
-
21
-
-
84885944468
-
The emerging role of the Nrf2-Keap1 signaling pathway in cancer
-
&
-
Jaramillo MC & Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27, 2179–2191.
-
(2013)
Genes Dev
, vol.27
, pp. 2179-2191
-
-
Jaramillo, M.C.1
Zhang, D.D.2
-
22
-
-
78751703950
-
Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
-
&
-
Taguchi K, Motohashi H & Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes to Cells 16, 123–140.
-
(2011)
Genes to Cells
, vol.16
, pp. 123-140
-
-
Taguchi, K.1
Motohashi, H.2
Yamamoto, M.3
-
23
-
-
84930632378
-
Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans
-
&
-
Palikaras K, Lionaki E & Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528.
-
(2015)
Nature
, vol.521
, pp. 525-528
-
-
Palikaras, K.1
Lionaki, E.2
Tavernarakis, N.3
-
24
-
-
84867040616
-
Mitochondrial SKN-1/Nrf mediates a conserved starvation response
-
&
-
Paek J, Lo JY, Narasimhan SD, Nguyen TN, Glover-Cutter K, Robida-Stubbs S, Suzuki T, Yamamoto M, Blackwell TK & Curran SP (2012) Mitochondrial SKN-1/Nrf mediates a conserved starvation response. Cell Metab 16, 526–537.
-
(2012)
Cell Metab
, vol.16
, pp. 526-537
-
-
Paek, J.1
Lo, J.Y.2
Narasimhan, S.D.3
Nguyen, T.N.4
Glover-Cutter, K.5
Robida-Stubbs, S.6
Suzuki, T.7
Yamamoto, M.8
Blackwell, T.K.9
Curran, S.P.10
-
25
-
-
78751560531
-
Long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes
-
Zhao R, Hou Y, Xue P, Woods CG, Fu J, Feng B, Guan D, Sun G, Chan JY, Waalkes MP et al. (2011) Long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes. Environ Health Perspect 119, 56–62.
-
(2011)
Environ Health Perspect
, vol.119
, pp. 56-62
-
-
Zhao, R.1
Hou, Y.2
Xue, P.3
Woods, C.G.4
Fu, J.5
Feng, B.6
Guan, D.7
Sun, G.8
Chan, J.Y.9
Waalkes, M.P.10
-
26
-
-
33745807575
-
Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function
-
&
-
Wang W & Chan JY (2006) Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem 281, 19676–19687.
-
(2006)
J Biol Chem
, vol.281
, pp. 19676-19687
-
-
Wang, W.1
Chan, J.Y.2
-
27
-
-
84904990897
-
Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97
-
&
-
Sha Z & Goldberg AL (2014) Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Current Biol 24, 1573–1583.
-
(2014)
Current Biol
, vol.24
, pp. 1573-1583
-
-
Sha, Z.1
Goldberg, A.L.2
-
28
-
-
46849094545
-
Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature
-
&
-
LeMoine CM, Genge CE & Moyes CD (2008) Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J Exp Biol 211, 1448–1455.
-
(2008)
J Exp Biol
, vol.211
, pp. 1448-1455
-
-
LeMoine, C.M.1
Genge, C.E.2
Moyes, C.D.3
-
29
-
-
84961839432
-
Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults
-
&
-
Hasegawa K, Yasuda T, Shiraishi C, Fujiwara K, Przedborski S, Mochizuki H & Yoshikawa K (2016) Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun 7, 10943.
-
(2016)
Nat Commun
, vol.7
, pp. 10943
-
-
Hasegawa, K.1
Yasuda, T.2
Shiraishi, C.3
Fujiwara, K.4
Przedborski, S.5
Mochizuki, H.6
Yoshikawa, K.7
-
30
-
-
77955415616
-
PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha
-
Shao D, Liu Y, Liu X, Zhu L, Cui Y, Cui A, Qiao A, Kong X, Liu Y, Chen Q et al. (2010) PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion 10, 516–527.
