메뉴 건너뛰기




Volumn 17, Issue 12, 2016, Pages 719-732

A network-biology perspective of microRNA function and dysfunction in cancer

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA; RNA; TRANSCRIPTION FACTOR;

EID: 84992699501     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg.2016.134     Document Type: Review
Times cited : (590)

References (233)
  • 1
    • 0027751663 scopus 로고
    • The C elegans heterochronic gene lin 4 encodes small RNAs with antisense complementarity to lin 14
    • Lee R. C, Feinbaum R. L, & Ambros V. The C. elegans heterochronic gene lin 4 encodes small RNAs with antisense complementarity to lin 14. Cell 75, 843-854 (1993).
    • (1993) Cell , vol.75 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 2
    • 84929902258 scopus 로고    scopus 로고
    • MicroRNA biogenesis pathways in cancer
    • Lin S, & Gregory R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321-333 (2015).
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 321-333
    • Lin, S.1    Gregory, R.I.2
  • 3
    • 84931572130 scopus 로고    scopus 로고
    • Towards a molecular understanding of microRNA-mediated gene silencing
    • Jonas S, & Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421-433 (2015).
    • (2015) Nat. Rev. Genet , vol.16 , pp. 421-433
    • Jonas, S.1    Izaurralde, E.2
  • 5
    • 0036544755 scopus 로고    scopus 로고
    • Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-Transcriptional regulation
    • Lai E. C. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-Transcriptional regulation. Nat. Genet. 30, 363-364 (2002).
    • (2002) Nat. Genet , vol.30 , pp. 363-364
    • Lai, E.C.1
  • 6
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis B. P, Burge C. B, & Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20 (2005).
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 7
    • 57749206034 scopus 로고    scopus 로고
    • Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex
    • Wang Y, et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921-926 (2008).
    • (2008) Nature , vol.456 , pp. 921-926
    • Wang, Y.1
  • 8
    • 84863624199 scopus 로고    scopus 로고
    • The structure of human argonaute 2 in complex with miR 20a
    • Elkayam E, et al. The structure of human argonaute 2 in complex with miR 20a. Cell 150, 100-110 (2012).
    • (2012) Cell , vol.150 , pp. 100-110
    • Elkayam, E.1
  • 10
    • 70349320158 scopus 로고    scopus 로고
    • Causes and consequences of microRNA dysregulation in cancer
    • Croce C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704-714 (2009).
    • (2009) Nat. Rev. Genet , vol.10 , pp. 704-714
    • Croce, C.M.1
  • 11
    • 84906258538 scopus 로고    scopus 로고
    • Aberrant regulation and function of microRNAs in cancer
    • Adams B. D, Kasinski A. L, & J, S. F. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 24, R762-R776 (2014).
    • (2014) Curr. Biol , vol.24 , pp. R762-R776
    • Adams, B.D.1    Kasinski, A.L.J.F.S.2
  • 12
    • 20444460289 scopus 로고    scopus 로고
    • MicroRNA expression profiles classify human cancers
    • Lu J, et al. MicroRNA expression profiles classify human cancers. Nature 435, 834-838 (2005).
    • (2005) Nature , vol.435 , pp. 834-838
    • Lu, J.1
  • 13
    • 34247593034 scopus 로고    scopus 로고
    • Impaired microRNA processing enhances cellular transformation and tumorigenesis
    • Kumar M. S, Lu J, Mercer K. L, Golub T. R, & Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673-677 (2007).
    • (2007) Nat. Genet , vol.39 , pp. 673-677
    • Kumar, M.S.1    Lu, J.2    Mercer, K.L.3    Golub, T.R.4    Jacks, T.5
  • 14
    • 84937977372 scopus 로고    scopus 로고
    • Control of cancer formation by intrinsic genetic noise and microenvironmental cues
    • Brock A, Krause S, & Ingber D. E. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat. Rev. Cancer 15, 499-509 (2015).
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 499-509
    • Brock, A.1    Krause, S.2    Ingber, D.E.3
  • 15
    • 84860324470 scopus 로고    scopus 로고
    • Roles for microRNAs in conferring robustness to biological processes
    • Ebert M. S, & Sharp P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515-524 (2012).
    • (2012) Cell , vol.149 , pp. 515-524
    • Ebert, M.S.1    Sharp, P.A.2
  • 16
    • 41349119880 scopus 로고    scopus 로고
    • Stochastic switching as a survival strategy in fluctuating environments
    • Acar M, Mettetal J. T, & van Oudenaarden A. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471-475 (2008).
    • (2008) Nat. Genet , vol.40 , pp. 471-475
    • Acar, M.1    Mettetal, J.T.2    Van Oudenaarden, A.3
  • 17
    • 70350336588 scopus 로고    scopus 로고
    • Architecture-dependent noise discriminates functionally analogous differentiation circuits
    • Çaǧatay T, Turcotte M, Elowitz M. B, Garcia- Ojalvo J, & Süel G. M. Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139, 512-522 (2009).
    • (2009) Cell , vol.139 , pp. 512-522
    • Çaǧatay, T.1    Turcotte, M.2    Elowitz, M.B.3    Garcia-Ojalvo, J.4    Süel, G.M.5
  • 18
    • 84887612347 scopus 로고    scopus 로고
    • Circulating nucleic acids as biomarkers in breast cancer
    • Schwarzenbach H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 15, 211 (2013).
    • (2013) Breast Cancer Res , vol.15 , pp. 211
    • Schwarzenbach, H.1
  • 19
    • 84905122848 scopus 로고    scopus 로고
    • MicroRNAs in cancer: Biomarkers, functions and therapy
    • Hayes J, Peruzzi P. P, & Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460-469 (2014).
    • (2014) Trends Mol. Med , vol.20 , pp. 460-469
    • Hayes, J.1    Peruzzi, P.P.2    Lawler, S.3
  • 20
    • 84873582060 scopus 로고    scopus 로고
    • Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer
    • Yang D, et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23, 186-199 (2013).
    • (2013) Cancer Cell , vol.23 , pp. 186-199
    • Yang, D.1
  • 21
    • 84902533403 scopus 로고    scopus 로고
    • MicroRNAs as therapeutic targets in human cancers
    • Shah M. Y, & Calin G. A. MicroRNAs as therapeutic targets in human cancers. Wiley Interdiscip. Rev. RNA 5, 537-548 (2014).
    • (2014) Wiley Interdiscip. Rev. RNA , vol.5 , pp. 537-548
    • Shah, M.Y.1    Calin, G.A.2
  • 22
    • 49949116902 scopus 로고    scopus 로고
    • The impact of microRNAs on protein output
    • Baek D, et al. The impact of microRNAs on protein output. Nature 455, 64-71 (2009).
    • (2009) Nature , vol.455 , pp. 64-71
    • Baek, D.1
  • 23
    • 77955644289 scopus 로고    scopus 로고
    • Mammalian microRNAs predominantly act to decrease target mRNA levels
    • Guo H, Ingolia N. T, Weissman J. S, & Bartel D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 (2010).
    • (2010) Nature , vol.466 , pp. 835-840
    • Guo, H.1    Ingolia, N.T.2    Weissman, J.S.3    Bartel, D.P.4
  • 24
    • 84922394487 scopus 로고    scopus 로고
    • MRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues
    • Eichhorn S. W, et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104-115 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 104-115
    • Eichhorn, S.W.1
  • 25
    • 49949117302 scopus 로고    scopus 로고
    • Widespread changes in protein synthesis induced by microRNAs
    • Selbach M, et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63 (2008).
    • (2008) Nature , vol.455 , pp. 58-63
    • Selbach, M.1
  • 26
    • 84859811931 scopus 로고    scopus 로고
    • Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer
    • Uhlmann S, et al. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol. Syst. Biol. 8, 570 (2012).
    • (2012) Mol. Syst. Biol , vol.8 , pp. 570
    • Uhlmann, S.1
  • 27
    • 84902338279 scopus 로고    scopus 로고
    • MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
    • Du N. H, Arpat A. B, De Matos M, & Gatfield D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 2014, 1-29 (2014).
    • (2014) ELife , vol.2014 , pp. 1-29
    • Du, N.H.1    Arpat, A.B.2    De Matos, M.3    Gatfield, D.4
  • 28
    • 84933277411 scopus 로고    scopus 로고
    • An allelic series of miR 17~92- mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron
    • Han Y. C, et al. An allelic series of miR 17~92- mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat. Genet. 47, 766-775 (2015).
    • (2015) Nat. Genet , vol.47 , pp. 766-775
    • Han, Y.C.1
  • 29
    • 84955338195 scopus 로고    scopus 로고
    • Elucidating microRNA regulatory networks using transcriptional, post-Transcriptional, and histone modification measurements
    • Gosline S. J. C, et al. Elucidating microRNA regulatory networks using transcriptional, post-Transcriptional, and histone modification measurements. Cell Rep. 14, 310-319 (2016).
    • (2016) Cell Rep , vol.14 , pp. 310-319
    • Gosline, S.J.C.1
  • 30
    • 84908222388 scopus 로고    scopus 로고
    • Genome-wide identification of miR 200 targets reveals a regulatory network controlling cell invasion
    • Bracken C. P, et al. Genome-wide identification of miR 200 targets reveals a regulatory network controlling cell invasion. EMBO J. 33, 2040-2056 (2014).
    • (2014) EMBO J. , vol.33 , pp. 2040-2056
    • Bracken, C.P.1
  • 31
    • 77952368550 scopus 로고    scopus 로고
    • Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes
    • Chiang H, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992-1009 (2010).
