-
1
-
-
0027751663
-
The C elegans heterochronic gene lin 4 encodes small RNAs with antisense complementarity to lin 14
-
Lee R. C, Feinbaum R. L, & Ambros V. The C. elegans heterochronic gene lin 4 encodes small RNAs with antisense complementarity to lin 14. Cell 75, 843-854 (1993).
-
(1993)
Cell
, vol.75
, pp. 843-854
-
-
Lee, R.C.1
Feinbaum, R.L.2
Ambros, V.3
-
2
-
-
84929902258
-
MicroRNA biogenesis pathways in cancer
-
Lin S, & Gregory R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321-333 (2015).
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 321-333
-
-
Lin, S.1
Gregory, R.I.2
-
3
-
-
84931572130
-
Towards a molecular understanding of microRNA-mediated gene silencing
-
Jonas S, & Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421-433 (2015).
-
(2015)
Nat. Rev. Genet
, vol.16
, pp. 421-433
-
-
Jonas, S.1
Izaurralde, E.2
-
5
-
-
0036544755
-
Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-Transcriptional regulation
-
Lai E. C. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-Transcriptional regulation. Nat. Genet. 30, 363-364 (2002).
-
(2002)
Nat. Genet
, vol.30
, pp. 363-364
-
-
Lai, E.C.1
-
6
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis B. P, Burge C. B, & Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20 (2005).
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
7
-
-
57749206034
-
Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex
-
Wang Y, et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921-926 (2008).
-
(2008)
Nature
, vol.456
, pp. 921-926
-
-
Wang, Y.1
-
8
-
-
84863624199
-
The structure of human argonaute 2 in complex with miR 20a
-
Elkayam E, et al. The structure of human argonaute 2 in complex with miR 20a. Cell 150, 100-110 (2012).
-
(2012)
Cell
, vol.150
, pp. 100-110
-
-
Elkayam, E.1
-
10
-
-
70349320158
-
Causes and consequences of microRNA dysregulation in cancer
-
Croce C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704-714 (2009).
-
(2009)
Nat. Rev. Genet
, vol.10
, pp. 704-714
-
-
Croce, C.M.1
-
11
-
-
84906258538
-
Aberrant regulation and function of microRNAs in cancer
-
Adams B. D, Kasinski A. L, & J, S. F. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 24, R762-R776 (2014).
-
(2014)
Curr. Biol
, vol.24
, pp. R762-R776
-
-
Adams, B.D.1
Kasinski, A.L.J.F.S.2
-
12
-
-
20444460289
-
MicroRNA expression profiles classify human cancers
-
Lu J, et al. MicroRNA expression profiles classify human cancers. Nature 435, 834-838 (2005).
-
(2005)
Nature
, vol.435
, pp. 834-838
-
-
Lu, J.1
-
13
-
-
34247593034
-
Impaired microRNA processing enhances cellular transformation and tumorigenesis
-
Kumar M. S, Lu J, Mercer K. L, Golub T. R, & Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673-677 (2007).
-
(2007)
Nat. Genet
, vol.39
, pp. 673-677
-
-
Kumar, M.S.1
Lu, J.2
Mercer, K.L.3
Golub, T.R.4
Jacks, T.5
-
14
-
-
84937977372
-
Control of cancer formation by intrinsic genetic noise and microenvironmental cues
-
Brock A, Krause S, & Ingber D. E. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat. Rev. Cancer 15, 499-509 (2015).
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 499-509
-
-
Brock, A.1
Krause, S.2
Ingber, D.E.3
-
15
-
-
84860324470
-
Roles for microRNAs in conferring robustness to biological processes
-
Ebert M. S, & Sharp P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515-524 (2012).
-
(2012)
Cell
, vol.149
, pp. 515-524
-
-
Ebert, M.S.1
Sharp, P.A.2
-
16
-
-
41349119880
-
Stochastic switching as a survival strategy in fluctuating environments
-
Acar M, Mettetal J. T, & van Oudenaarden A. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471-475 (2008).
-
(2008)
Nat. Genet
, vol.40
, pp. 471-475
-
-
Acar, M.1
Mettetal, J.T.2
Van Oudenaarden, A.3
-
17
-
-
70350336588
-
Architecture-dependent noise discriminates functionally analogous differentiation circuits
-
Çaǧatay T, Turcotte M, Elowitz M. B, Garcia- Ojalvo J, & Süel G. M. Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139, 512-522 (2009).