-
(2010)
Mitochondrion
, vol.10
, pp. 516-527
-
-
Shao, D.1
Liu, Y.2
Liu, X.3
Zhu, L.4
Cui, Y.5
Cui, A.6
Qiao, A.7
Kong, X.8
Liu, Y.9
Chen, Q.10
-
31
-
-
79959635928
-
Separation of the gluconeogenic and mitochondrial functions of PGC-1{alpha} through S6 kinase
-
&
-
Lustig Y, Ruas JL, Estall JL, Lo JC, Devarakonda S, Laznik D, Choi JH, Ono H, Olsen JV & Spiegelman BM (2011) Separation of the gluconeogenic and mitochondrial functions of PGC-1{alpha} through S6 kinase. Genes Dev 25, 1232–1244.
-
(2011)
Genes Dev
, vol.25
, pp. 1232-1244
-
-
Lustig, Y.1
Ruas, J.L.2
Estall, J.L.3
Lo, J.C.4
Devarakonda, S.5
Laznik, D.6
Choi, J.H.7
Ono, H.8
Olsen, J.V.9
Spiegelman, B.M.10
-
32
-
-
79956049960
-
PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease
-
&
-
Taherzadeh-Fard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, Epplen JT & Arning L (2011) PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener 6, 32.
-
(2011)
Mol Neurodegener
, vol.6
, pp. 32
-
-
Taherzadeh-Fard, E.1
Saft, C.2
Akkad, D.A.3
Wieczorek, S.4
Haghikia, A.5
Chan, A.6
Epplen, J.T.7
Arning, L.8
-
33
-
-
84932611086
-
Transcription factor Tfe3 directly regulates Pgc-1alpha in muscle
-
&
-
Salma N, Song JS, Arany Z & Fisher DE (2015) Transcription factor Tfe3 directly regulates Pgc-1alpha in muscle. J Cell Physiol 230, 2330–2336.
-
(2015)
J Cell Physiol
, vol.230
, pp. 2330-2336
-
-
Salma, N.1
Song, J.S.2
Arany, Z.3
Fisher, D.E.4
-
34
-
-
84869232993
-
Molecular pathways: the metabolic regulator estrogen-related receptor alpha as a therapeutic target in cancer
-
&
-
Chang CY & McDonnell DP (2012) Molecular pathways: the metabolic regulator estrogen-related receptor alpha as a therapeutic target in cancer. Clin Cancer Res 18, 6089–6095.
-
(2012)
Clin Cancer Res
, vol.18
, pp. 6089-6095
-
-
Chang, C.Y.1
McDonnell, D.P.2
-
35
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P et al. (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
Rudolph, D.7
Schutz, G.8
Yoon, C.9
Puigserver, P.10
-
36
-
-
84962339790
-
Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting beta-barrel biogenesis
-
&
-
Wenz LS, Ellenrieder L, Qiu J, Bohnert M, Zufall N, van der Laan M, Pfanner N, Wiedemann N & Becker T (2015) Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting beta-barrel biogenesis. J Cell Biol 210, 1047–1054.
-
(2015)
J Cell Biol
, vol.210
, pp. 1047-1054
-
-
Wenz, L.S.1
Ellenrieder, L.2
Qiu, J.3
Bohnert, M.4
Zufall, N.5
van der Laan, M.6
Pfanner, N.7
Wiedemann, N.8
Becker, T.9
-
37
-
-
73549098882
-
Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner
-
&
-
Eliyahu E, Pnueli L, Melamed D, Scherrer T, Gerber AP, Pines O, Rapaport D & Arava Y (2010) Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol 30, 284–294.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 284-294
-
-
Eliyahu, E.1
Pnueli, L.2
Melamed, D.3
Scherrer, T.4
Gerber, A.P.5
Pines, O.6
Rapaport, D.7
Arava, Y.8
-
38
-
-
84878658572
-
The nascent polypeptide-associated complex is a key regulator of proteostasis
-
&
-
Kirstein-Miles J, Scior A, Deuerling E & Morimoto RI (2013) The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J 32, 1451–1468.
-
(2013)
EMBO J
, vol.32
, pp. 1451-1468
-
-
Kirstein-Miles, J.1
Scior, A.2
Deuerling, E.3
Morimoto, R.I.4
-
39
-
-
84923367527
-
OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria
-
&
-
Lesnik C, Cohen Y, Atir-Lande A, Schuldiner M & Arava Y (2014) OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nat Commun 5, 5711.