    • (2010) Genes Dev , vol.24 , pp. 992-1009
    • Chiang, H.1
  • 32
    • 27344456287 scopus 로고    scopus 로고
    • MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets
    • Grün D, Wang Y. L, Langenberger D, Gunsalus K. C, & Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).
    • (2005) PLoS Comput. Biol , vol.1 , pp. e13
    • Grün, D.1    Wang, Y.L.2    Langenberger, D.3    Gunsalus, K.C.4    Rajewsky, N.5
  • 33
    • 77950348609 scopus 로고    scopus 로고
    • Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures
    • Tsang J. Ebert M, & van Oudenaarden A. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol. Cell 38, 140-153 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 140-153
    • Tsang, J.1    Ebert, M.2    Van Oudenaarden, A.3
  • 34
    • 84855262919 scopus 로고    scopus 로고
    • A densely interconnected genome-wide network of microRNAs and oncogenic pathways revealed using gene expression signatures
    • Ooi C. H, et al. A densely interconnected genome-wide network of microRNAs and oncogenic pathways revealed using gene expression signatures. PLoS Genet. 7 e1002415 (2011).
    • (2011) PLoS Genet , vol.7 , pp. e1002415
    • Ooi, C.H.1
  • 35
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: A network-based approach to human disease
    • Barabási A. L, Gulbahce N, & Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56-68 (2011).
    • (2011) Nat. Rev. Genet , vol.12 , pp. 56-68
    • Barabási, A.L.1    Gulbahce, N.2    Loscalzo, J.3
  • 36
    • 34547555796 scopus 로고    scopus 로고
    • Global and local architecture of the mammalian microRNA-Transcription factor regulatory network
    • Shalgi R, Lieber D, Oren M, & Pilpel Y. Global and local architecture of the mammalian microRNA-Transcription factor regulatory network. PLoS Comput. Biol. 3, 1291-1304 (2007).
    • (2007) PLoS Comput. Biol , vol.3 , pp. 1291-1304
    • Shalgi, R.1    Lieber, D.2    Oren, M.3    Pilpel, Y.4
  • 37
    • 70350469040 scopus 로고    scopus 로고
    • The relationship between the evolution of microRNA targets and the length of their UTRs
    • Cheng C, Bhardwaj N, & Gerstein M. The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics http://dx.doi.org/10.1186/1471-2164-10-431 (2009).
    • (2009) BMC Genomics
    • Cheng, C.1    Bhardwaj, N.2    Gerstein, M.3
  • 38
    • 84890391023 scopus 로고    scopus 로고
    • Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression
    • Li Y, et al. Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res. 41, e203 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. e203
    • Li, Y.1
  • 39
    • 34347398567 scopus 로고    scopus 로고
    • Inference of miRNA targets using evolutionary conservation and pathway analysis
    • Gaidatzis D, van Nimwegen E, Hausser J, & Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8, 69 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 69
    • Gaidatzis, D.1    Van Nimwegen, E.2    Hausser, J.3    Zavolan, M.4
  • 40
    • 67650747402 scopus 로고    scopus 로고
    • DIANA-microT web server: Elucidating microRNA functions through target prediction
    • Maragkakis M, et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 37, 273-276 (2009).
    • (2009) Nucleic Acids Res , vol.37 , pp. 273-276
    • Maragkakis, M.1
  • 41
    • 79952146521 scopus 로고    scopus 로고
    • NAViGaTing the micronome - Using multiple microRNA prediction databases to identify signalling pathway-Associated microRNAs
    • Shirdel E. A, Xie W, Mak T. W, & Jurisica I. NAViGaTing the micronome - using multiple microRNA prediction databases to identify signalling pathway-Associated microRNAs. PLoS ONE 6, e17429 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e17429
    • Shirdel, E.A.1    Xie, W.2    Mak, T.W.3    Jurisica, I.4
  • 42
    • 34548339681 scopus 로고    scopus 로고
    • MicroRNA regulation of human protein - Protein interaction network
    • Liang H, & Li W. MicroRNA regulation of human protein - protein interaction network. RNA 13, 1402-1408 (2007).
    • (2007) RNA , vol.13 , pp. 1402-1408
    • Liang, H.1    Li, W.2
  • 43
    • 44649167011 scopus 로고    scopus 로고
    • Characterization of microRNA-regulated protein-protein interaction network
    • Hsu C. W, Juan H. F, & Huang H. C. Characterization of microRNA-regulated protein-protein interaction network. Proteomics 8, 1975-1979 (2008).
    • (2008) Proteomics , vol.8 , pp. 1975-1979
    • Hsu, C.W.1    Juan, H.F.2    Huang, H.C.3
  • 44
    • 68349092641 scopus 로고    scopus 로고
    • Clustered microRNA'scoordination in regulating protein-protein interaction network
    • Yuan X, et al. Clustered microRNA'scoordination in regulating protein-protein interaction network. BMC Syst. Biol. 3, 65 (2009).
    • (2009) BMC Syst. Biol , vol.3 , pp. 65
    • Yuan, X.1
  • 45
    • 80052028123 scopus 로고    scopus 로고
    • MicroRNAs coordinately regulate protein complexes
    • Sass S, et al. MicroRNAs coordinately regulate protein complexes. BMC Syst. Biol. 5, 136 (2011).
    • (2011) BMC Syst. Biol , vol.5 , pp. 136
    • Sass, S.1
  • 46
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner M, et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25-29 (2000).
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 47
    • 84861793773 scopus 로고    scopus 로고
    • Gene set enrichment analysis: Performance evaluation and usage guidelines
    • Hung J. H, Yang T. H, Hu Z, Weng Z, & DeLisi C. Gene set enrichment analysis: performance evaluation and usage guidelines. Brief. Bioinform. 13, 281-291 (2011).
    • (2011) Brief. Bioinform , vol.13 , pp. 281-291
    • Hung, J.H.1    Yang, T.H.2    Hu, Z.3    Weng, Z.4    DeLisi, C.5
  • 48
    • 66249106716 scopus 로고    scopus 로고
    • Predicting microRNA targets and functions: Traps for the unwary
    • Ritchie W, Flamant S, & Rasko J. E. J. Predicting microRNA targets and functions: traps for the unwary. Nat. Methods 6, 397-398 (2009).
    • (2009) Nat. Methods , vol.6 , pp. 397-398
    • Ritchie, W.1    Flamant, S.2    Rasko, J.E.J.3
  • 49
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 50
    • 34250805982 scopus 로고    scopus 로고
    • MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
    • Grimson A, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91-105 (2007).
    • (2007) Mol. Cell , vol.27 , pp. 91-105
    • Grimson, A.1
  • 52
    • 77955475953 scopus 로고    scopus 로고
    • Expanding the microRNA targeting code: Functional sites with centred pairing
    • Shin C, et al. Expanding the microRNA targeting code: functional sites with centred pairing. Mol. Cell 38, 789-802 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 789-802
    • Shin, C.1
  • 53
    • 84857955708 scopus 로고    scopus 로고
    • An alternative mode of microRNA target recognition
    • Chi S. W, Hannon G. J, & Darnell R. B. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321-327 (2012).
    • (2012) Nat. Struct. Mol. Biol , vol.19 , pp. 321-327
    • Chi, S.W.1    Hannon, G.J.2    Darnell, R.B.3
  • 54
    • 84940502214 scopus 로고    scopus 로고
    • Predicting effective microRNA target sites in mammalian mRNAs
    • Agarwal V, Bell G. W, Nam J. W, & Bartel D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).
    • (2015) ELife , vol.4 , pp. e05005
    • Agarwal, V.1    Bell, G.W.2    Nam, J.W.3    Bartel, D.P.4
  • 55
    • 84995697856 scopus 로고    scopus 로고
    • Capture of microRNA-bound mRNAs identifies the tumor suppressor miR 34a as a regulator of growth factor signaling
    • Lal A, et al. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR 34a as a regulator of growth factor signaling. PLoS Genet. 7, 19-21 (2011).
    • (2011) PLoS Genet , vol.7 , pp. 19-21
    • Lal, A.1
  • 56
    • 84872576566 scopus 로고    scopus 로고
    • MicroRNA 182 5p targets a network of genes involved in DNA repair
    • Krishnan K, et al. MicroRNA 182 5p targets a network of genes involved in DNA repair. RNA 19, 230-242 (2013).
    • (2013) RNA , vol.19 , pp. 230-242
    • Krishnan, K.1
  • 57
    • 84888408364 scopus 로고    scopus 로고
    • MiR 139 5p is a regulator of metastatic pathways in breast cancer
    • Krishnan K, et al. miR 139 5p is a regulator of metastatic pathways in breast cancer. RNA 19, 1767-1780 (2013).
    • (2013) RNA , vol.19 , pp. 1767-1780
    • Krishnan, K.1
  • 58
    • 84908356160 scopus 로고    scopus 로고
    • Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR 522
    • Tan S. M, et al. Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR 522. Cell Rep. 8, 1225-1239 (2014).
    • (2014) Cell Rep , vol.8 , pp. 1225-1239
    • Tan, S.M.1
  • 59
    • 84900814334 scopus 로고    scopus 로고
    • Composition of seed sequence is a major determinant of microRNA targeting patterns
    • Wang X. Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30, 1377-1383 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 1377-1383
    • Wang, X.1
  • 60
    • 84876935138 scopus 로고    scopus 로고
    • Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding
    • Helwak A, Kudla G, Dudnakova T, & Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654-665 (2013).