-
(2009)
Cell
, vol.139
, pp. 512-522
-
-
Çaǧatay, T.1
Turcotte, M.2
Elowitz, M.B.3
Garcia-Ojalvo, J.4
Süel, G.M.5
-
18
-
-
84887612347
-
Circulating nucleic acids as biomarkers in breast cancer
-
Schwarzenbach H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 15, 211 (2013).
-
(2013)
Breast Cancer Res
, vol.15
, pp. 211
-
-
Schwarzenbach, H.1
-
19
-
-
84905122848
-
MicroRNAs in cancer: Biomarkers, functions and therapy
-
Hayes J, Peruzzi P. P, & Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460-469 (2014).
-
(2014)
Trends Mol. Med
, vol.20
, pp. 460-469
-
-
Hayes, J.1
Peruzzi, P.P.2
Lawler, S.3
-
20
-
-
84873582060
-
Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer
-
Yang D, et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23, 186-199 (2013).
-
(2013)
Cancer Cell
, vol.23
, pp. 186-199
-
-
Yang, D.1
-
21
-
-
84902533403
-
MicroRNAs as therapeutic targets in human cancers
-
Shah M. Y, & Calin G. A. MicroRNAs as therapeutic targets in human cancers. Wiley Interdiscip. Rev. RNA 5, 537-548 (2014).
-
(2014)
Wiley Interdiscip. Rev. RNA
, vol.5
, pp. 537-548
-
-
Shah, M.Y.1
Calin, G.A.2
-
22
-
-
49949116902
-
The impact of microRNAs on protein output
-
Baek D, et al. The impact of microRNAs on protein output. Nature 455, 64-71 (2009).
-
(2009)
Nature
, vol.455
, pp. 64-71
-
-
Baek, D.1
-
23
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H, Ingolia N. T, Weissman J. S, & Bartel D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 (2010).
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
Ingolia, N.T.2
Weissman, J.S.3
Bartel, D.P.4
-
24
-
-
84922394487
-
MRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues
-
Eichhorn S. W, et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104-115 (2014).
-
(2014)
Mol. Cell
, vol.56
, pp. 104-115
-
-
Eichhorn, S.W.1
-
25
-
-
49949117302
-
Widespread changes in protein synthesis induced by microRNAs
-
Selbach M, et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63 (2008).
-
(2008)
Nature
, vol.455
, pp. 58-63
-
-
Selbach, M.1
-
26
-
-
84859811931
-
Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer
-
Uhlmann S, et al. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol. Syst. Biol. 8, 570 (2012).
-
(2012)
Mol. Syst. Biol
, vol.8
, pp. 570
-
-
Uhlmann, S.1
-
27
-
-
84902338279
-
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
-
Du N. H, Arpat A. B, De Matos M, & Gatfield D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 2014, 1-29 (2014).
-
(2014)
ELife
, vol.2014
, pp. 1-29
-
-
Du, N.H.1
Arpat, A.B.2
De Matos, M.3
Gatfield, D.4
-
28
-
-
84933277411
-
An allelic series of miR 17~92- mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron
-
Han Y. C, et al. An allelic series of miR 17~92- mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat. Genet. 47, 766-775 (2015).
-
(2015)
Nat. Genet
, vol.47
, pp. 766-775
-
-
Han, Y.C.1
-
29
-
-
84955338195
-
Elucidating microRNA regulatory networks using transcriptional, post-Transcriptional, and histone modification measurements
-
Gosline S. J. C, et al. Elucidating microRNA regulatory networks using transcriptional, post-Transcriptional, and histone modification measurements. Cell Rep. 14, 310-319 (2016).
-
(2016)
Cell Rep
, vol.14
, pp. 310-319
-
-
Gosline, S.J.C.1
-
30
-
-
84908222388
-
Genome-wide identification of miR 200 targets reveals a regulatory network controlling cell invasion
-
Bracken C. P, et al. Genome-wide identification of miR 200 targets reveals a regulatory network controlling cell invasion. EMBO J. 33, 2040-2056 (2014).
-
(2014)
EMBO J.
, vol.33
, pp. 2040-2056
-
-
Bracken, C.P.1
-
31
-
-
77952368550
-
Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes
-
Chiang H, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992-1009 (2010).