-
(2014)
Nat Commun
, vol.5
, pp. 5711
-
-
Lesnik, C.1
Cohen, Y.2
Atir-Lande, A.3
Schuldiner, M.4
Arava, Y.5
-
40
-
-
7644237446
-
Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA
-
&
-
Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, Hamasaki N & Kang D (2004) Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 24, 9823–9834.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 9823-9834
-
-
Kanki, T.1
Ohgaki, K.2
Gaspari, M.3
Gustafsson, C.M.4
Fukuoh, A.5
Sasaki, N.6
Hamasaki, N.7
Kang, D.8
-
41
-
-
84899011400
-
Organization of the human mitochondrial transcription initiation complex
-
&
-
Yakubovskaya E, Guja KE, Eng ET, Choi WS, Mejia E, Beglov D, Lukin M, Kozakov D & Garcia-Diaz M (2014) Organization of the human mitochondrial transcription initiation complex. Nucleic Acids Res 42, 4100–4112.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 4100-4112
-
-
Yakubovskaya, E.1
Guja, K.E.2
Eng, E.T.3
Choi, W.S.4
Mejia, E.5
Beglov, D.6
Lukin, M.7
Kozakov, D.8
Garcia-Diaz, M.9
-
42
-
-
84931561092
-
Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography
-
&
-
Pfeffer S, Woellhaf MW, Herrmann JM & Forster F (2015) Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat Commun 6, 6019.
-
(2015)
Nat Commun
, vol.6
, pp. 6019
-
-
Pfeffer, S.1
Woellhaf, M.W.2
Herrmann, J.M.3
Forster, F.4
-
43
-
-
84953249297
-
Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis
-
&
-
Kuzmenko A, Derbikova K, Salvatori R, Tankov S, Atkinson GC, Tenson T, Ott M, Kamenski P & Hauryliuk V (2016) Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Sci Rep 6, 18749.
-
(2016)
Sci Rep
, vol.6
, pp. 18749
-
-
Kuzmenko, A.1
Derbikova, K.2
Salvatori, R.3
Tankov, S.4
Atkinson, G.C.5
Tenson, T.6
Ott, M.7
Kamenski, P.8
Hauryliuk, V.9
-
44
-
-
84905389814
-
MicroRNA directly enhances mitochondrial translation during muscle differentiation
-
Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y et al. (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607–619.
-
(2014)
Cell
, vol.158
, pp. 607-619
-
-
Zhang, X.1
Zuo, X.2
Yang, B.3
Li, Z.4
Xue, Y.5
Zhou, Y.6
Huang, J.7
Zhao, X.8
Zhou, J.9
Yan, Y.10
-
45
-
-
84901020290
-
miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo
-
&
-
Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A & Steenbergen C (2014) miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 9, e96820.
-
(2014)
PLoS One
, vol.9
-
-
Das, S.1
Bedja, D.2
Campbell, N.3
Dunkerly, B.4
Chenna, V.5
Maitra, A.6
Steenbergen, C.7
-
47
-
-
84871342129
-
MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3
-
&
-
Yamamoto H, Morino K, Nishio Y, Ugi S, Yoshizaki T, Kashiwagi A & Maegawa H (2012) MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am J Physiol Endocrinol Metab 303, E1419–E1427.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
, pp. E1419-E1427
-
-
Yamamoto, H.1
Morino, K.2
Nishio, Y.3
Ugi, S.4
Yoshizaki, T.5
Kashiwagi, A.6
Maegawa, H.7
-
48
-
-
84899103245
-
MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle
-
&
-
Mohamed JS, Hajira A, Pardo PS & Boriek AM (2014) MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle. Diabetes 63, 1546–1559.
-
(2014)
Diabetes
, vol.63
, pp. 1546-1559
-
-
Mohamed, J.S.1
Hajira, A.2
Pardo, P.S.3
Boriek, A.M.4
-
49
-
-
84959189255
-
MicroRNA-27b regulates mitochondria biogenesis in myocytes
-
&
-
Shen L, Chen L, Zhang S, Du J, Bai L, Zhang Y, Jiang Y, Li X, Wang J & Zhu L (2016) MicroRNA-27b regulates mitochondria biogenesis in myocytes. PLoS One 11, e0148532.