    • (2013) Cell , vol.153 , pp. 654-665
    • Helwak, A.1    Kudla, G.2    Dudnakova, T.3    Tollervey, D.4
  • 61
    • 77950920903 scopus 로고    scopus 로고
    • Transcriptome wide identification of RNA binding protein and microRNA target sites by PAR-CLIP
    • Hafner M, et al. Transcriptome wide identification of RNA binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129-141 (2010).
    • (2010) Cell , vol.141 , pp. 129-141
    • Hafner, M.1
  • 62
    • 43049103824 scopus 로고    scopus 로고
    • The miR 200 family and miR 205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
    • Gregory P. A, et al. The miR 200 family and miR 205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593-601 (2008).
    • (2008) Nat. Cell Biol , vol.10 , pp. 593-601
    • Gregory, P.A.1
  • 63
    • 84954392246 scopus 로고    scopus 로고
    • MiR 200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes
    • Perdigão-Henriques R, et al. miR 200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 35, 158-172 (2016).
    • (2016) Oncogene , vol.35 , pp. 158-172
    • Perdigão-Henriques, R.1
  • 64
    • 34247565615 scopus 로고    scopus 로고
    • The tumor suppressor microRNA let 7 represses the HMGA2 oncogene
    • Lee Y. S, & Dutta A. The tumor suppressor microRNA let 7 represses the HMGA2 oncogene. Genes Dev. 21, 1025-1030 (2007).
    • (2007) Genes Dev , vol.21 , pp. 1025-1030
    • Lee, Y.S.1    Dutta, A.2
  • 65
    • 33947431322 scopus 로고    scopus 로고
    • Disrupting the pairing between let 7 and Hmga2 enhances oncogenic transformation
    • Mayr C, Hemann M. T, & Bartel D. P. Disrupting the pairing between let 7 and Hmga2 enhances oncogenic transformation. Science. 315, 1576-1579 (2007).
    • (2007) Science , vol.315 , pp. 1576-1579
    • Mayr, C.1    Hemann, M.T.2    Bartel, D.P.3
  • 66
    • 84866239260 scopus 로고    scopus 로고
    • MiR 182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma
    • Liu Z, et al. MiR 182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J. Pathol. 228, 204-215 (2012).
    • (2012) J. Pathol , vol.228 , pp. 204-215
    • Liu, Z.1
  • 67
    • 84870623242 scopus 로고    scopus 로고
    • Oncogenic miRNA 182 5p targets Smad4 and RECK in human bladder cancer
    • Hirata H, et al. Oncogenic miRNA 182 5p targets Smad4 and RECK in human bladder cancer. PLoS ONE 7, 1-8 (2012).
    • (2012) PLoS ONE , vol.7 , pp. 1-8
    • Hirata, H.1
  • 68
    • 77952879648 scopus 로고    scopus 로고
    • Hsa-miR 182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro
    • Sun Y, et al. Hsa-mir 182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem. Biophys. Res. Commun. 396, 501-507 (2010).
    • (2010) Biochem. Biophys. Res. Commun , vol.396 , pp. 501-507
    • Sun, Y.1
  • 69
    • 84871814699 scopus 로고    scopus 로고
    • Elevated oncofoetal miR 17 5p expression regulates colorectal cancer progression by repressing its target gene P130
    • Ma Y, et al. Elevated oncofoetal miR 17 5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat. Commun. 3, 1291 (2012).
    • (2012) Nat. Commun , vol.3 , pp. 1291
    • Ma, Y.1
  • 70
    • 84877916526 scopus 로고    scopus 로고
    • Mature miR 17 5p and passenger miR 17 3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways
    • Shan S. W, et al. Mature miR 17 5p and passenger miR 17 3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J. Cell Sci. 126, 1517-1530 (2013).
    • (2013) J. Cell Sci , vol.126 , pp. 1517-1530
    • Shan, S.W.1
  • 71
    • 84864273594 scopus 로고    scopus 로고
    • MiR 17 5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells
    • Wei Q, Li Y. X, Liu M, Li X, & Tang H. MiR 17 5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 64, 697-704 (2012).
    • (2012) IUBMB Life , vol.64 , pp. 697-704
    • Wei, Q.1    Li, Y.X.2    Liu, M.3    Li, X.4    Tang, H.5
  • 72
    • 80052470207 scopus 로고    scopus 로고
    • Direct targeting of Sec23a by miR 200s influences cancer cell secretome and promotes metastatic colonization
    • Korpal M, et al. Direct targeting of Sec23a by miR 200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101-1108 (2011).
    • (2011) Nat. Med , vol.17 , pp. 1101-1108
    • Korpal, M.1
  • 73
    • 70349142665 scopus 로고    scopus 로고
    • Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR 200 family expression
    • Gibbons D. L, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR 200 family expression. Genes Dev. 23, 2140-2151 (2009).
    • (2009) Genes Dev , vol.23 , pp. 2140-2151
    • Gibbons, D.L.1
  • 74
    • 84905409283 scopus 로고    scopus 로고
    • MiR 200 can repress breast cancer metastasis through ZEB1 independent but moesin-dependent pathways
    • Li X, et al. MiR 200 can repress breast cancer metastasis through ZEB1 independent but moesin-dependent pathways. Oncogene 33, 4077-4088 (2014).
    • (2014) Oncogene , vol.33 , pp. 4077-4088
    • Li, X.1
  • 76
    • 80455154984 scopus 로고    scopus 로고
    • Weak seed-pairing stability and high target-site abundance decreases the proficiency of isy 6 and other miRNA's
    • Garcia D. M, et al. Weak seed-pairing stability and high target-site abundance decreases the proficiency of isy 6 and other miRNA's. Nat. Struct. Mol. Biol. 18, 1139-1146 (2011).
    • (2011) Nat. Struct. Mol. Biol , vol.18 , pp. 1139-1146
    • Garcia, D.M.1
  • 77
    • 77953957633 scopus 로고    scopus 로고
    • A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
    • Poliseno L, Salmeda J, Zhang L, Haveman W, & Pandolfi P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465 1033-1038 (2010).
    • (2010) Nature , vol.465 , pp. 1033-1038
    • Poliseno, L.1    Salmeda, J.2    Zhang, L.3    Haveman, W.4    Pandolfi, P.5
  • 78
    • 84876367541 scopus 로고    scopus 로고
    • Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal
    • Wang Y, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69-80 (2013).
    • (2013) Dev. Cell , vol.25 , pp. 69-80
    • Wang, Y.1
  • 79
    • 84961401406 scopus 로고    scopus 로고
    • Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer
    • Du Z, et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun. 7, 10982 (2016).
    • (2016) Nat. Commun , vol.7 , pp. 10982
    • Du, Z.1
  • 80
    • 84904272774 scopus 로고    scopus 로고
    • Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer
    • Paci P, Colombo T, & Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst. Biol. 8, 83 (2014).
    • (2014) BMC Syst. Biol , vol.8 , pp. 83
    • Paci, P.1    Colombo, T.2    Farina, L.3
  • 81
    • 84875372911 scopus 로고    scopus 로고
    • Natural RNA circles function as efficient microRNA sponges
    • Hansen T. B, et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388 (2013).
    • (2013) Nature , vol.495 , pp. 384-388
    • Hansen, T.B.1
  • 82
    • 84875369248 scopus 로고    scopus 로고
    • Circular RNAs are a large class of animal RNAs with regulatory potency
    • Memczak S, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338 (2013).
    • (2013) Nature , vol.495 , pp. 333-338
    • Memczak, S.1
  • 83
    • 84962086887 scopus 로고    scopus 로고
    • Endogenous microRNA sponges: Evidence and controversy
    • Thomson D. W, & Dinger M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272-283 (2016).
    • (2016) Nat. Rev. Genet , vol.17 , pp. 272-283
    • Thomson, D.W.1    Dinger, M.E.2
  • 84
    • 77957850291 scopus 로고    scopus 로고
    • Emerging roles for natural microRNA sponges
    • Ebert M. S, & Sharp P. A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858-R861 (2014).
    • (2014) Curr. Biol , vol.20 , pp. R858-R861
    • Ebert, M.S.1    Sharp, P.A.2
  • 85
    • 84901838697 scopus 로고    scopus 로고
    • Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance
    • Denzler R, Agarwal V, Stefano J, Bartel D, & Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766-776 (2015).
    • (2015) Mol. Cell , vol.54 , pp. 766-776
    • Denzler, R.1    Agarwal, V.2    Stefano, J.3    Bartel, D.4    Stoffel, M.5
  • 86
    • 84922418997 scopus 로고    scopus 로고
    • Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition
    • Bosson A. D, Zamudio J. R, & Sharp P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347-359 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 347-359
    • Bosson, A.D.1    Zamudio, J.R.2    Sharp, P.A.3
  • 87
    • 84978664408 scopus 로고    scopus 로고
    • Multiple mechanisms disrupt the let 7 microRNA family in neuroblastoma
    • Powers J. T, et al. Multiple mechanisms disrupt the let 7 microRNA family in neuroblastoma. Nature 535, 246-251 (2016).
    • (2016) Nature , vol.535 , pp. 246-251
    • Powers, J.T.1
  • 88
    • 84930505926 scopus 로고    scopus 로고
    • Pathway analysis from lists of microRNAs: Common pitfalls and alternative strategy
    • Godard P, & van Eyll J. Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy. Nucleic Acids Res. 43, 3490-3497 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. 3490-3497
    • Godard, P.1    Van Eyll, J.2
  • 89
    • 84929649983 scopus 로고    scopus 로고
    • Bias in microRNA functional enrichment analysis
    • Bleazard T, Lamb J. A, & Griffiths-Jones S. Bias in microRNA functional enrichment analysis. Bioinformatics 31, 1592-1598 (2014).