-
(2010)
Genes Dev
, vol.24
, pp. 992-1009
-
-
Chiang, H.1
-
32
-
-
27344456287
-
MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets
-
Grün D, Wang Y. L, Langenberger D, Gunsalus K. C, & Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).
-
(2005)
PLoS Comput. Biol
, vol.1
, pp. e13
-
-
Grün, D.1
Wang, Y.L.2
Langenberger, D.3
Gunsalus, K.C.4
Rajewsky, N.5
-
33
-
-
77950348609
-
Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures
-
Tsang J. Ebert M, & van Oudenaarden A. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol. Cell 38, 140-153 (2010).
-
(2010)
Mol. Cell
, vol.38
, pp. 140-153
-
-
Tsang, J.1
Ebert, M.2
Van Oudenaarden, A.3
-
34
-
-
84855262919
-
A densely interconnected genome-wide network of microRNAs and oncogenic pathways revealed using gene expression signatures
-
Ooi C. H, et al. A densely interconnected genome-wide network of microRNAs and oncogenic pathways revealed using gene expression signatures. PLoS Genet. 7 e1002415 (2011).
-
(2011)
PLoS Genet
, vol.7
, pp. e1002415
-
-
Ooi, C.H.1
-
35
-
-
78650373804
-
Network medicine: A network-based approach to human disease
-
Barabási A. L, Gulbahce N, & Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56-68 (2011).
-
(2011)
Nat. Rev. Genet
, vol.12
, pp. 56-68
-
-
Barabási, A.L.1
Gulbahce, N.2
Loscalzo, J.3
-
36
-
-
34547555796
-
Global and local architecture of the mammalian microRNA-Transcription factor regulatory network
-
Shalgi R, Lieber D, Oren M, & Pilpel Y. Global and local architecture of the mammalian microRNA-Transcription factor regulatory network. PLoS Comput. Biol. 3, 1291-1304 (2007).
-
(2007)
PLoS Comput. Biol
, vol.3
, pp. 1291-1304
-
-
Shalgi, R.1
Lieber, D.2
Oren, M.3
Pilpel, Y.4
-
37
-
-
70350469040
-
The relationship between the evolution of microRNA targets and the length of their UTRs
-
Cheng C, Bhardwaj N, & Gerstein M. The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics http://dx.doi.org/10.1186/1471-2164-10-431 (2009).
-
(2009)
BMC Genomics
-
-
Cheng, C.1
Bhardwaj, N.2
Gerstein, M.3
-
38
-
-
84890391023
-
Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression
-
Li Y, et al. Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res. 41, e203 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. e203
-
-
Li, Y.1
-
39
-
-
34347398567
-
Inference of miRNA targets using evolutionary conservation and pathway analysis
-
Gaidatzis D, van Nimwegen E, Hausser J, & Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8, 69 (2007).
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 69
-
-
Gaidatzis, D.1
Van Nimwegen, E.2
Hausser, J.3
Zavolan, M.4
-
40
-
-
67650747402
-
DIANA-microT web server: Elucidating microRNA functions through target prediction
-
Maragkakis M, et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 37, 273-276 (2009).
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 273-276
-
-
Maragkakis, M.1
-
41
-
-
79952146521
-
NAViGaTing the micronome - Using multiple microRNA prediction databases to identify signalling pathway-Associated microRNAs
-
Shirdel E. A, Xie W, Mak T. W, & Jurisica I. NAViGaTing the micronome - using multiple microRNA prediction databases to identify signalling pathway-Associated microRNAs. PLoS ONE 6, e17429 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e17429
-
-
Shirdel, E.A.1
Xie, W.2
Mak, T.W.3
Jurisica, I.4
-
42
-
-
34548339681
-
MicroRNA regulation of human protein - Protein interaction network
-
Liang H, & Li W. MicroRNA regulation of human protein - protein interaction network. RNA 13, 1402-1408 (2007).
-
(2007)
RNA
, vol.13
, pp. 1402-1408
-
-
Liang, H.1
Li, W.2
-
43
-
-
44649167011
-
Characterization of microRNA-regulated protein-protein interaction network
-
Hsu C. W, Juan H. F, & Huang H. C. Characterization of microRNA-regulated protein-protein interaction network. Proteomics 8, 1975-1979 (2008).