-
(2016)
PLoS One
, vol.11
-
-
Shen, L.1
Chen, L.2
Zhang, S.3
Du, J.4
Bai, L.5
Zhang, Y.6
Jiang, Y.7
Li, X.8
Wang, J.9
Zhu, L.10
-
50
-
-
84944881051
-
MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise
-
&
-
Xu Y, Zhao C, Sun X, Liu Z & Zhang J (2015) MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise. Biochem Biophys Res Commun 467, 103–108.
-
(2015)
Biochem Biophys Res Commun
, vol.467
, pp. 103-108
-
-
Xu, Y.1
Zhao, C.2
Sun, X.3
Liu, Z.4
Zhang, J.5
-
51
-
-
38549101188
-
Quality control of mitochondria: protection against neurodegeneration and ageing
-
&
-
Tatsuta T & Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27, 306–314.
-
(2008)
EMBO J
, vol.27
, pp. 306-314
-
-
Tatsuta, T.1
Langer, T.2
-
53
-
-
84908085343
-
A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
-
&
-
Sugiura A, McLelland GL, Fon EA & McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33, 2142–2156.
-
(2014)
EMBO J
, vol.33
, pp. 2142-2156
-
-
Sugiura, A.1
McLelland, G.L.2
Fon, E.A.3
McBride, H.M.4
-
54
-
-
84880376355
-
Emerging regulation and functions of autophagy
-
&
-
Boya P, Reggiori F & Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15, 713–720.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 713-720
-
-
Boya, P.1
Reggiori, F.2
Codogno, P.3
-
55
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
&
-
Mizushima N & Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147, 728–741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
56
-
-
84910648789
-
Emerging role of selective autophagy in human diseases
-
&
-
Mizumura K, Choi AM & Ryter SW (2014) Emerging role of selective autophagy in human diseases. Front Pharmacol 5, 244.
-
(2014)
Front Pharmacol
, vol.5
, pp. 244
-
-
Mizumura, K.1
Choi, A.M.2
Ryter, S.W.3
-
57
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
&
-
Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS & Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13, 378–385.
-
(2012)
EMBO Rep
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
Grenier, K.2
Aguileta, M.A.3
Muise, S.4
Farazifard, R.5
Haque, M.E.6
McBride, H.M.7
Park, D.S.8
Fon, E.A.9
-
58
-
-
84953848628
-
Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy
-
&
-
Meissner C, Lorenz H, Hehn B & Lemberg MK (2015) Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 11, 1484–1498.
-
(2015)
Autophagy
, vol.11
, pp. 1484-1498
-
-
Meissner, C.1
Lorenz, H.2
Hehn, B.3
Lemberg, M.K.4
-
59
-
-
84894599877
-
Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy
-
&
-
Fedorowicz MA, de Vries-Schneider RL, Rub C, Becker D, Huang Y, Zhou C, Alessi Wolken DM, Voos W, Liu Y & Przedborski S (2014) Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy. EMBO Rep 15, 86–93.
-
(2014)
EMBO Rep
, vol.15
, pp. 86-93
-
-
Fedorowicz, M.A.1
de Vries-Schneider, R.L.2
Rub, C.3
Becker, D.4
Huang, Y.5
Zhou, C.6
Alessi Wolken, D.M.7
Voos, W.8
Liu, Y.9
Przedborski, S.10
-
60
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
&
-
Lazarou M, Jin SM, Kane LA & Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22, 320–333.
-
(2012)
Dev Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
61
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M et al. (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3, 1016.
-
(2012)
Nat Commun
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
Imamura, K.4
Kosako, H.5
Tani, N.6
Kimura, M.7
Go, E.8
Koyano, F.9
Funayama, M.10
-
62
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T et al. (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
63
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
&
-
Chen Y & Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
64
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
&
-
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI & Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
65
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A et al. (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11, 45–51.
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Lohr, F.8
Popovic, D.9
Occhipinti, A.10
-
66
-
-
79952617818
-
Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover
-
&
-
Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN & Gustafsson AB (2011) Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ 18, 721–731.