    • (2014) Bioinformatics , vol.31 , pp. 1592-1598
    • Bleazard, T.1    Lamb, J.A.2    Griffiths-Jones, S.3
  • 90
    • 33947224690 scopus 로고    scopus 로고
    • Transcripts targeted by the microRNA 16 family cooperatively regulate cell cycle progression
    • Linsley P. S, et al. Transcripts targeted by the microRNA 16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240-2252 (2007).
    • (2007) Mol. Cell. Biol , vol.27 , pp. 2240-2252
    • Linsley, P.S.1
  • 91
    • 84883826854 scopus 로고    scopus 로고
    • Insulin growth factor signaling is regulated by microRNA 486, an underexpressed microRNA in lung cancer
    • Peng Y, et al. Insulin growth factor signaling is regulated by microRNA 486, an underexpressed microRNA in lung cancer. Proc. Natl Acad. Sci. USA 110, 15043-15048 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 15043-15048
    • Peng, Y.1
  • 92
    • 84961690136 scopus 로고    scopus 로고
    • MiR 892b silencing activates NF-?B and promotes aggressiveness in breast cancer
    • Jiang L, et al. miR 892b silencing activates NF-?B and promotes aggressiveness in breast cancer. Cancer Res. 76, 1101-1112 (2016).
    • (2016) Cancer Res , vol.76 , pp. 1101-1112
    • Jiang, L.1
  • 93
    • 84943800564 scopus 로고    scopus 로고
    • MicroRNA 542 3p suppresses tumor cell invasion via targeting AKT pathway in human astrocytoma
    • Cai J, et al. MicroRNA 542 3p suppresses tumor cell invasion via targeting AKT pathway in human astrocytoma. J. Biol. Chem. 290, 24678-24688 (2015).
    • (2015) J. Biol. Chem , vol.290 , pp. 24678-24688
    • Cai, J.1
  • 94
    • 84901228446 scopus 로고    scopus 로고
    • MicroRNA 133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma
    • Wang L. K, et al. MicroRNA 133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma. PLoS ONE 9, e96765 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e96765
    • Wang, L.K.1
  • 95
    • 84878535897 scopus 로고    scopus 로고
    • MiR 23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts
    • Pellegrino L, et al. miR 23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res. 41, 5400-5412 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. 5400-5412
    • Pellegrino, L.1
  • 96
    • 84942875868 scopus 로고    scopus 로고
    • MiR 634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity
    • Fujiwara N, et al. miR 634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res. 75, 3890-3901 (2015).
    • (2015) Cancer Res , vol.75 , pp. 3890-3901
    • Fujiwara, N.1
  • 97
    • 84878703345 scopus 로고    scopus 로고
    • MicroRNA 135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1
    • Lin C. W, et al. MicroRNA 135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat. Commun. 4, 1877 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 1877
    • Lin, C.W.1
  • 98
    • 41649091906 scopus 로고    scopus 로고
    • The miR 200 family determines the epithelial phenotype of cancer cells by targeting the e cadherin repressors ZEB1 and ZEB2
    • Park S. M, Gaur A. B, Lengyel E, & Peter M. E. The miR 200 family determines the epithelial phenotype of cancer cells by targeting the E cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894-907 (2008).
    • (2008) Genes Dev , vol.22 , pp. 894-907
    • Park, S.M.1    Gaur, A.B.2    Lengyel, E.3    Peter, M.E.4
  • 99
    • 44649163918 scopus 로고    scopus 로고
    • A reciprocal repression between ZEB1 and members of the miR 200 family promotes EMT and invasion in cancer cells
    • Burk U, et al. A reciprocal repression between ZEB1 and members of the miR 200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582-589 (2008).
    • (2008) EMBO Rep , vol.9 , pp. 582-589
    • Burk, U.1
  • 100
    • 84867736206 scopus 로고    scopus 로고
    • IsomiRs - The overlooked repertoire in the dynamic microRNAome
    • Neilsen C. T, Goodall G. J, & Bracken C. P. IsomiRs - The overlooked repertoire in the dynamic microRNAome. Trends Genet. 28, 544-549 (2012).
    • (2012) Trends Genet , vol.28 , pp. 544-549
    • Neilsen, C.T.1    Goodall, G.J.2    Bracken, C.P.3
  • 101
    • 84855168259 scopus 로고    scopus 로고
    • MicroRNAs and their isomiRs function cooperatively to target common biological pathways
    • Cloonan N, et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 12, R126 (2011).
    • (2011) Genome Biol , vol.12 , pp. R126
    • Cloonan, N.1
  • 102
    • 84939783166 scopus 로고    scopus 로고
    • Divergent target recognition by coexpressed 5' isomiRs of miR 142 3p and selective viral mimicry
    • Manzano M, Forte E, Raja A. N, Schipma M. J, & Gottwein E. Divergent target recognition by coexpressed 5' isomiRs of miR 142 3p and selective viral mimicry. RNA 21, 1606-1620 (2015).
    • (2015) RNA , vol.21 , pp. 1606-1620
    • Manzano, M.1    Forte, E.2    Raja, A.N.3    Schipma, M.J.4    Gottwein, E.5
  • 103
    • 84959377931 scopus 로고    scopus 로고
    • Beyond the one-locus-one-miRNA paradigm: MicroRNA isoforms enable deeper insights into breast cancer heterogeneity
    • Telonis A. G, Loher P, Jing Y, Londin E, & Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 43, 9158-9175 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. 9158-9175
    • Telonis, A.G.1    Loher, P.2    Jing, Y.3    Londin, E.4    Rigoutsos, I.5
  • 104
    • 84883651731 scopus 로고    scopus 로고
    • Beta cell 5' shifted isomiRs are candidate regulatory hubs in type 2 diabetes
    • Baran-Gale J, Fannin E. E, Kurtz C. L, & Sethupathy P. Beta cell 5' shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS ONE 8, e73240 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e73240
    • Baran-Gale, J.1    Fannin, E.E.2    Kurtz, C.L.3    Sethupathy, P.4
  • 105
    • 84861909720 scopus 로고    scopus 로고
    • Identification of microRNA-regulated gene networks by expression analysis of target genes
    • Gennarino V. A, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 22, 1163-1172 (2012).
    • (2012) Genome Res , vol.22 , pp. 1163-1172
    • Gennarino, V.A.1
  • 106
    • 84883651195 scopus 로고    scopus 로고
    • Mir 192, miR 194 and miR 215: A convergent microRNA network suppressing tumor progression in renal cell carcinoma
    • Khella H. W. Z, et al. mir 192, mir 194 and mir 215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis 34, 2231-2239 (2013).
    • (2013) Carcinogenesis , vol.34 , pp. 2231-2239
    • Khella, H.W.Z.1
  • 107
    • 84860488299 scopus 로고    scopus 로고
    • MiR 192, miR 194, miR 215, miR 200c and miR 141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms
    • Senanayake U, et al. miR 192, miR 194, miR 215, miR 200c and miR 141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis 33, 1014-1021 (2012).
    • (2012) Carcinogenesis , vol.33 , pp. 1014-1021
    • Senanayake, U.1
  • 108
    • 84976865506 scopus 로고    scopus 로고
    • Genome-wide screen identified let 7c/.miR 99a/miR 125b regulating tumor progression and stem-like properties in cholangiocarcinoma
    • Lin K, et al. Genome-wide screen identified let 7c/.miR 99a/miR 125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene 35, 3376-3386 (2016).
    • (2016) Oncogene , vol.35 , pp. 3376-3386
    • Lin, K.1
  • 109
    • 54049084380 scopus 로고    scopus 로고
    • A double-negative feedback loop between ZEB1 SIP1 and the microRNA 200 family regulates epithelial-mesenchymal transition
    • Bracken C. P, et al. A double-negative feedback loop between ZEB1 SIP1 and the microRNA 200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846-7854 (2008).
    • (2008) Cancer Res , vol.68 , pp. 7846-7854
    • Bracken, C.P.1
  • 110
    • 47249091921 scopus 로고    scopus 로고
    • The miR 200 family inhibits transition and cancer cell migration by direct targeting of e cadherin transcriptional repressors ZEB1 and ZEB2
    • Korpal M, Lee E. S, Hu G, & Kang Y. The miR 200 family inhibits transition and cancer cell migration by direct targeting of E cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910-14914 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 14910-14914
    • Korpal, M.1    Lee, E.S.2    Hu, G.3    Kang, Y.4
  • 111
    • 84871118304 scopus 로고    scopus 로고
    • MicroRNAs in the imprinted DLK1 DIO3 region repress the epithelial-To mesenchymal transition by targeting the TWIST1 protein signaling network
    • Haga C. L, & Phinney D. G. MicroRNAs in the imprinted DLK1 DIO3 region repress the epithelial-To mesenchymal transition by targeting the TWIST1 protein signaling network. J. Biol. Chem. 287, 42695-42707 (2012).
    • (2012) J. Biol. Chem , vol.287 , pp. 42695-42707
    • Haga, C.L.1    Phinney, D.G.2
  • 112
    • 84930216537 scopus 로고    scopus 로고
    • Autocrine/paracrine human growth hormone-stimulated microRNA 96 182 183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer
    • Zhang W, et al. Autocrine/paracrine human growth hormone-stimulated microRNA 96 182 183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J. Biol. Chem. 290, 13812-13829 (2015).