-
(2008)
Proteomics
, vol.8
, pp. 1975-1979
-
-
Hsu, C.W.1
Juan, H.F.2
Huang, H.C.3
-
44
-
-
68349092641
-
Clustered microRNA'scoordination in regulating protein-protein interaction network
-
Yuan X, et al. Clustered microRNA'scoordination in regulating protein-protein interaction network. BMC Syst. Biol. 3, 65 (2009).
-
(2009)
BMC Syst. Biol
, vol.3
, pp. 65
-
-
Yuan, X.1
-
45
-
-
80052028123
-
MicroRNAs coordinately regulate protein complexes
-
Sass S, et al. MicroRNAs coordinately regulate protein complexes. BMC Syst. Biol. 5, 136 (2011).
-
(2011)
BMC Syst. Biol
, vol.5
, pp. 136
-
-
Sass, S.1
-
46
-
-
0034069495
-
Gene ontology: Tool for the unification of biology
-
Ashburner M, et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25-29 (2000).
-
(2000)
Nat. Genet
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
-
47
-
-
84861793773
-
Gene set enrichment analysis: Performance evaluation and usage guidelines
-
Hung J. H, Yang T. H, Hu Z, Weng Z, & DeLisi C. Gene set enrichment analysis: performance evaluation and usage guidelines. Brief. Bioinform. 13, 281-291 (2011).
-
(2011)
Brief. Bioinform
, vol.13
, pp. 281-291
-
-
Hung, J.H.1
Yang, T.H.2
Hu, Z.3
Weng, Z.4
DeLisi, C.5
-
48
-
-
66249106716
-
Predicting microRNA targets and functions: Traps for the unwary
-
Ritchie W, Flamant S, & Rasko J. E. J. Predicting microRNA targets and functions: traps for the unwary. Nat. Methods 6, 397-398 (2009).
-
(2009)
Nat. Methods
, vol.6
, pp. 397-398
-
-
Ritchie, W.1
Flamant, S.2
Rasko, J.E.J.3
-
49
-
-
58249088751
-
MicroRNAs: Target recognition and regulatory functions
-
Bartel D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
50
-
-
34250805982
-
MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
-
Grimson A, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91-105 (2007).
-
(2007)
Mol. Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
-
51
-
-
18044377963
-
Principles of microRNA-Target recognition
-
Brennecke J, Stark A, Russell R. B, & Cohen S. M. Principles of microRNA-Target recognition. PLoS Biol. 3, 0404-0418 (2005).
-
(2005)
PLoS Biol
, vol.3
, pp. 0404-0418
-
-
Brennecke, J.1
Stark, A.2
Russell, R.B.3
Cohen, S.M.4
-
52
-
-
77955475953
-
Expanding the microRNA targeting code: Functional sites with centred pairing
-
Shin C, et al. Expanding the microRNA targeting code: functional sites with centred pairing. Mol. Cell 38, 789-802 (2010).
-
(2010)
Mol. Cell
, vol.38
, pp. 789-802
-
-
Shin, C.1
-
54
-
-
84940502214
-
Predicting effective microRNA target sites in mammalian mRNAs
-
Agarwal V, Bell G. W, Nam J. W, & Bartel D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).
-
(2015)
ELife
, vol.4
, pp. e05005
-
-
Agarwal, V.1
Bell, G.W.2
Nam, J.W.3
Bartel, D.P.4
-
55
-
-
84995697856
-
Capture of microRNA-bound mRNAs identifies the tumor suppressor miR 34a as a regulator of growth factor signaling
-
Lal A, et al. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR 34a as a regulator of growth factor signaling. PLoS Genet. 7, 19-21 (2011).
-
(2011)
PLoS Genet
, vol.7
, pp. 19-21
-
-
Lal, A.1
-
56
-
-
84872576566
-
MicroRNA 182 5p targets a network of genes involved in DNA repair
-
Krishnan K, et al. MicroRNA 182 5p targets a network of genes involved in DNA repair. RNA 19, 230-242 (2013).
-
(2013)
RNA
, vol.19
, pp. 230-242
-
-
Krishnan, K.1
-
57
-
-
84888408364
-
MiR 139 5p is a regulator of metastatic pathways in breast cancer
-
Krishnan K, et al. miR 139 5p is a regulator of metastatic pathways in breast cancer. RNA 19, 1767-1780 (2013).