-
(2011)
Cell Death Differ
, vol.18
, pp. 721-731
-
-
Rikka, S.1
Quinsay, M.N.2
Thomas, R.L.3
Kubli, D.A.4
Zhang, X.5
Murphy, A.N.6
Gustafsson, A.B.7
-
67
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
&
-
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S & Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287, 19094–19104.
-
(2012)
J Biol Chem
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson, A.B.6
-
68
-
-
84879138893
-
Selective escape of proteins from the mitochondria during mitophagy
-
&
-
Saita S, Shirane M & Nakayama KI (2013) Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 4, 1410.
-
(2013)
Nat Commun
, vol.4
, pp. 1410
-
-
Saita, S.1
Shirane, M.2
Nakayama, K.I.3
-
69
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
-
&
-
Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A & Brady NR (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288, 1099–1113.
-
(2013)
J Biol Chem
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
Massen, S.2
Terenzio, M.3
Lang, V.4
Chen-Lindner, S.5
Eils, R.6
Novak, I.7
Dikic, I.8
Hamacher-Brady, A.9
Brady, N.R.10
-
70
-
-
84929709305
-
The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway
-
&
-
Gao F, Chen D, Si J, Hu Q, Qin Z, Fang M & Wang G (2015) The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet 24, 2528–2538.
-
(2015)
Hum Mol Genet
, vol.24
, pp. 2528-2538
-
-
Gao, F.1
Chen, D.2
Si, J.3
Hu, Q.4
Qin, Z.5
Fang, M.6
Wang, G.7
-
71
-
-
84936132577
-
Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
-
Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H et al. (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6, 7527.
-
(2015)
Nat Commun
, vol.6
, pp. 7527
-
-
Murakawa, T.1
Yamaguchi, O.2
Hashimoto, A.3
Hikoso, S.4
Takeda, T.5
Oka, T.6
Yasui, H.7
Ueda, H.8
Akazawa, Y.9
Nakayama, H.10
-
72
-
-
84899789746
-
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
-
Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L et al. (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15, 566–575.
-
(2014)
EMBO Rep
, vol.15
, pp. 566-575
-
-
Wu, W.1
Tian, W.2
Hu, Z.3
Chen, G.4
Huang, L.5
Li, W.6
Zhang, X.7
Xue, P.8
Zhou, C.9
Liu, L.10
-
73
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W et al. (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14, 177–185.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
74
-
-
84964533976
-
Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy
-
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L et al. (2016) Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12, 689–702.
-
(2016)
Autophagy
, vol.12
, pp. 689-702
-
-
Chen, M.1
Chen, Z.2
Wang, Y.3
Tan, Z.4
Zhu, C.5
Li, Y.6
Han, Z.7
Chen, L.8
Gao, R.9
Liu, L.10
-
75
-
-
84930659018
-
Cardiolipin and its different properties in mitophagy and apoptosis
-
&
-
Li XX, Tsoi B, Li YF, Kurihara H & He RR (2015) Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem 63, 301–311.
-
(2015)
J Histochem Cytochem
, vol.63
, pp. 301-311
-
-
Li, X.X.1
Tsoi, B.2
Li, Y.F.3
Kurihara, H.4
He, R.R.5
-
76
-
-
84953432704
-
NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy
-
Kagan VE, Jiang J, Huang Z, Tyurina YY, Desbourdes C, Cottet-Rousselle C, Dar HH, Verma M, Tyurin VA, Kapralov AA et al. (2016) NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ 23, 1140–1151.
-
(2016)
Cell Death Differ
, vol.23
, pp. 1140-1151
-
-
Kagan, V.E.1
Jiang, J.2
Huang, Z.3
Tyurina, Y.Y.4
Desbourdes, C.5
Cottet-Rousselle, C.6
Dar, H.H.7
Verma, M.8
Tyurin, V.A.9
Kapralov, A.A.10
-
77
-
-
84870302121
-
Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy
-
Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM et al. (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8, 831–838.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 831-838
-
-
Sentelle, R.D.1
Senkal, C.E.2
Jiang, W.3
Ponnusamy, S.4
Gencer, S.5
Selvam, S.P.6
Ramshesh, V.K.7
Peterson, Y.K.8
Lemasters, J.J.9
Szulc, Z.M.10
-
78
-
-
85020558944
-
Ceramide mediated lethal mitophagy: a novel cell death mechanism in FLT3 targeted therapy for acute myeloid leukemia
-
&
-
Dany M & Ogretmen B (2015) Ceramide mediated lethal mitophagy: a novel cell death mechanism in FLT3 targeted therapy for acute myeloid leukemia. FASEB J 29 (147), 1.