    • (2015) J. Biol. Chem , vol.290 , pp. 13812-13829
    • Zhang, W.1
  • 113
    • 85027949778 scopus 로고    scopus 로고
    • MicroRNA 193a 3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway
    • Yu T, et al. MicroRNA 193a 3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 34, 413-423 (2014).
    • (2014) Oncogene , vol.34 , pp. 413-423
    • Yu, T.1
  • 114
    • 2342449399 scopus 로고    scopus 로고
    • Identification and characterization of a novel gene, C13orf25, as a target for 13q31 q32 amplification in malignant lymphoma
    • Ota A. Identification and characterization of a novel gene, C13orf25, as a target for 13q31 q32 amplification in malignant lymphoma. Cancer Res. 64, 3087-3095 (2004).
    • (2004) Cancer Res , vol.64 , pp. 3087-3095
    • Ota, A.1
  • 115
    • 20444467290 scopus 로고    scopus 로고
    • A microRNA polycistron as a potential human oncogene
    • He L, et al. A microRNA polycistron as a potential human oncogene. Nature 435 828-833 (2005).
    • (2005) Nature , vol.435 , pp. 828-833
    • He, L.1
  • 116
    • 27544495514 scopus 로고    scopus 로고
    • A polycistronic microRNA cluster miR 17 92 is overexpressed in human lung cancers and enhances cell proliferation
    • Hayashita Y, et al. A polycistronic microRNA cluster, miR 17 92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628-9632 (2005).
    • (2005) Cancer Res , vol.65 , pp. 9628-9632
    • Hayashita, Y.1
  • 117
    • 35748967324 scopus 로고    scopus 로고
    • MRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer
    • Lanza G, et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54 (2007).
    • (2007) Mol. Cancer , vol.6 , pp. 54
    • Lanza, G.1
  • 118
    • 78649941638 scopus 로고    scopus 로고
    • The miR 17 92 microRNA cluster regulates multiple components of the TGF β pathway in neuroblastoma
    • Mestdagh P, et al. The miR 17 92 microRNA cluster regulates multiple components of the TGF β pathway in neuroblastoma. Mol. Cell 40, 762-773 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 762-773
    • Mestdagh, P.1
  • 119
    • 84869135392 scopus 로고    scopus 로고
    • Differentiation-Associated microRNAs antagonize the Rb E2F pathway to restrict proliferation
    • Marzi M. J, et al. Differentiation-Associated microRNAs antagonize the Rb E2F pathway to restrict proliferation. J. Cell Biol. 199, 77-95 (2012).
    • (2012) J. Cell Biol , vol.199 , pp. 77-95
    • Marzi, M.J.1
  • 120
    • 84890708492 scopus 로고    scopus 로고
    • MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression
    • Frampton A. E, et al. MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146, 268-277 (2014).
    • (2014) Gastroenterology , vol.146 , pp. 268-277
    • Frampton, A.E.1
  • 121
    • 84908879686 scopus 로고    scopus 로고
    • MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1
    • Sharma S. B, et al. MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol. Cell. Biol. 34, 4143-4164 (2014).
    • (2014) Mol. Cell. Biol , vol.34 , pp. 4143-4164
    • Sharma, S.B.1
  • 122
    • 84904016399 scopus 로고    scopus 로고
    • Cooperative gene regulation by microRNA pairs and their identification using a computational workflow
    • Schmitz U, et al. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res. 42, 7539-7552 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. 7539-7552
    • Schmitz, U.1
  • 124
    • 33846045953 scopus 로고    scopus 로고
    • Principles of microRNA regulation of a human cellular signaling network
    • Cui Q, Yu Z, Purisima E. O, & Wang E. Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol. 2, 46 (2006).
    • (2006) Mol. Syst. Biol , vol.2 , pp. 46
    • Cui, Q.1    Yu, Z.2    Purisima, E.O.3    Wang, E.4
  • 125
    • 51949087680 scopus 로고    scopus 로고
    • Elegans genome-scale microRNA network contains composite feedback motifs with high flux-capacity
    • Martinez N, et al. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux-capacity. Genes Dev. 22, 2535-2549 (2008).
    • (2008) Genes Dev , vol.22 , pp. 2535-2549
    • Martinez, N.1    Et, Al.A.C.2
  • 126
    • 70349334678 scopus 로고    scopus 로고
    • Genome-wide survey of microRNA-Transcription factor feed-forward regulatory circuits in human
    • Re A, Cora D, Taverna D, & Caselle M. Genome-wide survey of microRNA-Transcription factor feed-forward regulatory circuits in human. Mol. Biosyst. 5, 854-867 (2009).
    • (2009) Mol. Biosyst , vol.5 , pp. 854-867
    • Re, A.1    Cora, D.2    Taverna, D.3    Caselle, M.4
  • 127
    • 77956520986 scopus 로고    scopus 로고
    • CircuitsDB: A database of mixed microRNA/.transcription factor feed-forward regulatory circuits in human and mouse
    • Friard O, Re A, Taverna D, De Bortoli M, & Corá D. CircuitsDB: a database of mixed microRNA/.transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 11, 435 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 435
    • Friard, O.1    Re, A.2    Taverna, D.3    De Bortoli, M.4    Corá, D.5
  • 128
    • 34249819336 scopus 로고    scopus 로고
    • MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals
    • Tsang J, Zhu J, & van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753-767 (2007).
    • (2007) Mol. Cell , vol.26 , pp. 753-767
    • Tsang, J.1    Zhu, J.2    Van Oudenaarden, A.3
  • 129
    • 84883805211 scopus 로고    scopus 로고
    • The role of miRNAs in regulating gene expression networks
    • Gurtan A. M, & Sharp P. A. The role of miRNAs in regulating gene expression networks. J. Mol. Biol. 425, 3582-3600 (2013).
    • (2013) J. Mol. Biol , vol.425 , pp. 3582-3600
    • Gurtan, A.M.1    Sharp, P.A.2
  • 130
    • 79957579613 scopus 로고    scopus 로고
    • Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques
    • Su W. L, Kleinhanz R. R, & Schadt E. E. Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques. Mol. Syst. Biol. 7, 490 (2011).
    • (2011) Mol. Syst. Biol , vol.7 , pp. 490
    • Su, W.L.1    Kleinhanz, R.R.2    Schadt, E.E.3
  • 131
    • 84865739425 scopus 로고    scopus 로고
    • Architecture of the human regulatory network derived from ENCODE data
    • Gerstein M, et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91-100 (2012).
    • (2012) Nature , vol.489 , pp. 91-100
    • Gerstein, M.1
  • 133
    • 84863012238 scopus 로고    scopus 로고
    • A novel YY1 miR 1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1 miRNA network
    • Lu L, et al. A novel YY1 miR 1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1 miRNA network. PLoS ONE 7 e27596 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e27596
    • Lu, L.1
  • 134
    • 78650179541 scopus 로고    scopus 로고
    • Involvement of NF ?B/miR 448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells
    • Li Q. Q, et al. Involvement of NF ?B/miR 448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 18, 16-25 (2011).
    • (2011) Cell Death Differ , vol.18 , pp. 16-25
    • Li, Q.Q.1
  • 135
    • 84908131048 scopus 로고    scopus 로고
    • YY1 C/EBPa miR34a regulatory circuitry is involved in renal cell carcinoma progression
    • Weng W, et al. YY1 C/EBPa miR34a regulatory circuitry is involved in renal cell carcinoma progression. Oncol. Rep. 31, 1921-1927 (2014).
    • (2014) Oncol. Rep , vol.31 , pp. 1921-1927
    • Weng, W.1
  • 136
    • 84920278549 scopus 로고    scopus 로고
    • A novel AP 1/miR 101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells
    • Liu J. J, et al. A novel AP 1/miR 101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res. 42, 12041-12051 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. 12041-12051
    • Liu, J.J.1
  • 137
    • 84855729906 scopus 로고    scopus 로고
    • A p53/miRNA 34 axis regulates Snail1 dependent cancer cell epithelial-mesenchymal transition
    • Kim N. H, et al. A p53/miRNA 34 axis regulates Snail1 dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417-433 (2011).
    • (2011) J. Cell Biol , vol.195 , pp. 417-433
    • Kim, N.H.1
  • 138
    • 84055184850 scopus 로고    scopus 로고
    • MiR 34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions
    • Siemens H, et al. miR 34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256-4271 (2011).
    • (2011) Cell Cycle , vol.10 , pp. 4256-4271
    • Siemens, H.1
  • 139
    • 58149382580 scopus 로고    scopus 로고
    • MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR 17 92, E2F, and Myc
    • Aguda B. D, Kim Y, Piper-Hunter M. G, Friedman A, & Marsh C. B. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR 17 92, E2F, and Myc. Proc. Natl Acad. Sci. USA 105, 19678-19683 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 19678-19683
    • Aguda, B.D.1    Kim, Y.2    Piper-Hunter, M.G.3    Friedman, A.4    Marsh, C.B.5
  • 140
    • 84943257078 scopus 로고    scopus 로고
    • RegNetwork: An integrated database of transcriptional and post-Transcriptional regulatory networks in human and mouse
    • Liu Z, Wu C, Miao H, & Wu H. RegNetwork: an integrated database of transcriptional and post-Transcriptional regulatory networks in human and mouse. Database http://dx.doi.org/10.1093/database/.bav095 (2015).