-
(2013)
RNA
, vol.19
, pp. 1767-1780
-
-
Krishnan, K.1
-
58
-
-
84908356160
-
Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR 522
-
Tan S. M, et al. Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR 522. Cell Rep. 8, 1225-1239 (2014).
-
(2014)
Cell Rep
, vol.8
, pp. 1225-1239
-
-
Tan, S.M.1
-
59
-
-
84900814334
-
Composition of seed sequence is a major determinant of microRNA targeting patterns
-
Wang X. Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30, 1377-1383 (2014).
-
(2014)
Bioinformatics
, vol.30
, pp. 1377-1383
-
-
Wang, X.1
-
60
-
-
84876935138
-
Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding
-
Helwak A, Kudla G, Dudnakova T, & Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654-665 (2013).
-
(2013)
Cell
, vol.153
, pp. 654-665
-
-
Helwak, A.1
Kudla, G.2
Dudnakova, T.3
Tollervey, D.4
-
61
-
-
77950920903
-
Transcriptome wide identification of RNA binding protein and microRNA target sites by PAR-CLIP
-
Hafner M, et al. Transcriptome wide identification of RNA binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129-141 (2010).
-
(2010)
Cell
, vol.141
, pp. 129-141
-
-
Hafner, M.1
-
62
-
-
43049103824
-
The miR 200 family and miR 205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
Gregory P. A, et al. The miR 200 family and miR 205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593-601 (2008).
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 593-601
-
-
Gregory, P.A.1
-
63
-
-
84954392246
-
MiR 200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes
-
Perdigão-Henriques R, et al. miR 200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 35, 158-172 (2016).
-
(2016)
Oncogene
, vol.35
, pp. 158-172
-
-
Perdigão-Henriques, R.1
-
64
-
-
34247565615
-
The tumor suppressor microRNA let 7 represses the HMGA2 oncogene
-
Lee Y. S, & Dutta A. The tumor suppressor microRNA let 7 represses the HMGA2 oncogene. Genes Dev. 21, 1025-1030 (2007).
-
(2007)
Genes Dev
, vol.21
, pp. 1025-1030
-
-
Lee, Y.S.1
Dutta, A.2
-
65
-
-
33947431322
-
Disrupting the pairing between let 7 and Hmga2 enhances oncogenic transformation
-
Mayr C, Hemann M. T, & Bartel D. P. Disrupting the pairing between let 7 and Hmga2 enhances oncogenic transformation. Science. 315, 1576-1579 (2007).
-
(2007)
Science
, vol.315
, pp. 1576-1579
-
-
Mayr, C.1
Hemann, M.T.2
Bartel, D.P.3
-
66
-
-
84866239260
-
MiR 182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma
-
Liu Z, et al. MiR 182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J. Pathol. 228, 204-215 (2012).
-
(2012)
J. Pathol
, vol.228
, pp. 204-215
-
-
Liu, Z.1
-
67
-
-
84870623242
-
Oncogenic miRNA 182 5p targets Smad4 and RECK in human bladder cancer
-
Hirata H, et al. Oncogenic miRNA 182 5p targets Smad4 and RECK in human bladder cancer. PLoS ONE 7, 1-8 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. 1-8
-
-
Hirata, H.1
-
68
-
-
77952879648
-
Hsa-miR 182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro
-
Sun Y, et al. Hsa-mir 182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem. Biophys. Res. Commun. 396, 501-507 (2010).
-
(2010)
Biochem. Biophys. Res. Commun
, vol.396
, pp. 501-507
-
-
Sun, Y.1
-
69
-
-
84871814699
-
Elevated oncofoetal miR 17 5p expression regulates colorectal cancer progression by repressing its target gene P130
-
Ma Y, et al. Elevated oncofoetal miR 17 5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat. Commun. 3, 1291 (2012).
-
(2012)
Nat. Commun
, vol.3
, pp. 1291
-
-
Ma, Y.1
-
70
-
-
84877916526
-
Mature miR 17 5p and passenger miR 17 3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways
-
Shan S. W, et al. Mature miR 17 5p and passenger miR 17 3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J. Cell Sci. 126, 1517-1530 (2013).