-
(2015)
FASEB J
, vol.29
, Issue.147
, pp. 1
-
-
Dany, M.1
Ogretmen, B.2
-
79
-
-
73649125823
-
Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression
-
&
-
Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA & Rucker RB (2010) Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285, 142–152.
-
(2010)
J Biol Chem
, vol.285
, pp. 142-152
-
-
Chowanadisai, W.1
Bauerly, K.A.2
Tchaparian, E.3
Wong, A.4
Cortopassi, G.A.5
Rucker, R.B.6
-
80
-
-
68749094302
-
cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis
-
&
-
De Rasmo D, Signorile A, Roca E & Papa S (2009) cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J 276, 4325–4333.
-
(2009)
FEBS J
, vol.276
, pp. 4325-4333
-
-
De Rasmo, D.1
Signorile, A.2
Roca, E.3
Papa, S.4
-
81
-
-
77955875002
-
Regulation of the autophagy protein LC3 by phosphorylation
-
&
-
Cherra SJ 3rd, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW & Chu CT (2010) Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 190, 533–539.
-
(2010)
J Cell Biol
, vol.190
, pp. 533-539
-
-
Cherra, S.J.1
Kulich, S.M.2
Uechi, G.3
Balasubramani, M.4
Mountzouris, J.5
Day, B.W.6
Chu, C.T.7
-
82
-
-
84864744900
-
Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
-
&
-
Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM & Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587–590.
-
(2012)
Science
, vol.337
, pp. 587-590
-
-
Nargund, A.M.1
Pellegrino, M.W.2
Fiorese, C.J.3
Baker, B.M.4
Haynes, C.M.5
-
83
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P et al. (2011) TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Arencibia, M.G.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
-
84
-
-
84893500088
-
GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy
-
&
-
Scott I, Webster BR, Chan CK, Okonkwo JU, Han K & Sack MN (2014) GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J Biol Chem 289, 2864–2872.
-
(2014)
J Biol Chem
, vol.289
, pp. 2864-2872
-
-
Scott, I.1
Webster, B.R.2
Chan, C.K.3
Okonkwo, J.U.4
Han, K.5
Sack, M.N.6
-
85
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
&
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM & Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
86
-
-
21244477127
-
Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway
-
&
-
Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS & Yan Z (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280, 19587–19593.
-
(2005)
J Biol Chem
, vol.280
, pp. 19587-19593
-
-
Akimoto, T.1
Pohnert, S.C.2
Li, P.3
Zhang, M.4
Gumbs, C.5
Rosenberg, P.B.6
Williams, R.S.7
Yan, Z.8
-
87
-
-
84940718214
-
Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways
-
&
-
Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T, Kang D & Kanki T (2015) Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332–343.
-
(2015)
Autophagy
, vol.11
, pp. 332-343
-
-
Hirota, Y.1
Yamashita, S.2
Kurihara, Y.3
Jin, X.4
Aihara, M.5
Saigusa, T.6
Kang, D.7
Kanki, T.8
-
88
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
&
-
Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL & Dawson TM (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144, 689–702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
Lee, Y.4
Lee, Y.I.5
Pletinkova, O.6
Troconso, J.C.7
Dawson, V.L.8
Dawson, T.M.9
-
89
-
-
33644778845
-
Parkin enhances mitochondrial biogenesis in proliferating cells
-
&
-
Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H & Matsumoto T (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15, 883–895.
-
(2006)
Hum Mol Genet
, vol.15
, pp. 883-895
-
-
Kuroda, Y.1
Mitsui, T.2
Kunishige, M.3
Shono, M.4
Akaike, M.5
Azuma, H.6
Matsumoto, T.7
|