    • (2015) Database
    • Liu, Z.1    Wu, C.2    Miao, H.3    Wu, H.4
  • 142
    • 84966335519 scopus 로고    scopus 로고
    • Regulation of mammalian transcription and splicing by nuclear RNAi
    • Kalantari R, Chiang C, & Corey D. R. Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res. 44, 524-537 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. 524-537
    • Kalantari, R.1    Chiang, C.2    Corey, D.R.3
  • 143
    • 84924962270 scopus 로고    scopus 로고
    • Dysregulation of microRNA biogenesis and gene silencing in cancer
    • Hata A, & Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci. Signal. 8, re3 (2015).
    • (2015) Sci. Signal , vol.8 , pp. re3
    • Hata, A.1    Lieberman, J.2
  • 144
    • 12144290519 scopus 로고    scopus 로고
    • Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers
    • Calin G. A, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999-3004 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 2999-3004
    • Calin, G.A.1
  • 145
    • 33745168962 scopus 로고    scopus 로고
    • MicroRNAs exhibit high frequency genomic alterations in human cancer
    • Zhang L, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136-9141 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 9136-9141
    • Zhang, L.1
  • 147
    • 33748302836 scopus 로고    scopus 로고
    • Augmentation of tumor angiogenesis by a Myc-Activated microRNA cluster
    • Dews M, et al. Augmentation of tumor angiogenesis by a Myc-Activated microRNA cluster. Nat. Genet. 38, 1060-1065 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 1060-1065
    • Dews, M.1
  • 148
    • 51649083501 scopus 로고    scopus 로고
    • A microRNA DNA methylation signature for human cancer metastasis
    • Lujambio A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556-13561 (2008).
    • (2008) Proc Natl Acad. Sci. USA , vol.105 , pp. 13556-13561
    • Lujambio, A.1
  • 149
    • 77955484492 scopus 로고    scopus 로고
    • Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha
    • Davis B. N, Hilyard A. C, Nguyen P. H, Lagna G, & Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39, 373-384 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 373-384
    • Davis, B.N.1    Hilyard, A.C.2    Nguyen, P.H.3    Lagna, G.4    Hata, A.5
  • 150
    • 67649277689 scopus 로고    scopus 로고
    • The RNA-binding protein KSRP promotes the biogenesis of a subset of miRNAs
    • Trabucchi M, et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of miRNAs. Nat. Genet. 459, 1010-1014 (2009).
    • (2009) Nat. Genet , vol.459 , pp. 1010-1014
    • Trabucchi, M.1
  • 151
    • 84896847445 scopus 로고    scopus 로고
    • Hippo signaling regulates microprocessor and links cell density-dependent miRNA biogenesis to cancer
    • Mori M, et al. Hippo signaling regulates microprocessor and links cell density-dependent miRNA biogenesis to cancer. Cell 156, 893-906 (2015).
    • (2015) Cell , vol.156 , pp. 893-906
    • Mori, M.1
  • 153
    • 84863863372 scopus 로고    scopus 로고
    • DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-Tumor predisposition syndrome
    • Doros L, et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-Tumor predisposition syndrome. Pediatr. Blood Cancer 59, 558-560 (2012).
    • (2012) Pediatr. Blood Cancer , vol.59 , pp. 558-560
    • Doros, L.1
  • 154
    • 84892553849 scopus 로고    scopus 로고
    • DICER1 mutations in an adolescent with cervical embryonal rhabdomyosarcoma (cERMS
    • Tomiak E, de Kock L, Grynspan D, Ramphal R, & Foulkes W. D. DICER1 mutations in an adolescent with cervical embryonal rhabdomyosarcoma (cERMS). Pediatr. Blood Cancer 61, 568-569 (2014).
    • (2014) Pediatr. Blood Cancer , vol.61 , pp. 568-569
    • Tomiak, E.1    De Kock, L.2    Grynspan, D.3    Ramphal, R.4    Foulkes, W.D.5
  • 155
    • 84922792031 scopus 로고    scopus 로고
    • Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumors
    • Rakheja D, et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumors. Nat. Commun. 2, 4802 (2015).
    • (2015) Nat. Commun , vol.2 , pp. 4802
    • Rakheja, D.1
  • 156
    • 67749129007 scopus 로고    scopus 로고
    • DICER1 mutations in familial pleuropulmonary blastoma
    • Hill D. A, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science. 325, 965 (2009).
    • (2009) Science , vol.325 , pp. 965
    • Hill, D.A.1
  • 157
    • 84902289852 scopus 로고    scopus 로고
    • Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour
    • Torrezan G. T, et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 4039
    • Torrezan, G.T.1
  • 158
    • 20144373433 scopus 로고    scopus 로고
    • Reduced expression of Dicer associated with poor prognosis in lung cancer patients
    • Karube Y, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111-115 (2005).
    • (2005) Cancer Sci , vol.96 , pp. 111-115
    • Karube, Y.1
  • 159
    • 58049213696 scopus 로고    scopus 로고
    • Dicer, Drosha, and outcomes in patients with ovarian cancer
    • Merritt W. M, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641-2650 (2008).
    • (2008) N. Engl. J. Med , vol.359 , pp. 2641-2650
    • Merritt, W.M.1
  • 160
    • 84958039024 scopus 로고    scopus 로고
    • Pleuropulmonary blastoma: Evolution of an entity as an entry into a familial tumor predisposition syndrome
    • Dehner L. P, et al. Pleuropulmonary blastoma: evolution of an entity as an entry into a familial tumor predisposition syndrome. Pediatr. Dev. Pathol. 18, 504-511 (2015).
    • (2015) Pediatr. Dev. Pathol , vol.18 , pp. 504-511
    • Dehner, L.P.1
  • 161
    • 84930814891 scopus 로고    scopus 로고
    • Fibroblast growth factor 9 regulation by microRNAs controls lung development and links DICER1 loss to the pathogenesis of pleuropulmonary blastoma
    • Yin Y, et al. Fibroblast growth factor 9 regulation by microRNAs controls lung development and links DICER1 loss to the pathogenesis of pleuropulmonary blastoma. PLoS Genet. 11, e1005242 (2015).
    • (2015) PLoS Genet , vol.11 , pp. e1005242
    • Yin, Y.1
  • 162
    • 58149097010 scopus 로고    scopus 로고
    • Posttranscriptional crossregulation between Drosha and DGCR8
    • Han J, et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75-84 (2009).
    • (2009) Cell , vol.136 , pp. 75-84
    • Han, J.1
  • 163
    • 84871922444 scopus 로고    scopus 로고
    • MicroRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein
    • Pinder B. D, & Smibert C. A. MicroRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep. 14, 80-86 (2012).
    • (2012) EMBO Rep , vol.14 , pp. 80-86
    • Pinder, B.D.1    Smibert, C.A.2
  • 164
    • 84862879743 scopus 로고    scopus 로고
    • Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs
    • Knuckles P, et al. Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs. Nat. Neurosci. 15, 962-969 (2012).
    • (2012) Nat. Neurosci , vol.15 , pp. 962-969
    • Knuckles, P.1
  • 165
    • 79952786337 scopus 로고    scopus 로고
    • DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration
    • Kaneko H, et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325-332 (2011).
    • (2011) Nature , vol.471 , pp. 325-332
    • Kaneko, H.1
  • 166
    • 0034711308 scopus 로고    scopus 로고
    • Human RNase III is a 160 kDa protein involved in preribosomal RNA processing
    • Wu H, Xu H, Miraglia L. J, & Crooke S. T. Human RNase III is a 160 kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275, 36957-36965 (2000).
    • (2000) J. Biol. Chem , vol.275 , pp. 36957-36965
    • Wu, H.1    Xu, H.2    Miraglia, L.J.3    Crooke, S.T.4
  • 168
    • 84897924680 scopus 로고    scopus 로고
    • Microrna-independent roles of the rnase III enzymes drosha and dicer
    • Johanson T. M, Lew A. M, & Chong M. M. W. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol. 3, 130144 (2013).
    • (2013) Open Biol , vol.3 , pp. 130144
    • Johanson, T.M.1    Lew, A.M.2    Chong, M.M.W.3
  • 169
    • 77956278269 scopus 로고    scopus 로고
    • Canonical and alternate functions of the microRNA biogenesis machinery
    • Chong M. M. W, et al. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 24, 1951-1960 (2010).
    • (2010) Genes Dev , vol.24 , pp. 1951-1960
    • Chong, M.M.W.1
  • 170
    • 68749113985 scopus 로고    scopus 로고
    • Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells
    • Mayr C, & Bartel D. P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684 (2010).
    • (2010) Cell , vol.138 , pp. 673-684
    • Mayr, C.1    Bartel, D.P.2
  • 171
    • 84930448501 scopus 로고    scopus 로고
    • Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis
    • Lai D. P, et al. Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum. Mol. Genet. 24, 3410-3417 (2015).
    • (2015) Hum. Mol. Genet , vol.24 , pp. 3410-3417
    • Lai, D.P.1
  • 172
    • 84973131266 scopus 로고    scopus 로고
    • Aberrant PD L1 expression through 3' UTR disruption in multiple cancers
    • Kataoka K, et al. Aberrant PD L1 expression through 3' UTR disruption in multiple cancers. Nature 534, 402-406 (2016).
    • (2016) Nature , vol.534 , pp. 402-406
    • Kataoka, K.1
  • 173
    • 46249092601 scopus 로고    scopus 로고
    • Proliferating cells express mRNAs with shortened 3'UTRs and fewer microRNA target sites
    • Sandberg R, Neilson J. R, Sarma A, Sharp P. A, & Burge C. B. Proliferating cells express mRNAs with shortened 3'UTRs and fewer microRNA target sites. Science. 320, 1643-1647 (2008).