-
(2013)
J. Cell Sci
, vol.126
, pp. 1517-1530
-
-
Shan, S.W.1
-
71
-
-
84864273594
-
MiR 17 5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells
-
Wei Q, Li Y. X, Liu M, Li X, & Tang H. MiR 17 5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 64, 697-704 (2012).
-
(2012)
IUBMB Life
, vol.64
, pp. 697-704
-
-
Wei, Q.1
Li, Y.X.2
Liu, M.3
Li, X.4
Tang, H.5
-
72
-
-
80052470207
-
Direct targeting of Sec23a by miR 200s influences cancer cell secretome and promotes metastatic colonization
-
Korpal M, et al. Direct targeting of Sec23a by miR 200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101-1108 (2011).
-
(2011)
Nat. Med
, vol.17
, pp. 1101-1108
-
-
Korpal, M.1
-
73
-
-
70349142665
-
Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR 200 family expression
-
Gibbons D. L, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR 200 family expression. Genes Dev. 23, 2140-2151 (2009).
-
(2009)
Genes Dev
, vol.23
, pp. 2140-2151
-
-
Gibbons, D.L.1
-
74
-
-
84905409283
-
MiR 200 can repress breast cancer metastasis through ZEB1 independent but moesin-dependent pathways
-
Li X, et al. MiR 200 can repress breast cancer metastasis through ZEB1 independent but moesin-dependent pathways. Oncogene 33, 4077-4088 (2014).
-
(2014)
Oncogene
, vol.33
, pp. 4077-4088
-
-
Li, X.1
-
75
-
-
77951474125
-
Target mRNA abundance dilutes microRNA and siRNA activity
-
Arvey A, Larsson E, Sander C, Leslie C. S, & Marks D. S. Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6, 363 (2010).
-
(2010)
Mol. Syst. Biol
, vol.6
, pp. 363
-
-
Arvey, A.1
Larsson, E.2
Sander, C.3
Leslie, C.S.4
Marks, D.S.5
-
76
-
-
80455154984
-
Weak seed-pairing stability and high target-site abundance decreases the proficiency of isy 6 and other miRNA's
-
Garcia D. M, et al. Weak seed-pairing stability and high target-site abundance decreases the proficiency of isy 6 and other miRNA's. Nat. Struct. Mol. Biol. 18, 1139-1146 (2011).
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 1139-1146
-
-
Garcia, D.M.1
-
77
-
-
77953957633
-
A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
-
Poliseno L, Salmeda J, Zhang L, Haveman W, & Pandolfi P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465 1033-1038 (2010).
-
(2010)
Nature
, vol.465
, pp. 1033-1038
-
-
Poliseno, L.1
Salmeda, J.2
Zhang, L.3
Haveman, W.4
Pandolfi, P.5
-
78
-
-
84876367541
-
Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal
-
Wang Y, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69-80 (2013).
-
(2013)
Dev. Cell
, vol.25
, pp. 69-80
-
-
Wang, Y.1
-
79
-
-
84961401406
-
Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer
-
Du Z, et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun. 7, 10982 (2016).
-
(2016)
Nat. Commun
, vol.7
, pp. 10982
-
-
Du, Z.1
-
80
-
-
84904272774
-
Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer
-
Paci P, Colombo T, & Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst. Biol. 8, 83 (2014).
-
(2014)
BMC Syst. Biol
, vol.8
, pp. 83
-
-
Paci, P.1
Colombo, T.2
Farina, L.3
-
81
-
-
84875372911
-
Natural RNA circles function as efficient microRNA sponges
-
Hansen T. B, et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388 (2013).
-
(2013)
Nature
, vol.495
, pp. 384-388
-
-
Hansen, T.B.1
-
82
-
-
84875369248
-
Circular RNAs are a large class of animal RNAs with regulatory potency
-
Memczak S, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338 (2013).
-
(2013)
Nature
, vol.495
, pp. 333-338
-
-
Memczak, S.1
-
83
-
-
84962086887
-
Endogenous microRNA sponges: Evidence and controversy
-
Thomson D. W, & Dinger M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272-283 (2016).
-
(2016)
Nat. Rev. Genet
, vol.17
, pp. 272-283
-
-
Thomson, D.W.1
Dinger, M.E.2
-
84
-
-
77957850291
-
Emerging roles for natural microRNA sponges
-
Ebert M. S, & Sharp P. A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858-R861 (2014).
-
(2014)
Curr. Biol
, vol.20
, pp. R858-R861
-
-
Ebert, M.S.1
Sharp, P.A.2
-
85
-
-
84901838697
-
Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance
-
Denzler R, Agarwal V, Stefano J, Bartel D, & Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766-776 (2015).
-
(2015)
Mol. Cell
, vol.54
, pp. 766-776
-
-
Denzler, R.1
Agarwal, V.2
Stefano, J.3
Bartel, D.4
Stoffel, M.5
-
86
-
-
84922418997
-
Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition
-
Bosson A. D, Zamudio J. R, & Sharp P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347-359 (2014).
-
(2014)
Mol. Cell
, vol.56
, pp. 347-359
-
-
Bosson, A.D.1
Zamudio, J.R.2
Sharp, P.A.3
-
87
-
-
84978664408
-
Multiple mechanisms disrupt the let 7 microRNA family in neuroblastoma
-
Powers J. T, et al. Multiple mechanisms disrupt the let 7 microRNA family in neuroblastoma. Nature 535, 246-251 (2016).
-
(2016)
Nature
, vol.535
, pp. 246-251
-
-
Powers, J.T.1
-
88
-
-
84930505926
-
Pathway analysis from lists of microRNAs: Common pitfalls and alternative strategy
-
Godard P, & van Eyll J. Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy. Nucleic Acids Res. 43, 3490-3497 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 3490-3497
-
-
Godard, P.1
Van Eyll, J.2
-
90
-
-
33947224690
-
Transcripts targeted by the microRNA 16 family cooperatively regulate cell cycle progression
-
Linsley P. S, et al. Transcripts targeted by the microRNA 16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240-2252 (2007).
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 2240-2252
-
-
Linsley, P.S.1
-
91
-
-
84883826854
-
Insulin growth factor signaling is regulated by microRNA 486, an underexpressed microRNA in lung cancer
-
Peng Y, et al. Insulin growth factor signaling is regulated by microRNA 486, an underexpressed microRNA in lung cancer. Proc. Natl Acad. Sci. USA 110, 15043-15048 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 15043-15048
-
-
Peng, Y.1
-
92
-
-
84961690136
-
MiR 892b silencing activates NF-?B and promotes aggressiveness in breast cancer
-
Jiang L, et al. miR 892b silencing activates NF-?B and promotes aggressiveness in breast cancer. Cancer Res. 76, 1101-1112 (2016).
-
(2016)
Cancer Res
, vol.76
, pp. 1101-1112
-
-
Jiang, L.1
-
93
-
-
84943800564
-
MicroRNA 542 3p suppresses tumor cell invasion via targeting AKT pathway in human astrocytoma
-
Cai J, et al. MicroRNA 542 3p suppresses tumor cell invasion via targeting AKT pathway in human astrocytoma. J. Biol. Chem. 290, 24678-24688 (2015).
-
(2015)
J. Biol. Chem
, vol.290
, pp. 24678-24688
-
-
Cai, J.1
-
94
-
-
84901228446
-
MicroRNA 133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma
-
Wang L. K, et al. MicroRNA 133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma. PLoS ONE 9, e96765 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e96765
-
-
Wang, L.K.1
-
95
-
-
84878535897
-
MiR 23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts
-
Pellegrino L, et al. miR 23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res. 41, 5400-5412 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 5400-5412
-
-
Pellegrino, L.1
-
96
-
-
84942875868
-
MiR 634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity
-
Fujiwara N, et al. miR 634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res. 75, 3890-3901 (2015).
-
(2015)
Cancer Res
, vol.75
, pp. 3890-3901
-
-
Fujiwara, N.1
-
97
-
-
84878703345
-
MicroRNA 135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1
-
Lin C. W, et al. MicroRNA 135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat. Commun. 4, 1877 (2013).
-
(2013)
Nat. Commun
, vol.4
, pp. 1877
-
-
Lin, C.W.1
-
98
-
-
41649091906
-
The miR 200 family determines the epithelial phenotype of cancer cells by targeting the e cadherin repressors ZEB1 and ZEB2
-
Park S. M, Gaur A. B, Lengyel E, & Peter M. E. The miR 200 family determines the epithelial phenotype of cancer cells by targeting the E cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894-907 (2008).