    • (2008) Science , vol.320 , pp. 1643-1647
    • Sandberg, R.1    Neilson, J.R.2    Sarma, A.3    Sharp, P.A.4    Burge, C.B.5
  • 174
    • 57649211993 scopus 로고    scopus 로고
    • Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection
    • Flavell S. W, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022-1038 (2008).
    • (2008) Neuron , vol.60 , pp. 1022-1038
    • Flavell, S.W.1
  • 175
    • 66049104920 scopus 로고    scopus 로고
    • Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development
    • Ji Z, Lee J. Y, Pan Z, Jiang B, & Tian B. Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl Acad. Sci. USA 106, 7028-7033 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 7028-7033
    • Ji, Z.1    Lee, J.Y.2    Pan, Z.3    Jiang, B.4    Tian, B.5
  • 176
  • 177
    • 33847665108 scopus 로고    scopus 로고
    • Human polymorphism at microRNAs and microRNA target sites
    • Saunders M. a, Liang H, & Li W. H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA 104, 3300-3305 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 3300-3305
    • Saunders, M.A.1    Liang, H.2    Li, W.H.3
  • 178
    • 34447319406 scopus 로고    scopus 로고
    • Single nucleotide polymorphism associated with mature miR 125a alters the processing of pri-miRNA
    • Duan R, Pak C. H, & Jin P. Single nucleotide polymorphism associated with mature miR 125a alters the processing of pri-miRNA. Hum. Mol. Genet. 16, 1124-1131 (2007).
    • (2007) Hum. Mol. Genet , vol.16 , pp. 1124-1131
    • Duan, R.1    Pak, C.H.2    Jin, P.3
  • 179
    • 84915820575 scopus 로고    scopus 로고
    • MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies
    • Dzikiewicz-Krawczyk A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Crit. Rev. Oncol. Hematol. 93, 1-17 (2015).
    • (2015) Crit. Rev. Oncol. Hematol , vol.93 , pp. 1-17
    • Dzikiewicz-Krawczyk, A.1
  • 180
    • 84897027079 scopus 로고    scopus 로고
    • MicroRNA-related sequence variations in human cancers
    • Wojcicka A, de la Chapelle A, & Jazdzewski K. MicroRNA-related sequence variations in human cancers. Hum. Genet. 133, 463-469 (2014).
    • (2014) Hum. Genet , vol.133 , pp. 463-469
    • Wojcicka, A.1    De La Chapelle, A.2    Jazdzewski, K.3
  • 181
    • 54249117763 scopus 로고    scopus 로고
    • A SNP in a let 7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk
    • Chin L. J, et al. A SNP in a let 7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535-8540 (2008).
    • (2008) Cancer Res , vol.68 , pp. 8535-8540
    • Chin, L.J.1
  • 182
    • 84856082575 scopus 로고    scopus 로고
    • KRAS alleles: The LCS6 3'UTR variant and KRAS coding sequence mutations in the NCI 60 panel
    • Kundu S. T, et al. KRAS alleles: the LCS6 3'UTR variant and KRAS coding sequence mutations in the NCI 60 panel. Cell Cycle 11, 361-366 (2012).
    • (2012) Cell Cycle , vol.11 , pp. 361-366
    • Kundu, S.T.1
  • 183
    • 84971664078 scopus 로고    scopus 로고
    • Single nucleotide polymorphism in the microRNA 199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes
    • Wang X, et al. Single nucleotide polymorphism in the microRNA 199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget 7, 13717-13729 (2016).
    • (2016) Oncotarget , vol.7 , pp. 13717-13729
    • Wang, X.1
  • 184
    • 80052001024 scopus 로고    scopus 로고
    • Functional SNP in the microRNA 367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification
    • Zhang L, et al. Functional SNP in the microRNA 367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc. Natl Acad. Sci. USA 108, 13653-13658 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 13653-13658
    • Zhang, L.1
  • 185
    • 34547843634 scopus 로고    scopus 로고
    • Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers
    • Yu Z, et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 35, 4535-4541 (2007).
    • (2007) Nucleic Acids Res , vol.35 , pp. 4535-4541
    • Yu, Z.1
  • 187
    • 84889680701 scopus 로고    scopus 로고
    • Modulation of epigenetic regulators and cell fate decisions by miRNAs
    • Gruber A. J, & Zavolan M. Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5, 671-683 (2013).
    • (2013) Epigenomics , vol.5 , pp. 671-683
    • Gruber, A.J.1    Zavolan, M.2
  • 188
    • 84983384302 scopus 로고    scopus 로고
    • MicroRNA epigenetic signatures in human disease
    • Piletič K, & Kunej T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. http://dx.doi.org/.10.1007/s00204-016-1815-7 2016).
    • (2016) Arch. Toxicol
    • Piletič, K.1    Kunej, T.2
  • 189
    • 84982836627 scopus 로고    scopus 로고
    • Understanding microRNA-mediated gene regulatory networks through mathematical modelling
    • Lai X, Wolkenhauer O, & Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 44, 6019-6035 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. 6019-6035
    • Lai, X.1    Wolkenhauer, O.2    Vera, J.3
  • 190
    • 84959526423 scopus 로고    scopus 로고
    • Large-scale profiling of micrornas for the cancer genome atlas
    • Chu A, et al. Large-scale profiling of microRNAs for The Cancer Genome Atlas. Nucleic Acids Res. 44, e3 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. e3
    • Chu, A.1
  • 191
    • 84995605183 scopus 로고    scopus 로고
    • Oncogenomic portals for the visualization and analysis of genome-wide cancer data
    • Klonowska K, Czubak K, & Wojciechowska M. Oncogenomic portals for the visualization and analysis of genome-wide cancer data. Oncotarget 7, 176-192 (2016).
    • (2016) Oncotarget , vol.7 , pp. 176-192
    • Klonowska, K.1    Czubak, K.2    Wojciechowska, M.3
  • 192
    • 84886099830 scopus 로고    scopus 로고
    • Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer
    • Plass C, Pfister S. M, Lindroth A. M, & Bogatyrova O. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765-780 (2013).
    • (2013) Nat. Rev. Genet , vol.14 , pp. 765-780
    • Plass, C.1    Pfister, S.M.2    Lindroth, A.M.3    Bogatyrova, O.4
  • 193
    • 84994613720 scopus 로고    scopus 로고
    • Alterations of miRNAs and miRNA-regulated mRNA expression in GC B cell lymphomas determined by integrative sequencing analysis
    • Hezaveh K, et al. Alterations of miRNAs and miRNA-regulated mRNA expression in GC B cell lymphomas determined by integrative sequencing analysis. Haematologica http://dx.doi.org/10.3324/.HAEMATOL.2016.143891 (2016).
    • (2016) Haematologica
    • Hezaveh, K.1
  • 194
    • 81855224576 scopus 로고    scopus 로고
    • MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy Andrea
    • Kasinski A. L, & Slack F. J. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy Andrea. Nat. Rev. Cancer 11, 849-864 (2011).
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 849-864
    • Kasinski, A.L.1    Slack, F.J.2
  • 195
    • 84986587264 scopus 로고    scopus 로고
    • A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer
    • Kasinski A. L, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 34 3547-3555 (2015).
    • (2015) Oncogene , vol.34 , pp. 3547-3555
    • Kasinski, A.L.1
  • 196
    • 84877258007 scopus 로고    scopus 로고
    • Treatment of HCV infection by targeting microRNA
    • Janssen H. L, et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685-1694 (2013).
    • (2013) N. Engl. J. Med , vol.368 , pp. 1685-1694
    • Janssen, H.L.1
  • 197
    • 74249112787 scopus 로고    scopus 로고
    • Therapeutic silencing of microRNA 122 in primates with chronic hepatitis C virus infection
    • Lanford R. E, et al. Therapeutic silencing of microRNA 122 in primates with chronic hepatitis C virus infection. Science. 327, 198-201 (2012).
    • (2012) Science , vol.327 , pp. 198-201
    • Lanford, R.E.1
  • 198
    • 84942035135 scopus 로고    scopus 로고
    • MicroRNAs in cancer therapeutics: From the bench to the bedside
    • Monroig-Bosque P. D. C, Rivera C. A, & Calin G. A. MicroRNAs in cancer therapeutics: ''from the bench to the bedside''. Expert Opin. Biol. Ther. 15, 1381-1385 (2015).
    • (2015) Expert Opin. Biol. Ther , vol.15 , pp. 1381-1385
    • Monroig-Bosque, P.D.C.1    Rivera, C.A.2    Calin, G.A.3
  • 199
    • 84906313950 scopus 로고    scopus 로고
    • Identification and consequences of miRNA-Target interactions - Beyond repression of gene expression
    • Hausser J, & Zavolan M. Identification and consequences of miRNA-Target interactions - beyond repression of gene expression. Nat. Rev. Genet. 15, 599-612 (2014).
    • (2014) Nat. Rev. Genet , vol.15 , pp. 599-612
    • Hausser, J.1    Zavolan, M.2
  • 200
    • 80052451056 scopus 로고    scopus 로고
    • Experimental strategies for microRNA target identification
    • Thomson D. W, Bracken C. P, & Goodall G. J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845-6853 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. 6845-6853
    • Thomson, D.W.1    Bracken, C.P.2    Goodall, G.J.3
  • 201
    • 77953928753 scopus 로고    scopus 로고
    • HITS-CLIP: Panoramic views of protein- RNA regulation in living cells
    • Darnell R. B. HITS-CLIP: panoramic views of protein- RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266-286 (2010).
    • (2010) Wiley Interdiscip. Rev. RNA , vol.1 , pp. 266-286
    • Darnell, R.B.1
  • 202
    • 60149095444 scopus 로고    scopus 로고
    • Most mammalian mRNAs are conserved targets of microRNAs
    • Friedman R. C, Farh K. K. H, Burge C. B, & Bartel D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105 (2009).
    • (2009) Genome Res , vol.19 , pp. 92-105
    • Friedman, R.C.1    Farh, K.K.H.2    Burge, C.B.3    Bartel, D.P.4
  • 203
    • 84876523096 scopus 로고    scopus 로고
    • DIANA-LncBase: Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs
    • Paraskevopoulou M. D, et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 41, 239-245 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. 239-245
    • Paraskevopoulou, M.D.1
  • 204
    • 77955963884 scopus 로고    scopus 로고
    • Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites
    • Betel D, Koppal A, Agius P, Sander C, & Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010).
    • (2010) Genome Biol , vol.11 , pp. R90
    • Betel, D.1    Koppal, A.2    Agius, P.3    Sander, C.4    Leslie, C.5
  • 205
    • 84941083219 scopus 로고    scopus 로고
    • MiRDB: An online resource for microRNA target prediction and functional annotations
    • Wong N, & Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146-D152 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D146-D152
    • Wong, N.1    Wang, X.2
  • 206
    • 70350000602 scopus 로고    scopus 로고
    • TargetMiner: MicroRNA target prediction with systematic identification of tissue-specific negative examples
    • Bandyopadhyay S, & Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25, 2625-2631 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 2625-2631
    • Bandyopadhyay, S.1    Mitra, R.2
  • 207
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A, et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495-500 (2005).
    • (2005) Nat. Genet , vol.37 , pp. 495-500
    • Krek, A.1
  • 208
    • 33748587841 scopus 로고    scopus 로고
    • A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes
    • Miranda K. C, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126 1203-1217 (2006).
    • (2006) Cell , vol.126 , pp. 1203-1217
    • Miranda, K.C.1
  • 209
    • 79955975777 scopus 로고    scopus 로고
    • Two-Tiered approach identifies a network of cancer and liver disease-related genes regulated by miR 122
    • Boutz D. R, et al. Two-Tiered approach identifies a network of cancer and liver disease-related genes regulated by miR 122. J. Biol. Chem. 286, 18066-18078 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 18066-18078
    • Boutz, D.R.1
  • 210
    • 70449124423 scopus 로고    scopus 로고
    • Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines
    • Leivonen S. K, et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28, 3926-3936 (2009).
    • (2009) Oncogene , vol.28 , pp. 3926-3936
    • Leivonen, S.K.1
  • 211
    • 84995578817 scopus 로고    scopus 로고
    • Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA
    • Hendrickson D. G, et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, 25-29 (2009).
    • (2009) PLoS Biol , vol.7 , pp. 25-29
    • Hendrickson, D.G.1
  • 212
    • 67749132423 scopus 로고    scopus 로고
    • Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
    • Chi S. W, Zang J. B, Mele A, & Darnell R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486 (2009).
    • (2009) Nature , vol.460 , pp. 479-486
    • Chi, S.W.1    Zang, J.B.2    Mele, A.3    Darnell, R.B.4
  • 213
    • 34548671165 scopus 로고    scopus 로고
    • Isolation of microRNA targets using biotinylated synthetic microRNAs
    • Orom U, & Lund A. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43, 162-165 (2007).
    • (2007) Methods , vol.43 , pp. 162-165
    • Orom, U.1    Lund, A.2
  • 214
    • 84876005449 scopus 로고    scopus 로고
    • Functional genomic analysis of the let 7 regulatory network in Caenorhabditis elegans
    • Hunter S. E, et al. Functional genomic analysis of the let 7 regulatory network in Caenorhabditis elegans. PLoS Genet. 9, e1003353 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003353
    • Hunter, S.E.1
  • 215
    • 33748346026 scopus 로고    scopus 로고
    • Perfect seed pairing is not a generally reliable predictor for miRNA-Target interactions
    • Didiano D, & Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-Target interactions. Nat. Struct. Mol. Biol. 13, 849-851 (2006).
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 849-851
    • Didiano, D.1    Hobert, O.2
  • 216
    • 84995560333 scopus 로고    scopus 로고
    • Specificity of microRNA target selection in translational repression
    • Doench J. G, & Sharp P. A. Specificity of microRNA target selection in translational repression. Genes (Basel) 504, 504-511 (2004).
    • (2004) Genes (Basel , vol.504 , pp. 504-511
    • Doench, J.G.1    Sharp, P.A.2
  • 217
    • 78651307694 scopus 로고    scopus 로고
    • StarBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-seq and Degradome-seq data
    • Yang J. H, et al. StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-seq and Degradome-seq data. Nucleic Acids Res. 39, 202-209 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. 202-209
    • Yang, J.H.1
  • 219
    • 0033982936 scopus 로고    scopus 로고
    • Kegg: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, & Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27-30 (2000).
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 220
    • 84873669680 scopus 로고    scopus 로고
    • MiRNA target enrichment analysis reveals directly active miRNAs in health and disease
    • Steinfeld I, Navon R, Ach R, & Yakhini Z. miRNA target enrichment analysis reveals directly active miRNAs in health and disease. Nucleic Acids Res. 41, e45 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. e45
    • Steinfeld, I.1    Navon, R.2    Ach, R.3    Yakhini, Z.4
  • 221
    • 84864464973 scopus 로고    scopus 로고
    • Diana miRPath v20: Investigating the combinatorial effect of microRNAs in pathways
    • Vlachos I. S, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 40, 498-504 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. 498-504
    • Vlachos, I.S.1
  • 222
    • 84857204573 scopus 로고    scopus 로고
    • MiRTrail - A comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases
    • Laczny C, et al. miRTrail - A comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics 13, 36 (2012).
    • (2012) BMC Bioinformatics , vol.13 , pp. 36
    • Laczny, C.1
  • 223
    • 85018192719 scopus 로고    scopus 로고
    • MiRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data
    • Jung D, et al. miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data. BMC Proc. 9, S2 (2015).
    • (2015) BMC Proc , vol.9 , pp. S2
    • Jung, D.1
  • 224
    • 85015442772 scopus 로고    scopus 로고
    • MiRNet - Dissecting miRNA-Target interactions and functional associations through network-based visual analysis
    • Fan Y, et al. miRNet - dissecting miRNA-Target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 1, W135-W141 (2016).
    • (2016) Nucleic Acids Res , vol.1 , pp. W135-W141
    • Fan, Y.1
  • 225
    • 84907029461 scopus 로고    scopus 로고
    • Mirin: Identifying microRNA regulatory modules in protein- protein interaction networks
    • Yang K, Hsu C, Lin C, Juan H, & Huang H. Mirin: identifying microRNA regulatory modules in protein- protein interaction networks. Bioinformatics 30, 2527-2528 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 2527-2528
    • Yang, K.1    Hsu, C.2    Lin, C.3    Juan, H.4    Huang, H.5
  • 226
    • 77954276691 scopus 로고    scopus 로고
    • MAGIA, a web-based tool for miRNA and genes integrated analysis
    • Sales G, et al. MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res. 38, 352-359 (2010).
    • (2010) Nucleic Acids Res , vol.38 , pp. 352-359
    • Sales, G.1
  • 228
    • 77955286897 scopus 로고    scopus 로고
    • TAM: A method for enrichment and depletion analysis of a microRNA category in a list of microRNAs
    • Lu M, Shi B, Wang J, Cao Q, & Cui Q. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. Bioinformatics 11, 419 (2010).
    • (2010) Bioinformatics , vol.11 , pp. 419
    • Lu, M.1    Shi, B.2    Wang, J.3    Cao, Q.4    Cui, Q.5
  • 229
    • 84864777932 scopus 로고    scopus 로고
    • MiRSystem: An integrated system for characterizing enriched functions and pathways of microRNA targets
    • Lu T, et al. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE 7, e42390 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e42390
    • Lu, T.1
  • 230
    • 62549089305 scopus 로고    scopus 로고
    • CORNA: Testing gene lists for regulation by microRNAs
    • Wu X, & Watson M. CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25, 832-833 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 832-833
    • Wu, X.1    Watson, M.2
  • 231
    • 67849101186 scopus 로고    scopus 로고
    • MicroRNA and mRNA Integrated Analysis (MMIA): A web tool for examining biological functions of microRNA expression
    • Nam S, et al. MicroRNA and mRNA Integrated Analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res. 37, 356-362 (2009).
    • (2009) Nucleic Acids Res , vol.37 , pp. 356-362
    • Nam, S.1
  • 232
    • 77956117850 scopus 로고    scopus 로고
    • Towards computational prediction of microRNA function and activity
    • Ulitsky I, Laurent L. C, & Shamir R. Towards computational prediction of microRNA function and activity. Nucleic Acids Res. 38, e160 (2010).
    • (2010) Nucleic Acids Res , vol.38 , pp. e160
    • Ulitsky, I.1    Laurent, L.C.2    Shamir, R.3
  • 233
    • 84934986022 scopus 로고    scopus 로고
    • BioSystems miSEA: MicroRNA set enrichment analysis
    • Corapcioglu M, E, & Hasan O. BioSystems miSEA: microRNA set enrichment analysis. Biosystems 134, 37-42 (2015).
    • (2015) Biosystems , vol.134 , pp. 37-42
    • Corapcioglu, M.E.1    Hasan, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.