-
(2008)
Genes Dev
, vol.22
, pp. 894-907
-
-
Park, S.M.1
Gaur, A.B.2
Lengyel, E.3
Peter, M.E.4
-
99
-
-
44649163918
-
A reciprocal repression between ZEB1 and members of the miR 200 family promotes EMT and invasion in cancer cells
-
Burk U, et al. A reciprocal repression between ZEB1 and members of the miR 200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582-589 (2008).
-
(2008)
EMBO Rep
, vol.9
, pp. 582-589
-
-
Burk, U.1
-
100
-
-
84867736206
-
IsomiRs - The overlooked repertoire in the dynamic microRNAome
-
Neilsen C. T, Goodall G. J, & Bracken C. P. IsomiRs - The overlooked repertoire in the dynamic microRNAome. Trends Genet. 28, 544-549 (2012).
-
(2012)
Trends Genet
, vol.28
, pp. 544-549
-
-
Neilsen, C.T.1
Goodall, G.J.2
Bracken, C.P.3
-
101
-
-
84855168259
-
MicroRNAs and their isomiRs function cooperatively to target common biological pathways
-
Cloonan N, et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 12, R126 (2011).
-
(2011)
Genome Biol
, vol.12
, pp. R126
-
-
Cloonan, N.1
-
102
-
-
84939783166
-
Divergent target recognition by coexpressed 5' isomiRs of miR 142 3p and selective viral mimicry
-
Manzano M, Forte E, Raja A. N, Schipma M. J, & Gottwein E. Divergent target recognition by coexpressed 5' isomiRs of miR 142 3p and selective viral mimicry. RNA 21, 1606-1620 (2015).
-
(2015)
RNA
, vol.21
, pp. 1606-1620
-
-
Manzano, M.1
Forte, E.2
Raja, A.N.3
Schipma, M.J.4
Gottwein, E.5
-
103
-
-
84959377931
-
Beyond the one-locus-one-miRNA paradigm: MicroRNA isoforms enable deeper insights into breast cancer heterogeneity
-
Telonis A. G, Loher P, Jing Y, Londin E, & Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 43, 9158-9175 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 9158-9175
-
-
Telonis, A.G.1
Loher, P.2
Jing, Y.3
Londin, E.4
Rigoutsos, I.5
-
104
-
-
84883651731
-
Beta cell 5' shifted isomiRs are candidate regulatory hubs in type 2 diabetes
-
Baran-Gale J, Fannin E. E, Kurtz C. L, & Sethupathy P. Beta cell 5' shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS ONE 8, e73240 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e73240
-
-
Baran-Gale, J.1
Fannin, E.E.2
Kurtz, C.L.3
Sethupathy, P.4
-
105
-
-
84861909720
-
Identification of microRNA-regulated gene networks by expression analysis of target genes
-
Gennarino V. A, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 22, 1163-1172 (2012).
-
(2012)
Genome Res
, vol.22
, pp. 1163-1172
-
-
Gennarino, V.A.1
-
106
-
-
84883651195
-
Mir 192, miR 194 and miR 215: A convergent microRNA network suppressing tumor progression in renal cell carcinoma
-
Khella H. W. Z, et al. mir 192, mir 194 and mir 215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis 34, 2231-2239 (2013).
-
(2013)
Carcinogenesis
, vol.34
, pp. 2231-2239
-
-
Khella, H.W.Z.1
-
107
-
-
84860488299
-
MiR 192, miR 194, miR 215, miR 200c and miR 141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms
-
Senanayake U, et al. miR 192, miR 194, miR 215, miR 200c and miR 141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis 33, 1014-1021 (2012).
-
(2012)
Carcinogenesis
, vol.33
, pp. 1014-1021
-
-
Senanayake, U.1
-
108
-
-
84976865506
-
Genome-wide screen identified let 7c/.miR 99a/miR 125b regulating tumor progression and stem-like properties in cholangiocarcinoma
-
Lin K, et al. Genome-wide screen identified let 7c/.miR 99a/miR 125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene 35, 3376-3386 (2016).
-
(2016)
Oncogene
, vol.35
, pp. 3376-3386
-
-
Lin, K.1
-
109
-
-
54049084380
-
A double-negative feedback loop between ZEB1 SIP1 and the microRNA 200 family regulates epithelial-mesenchymal transition
-
Bracken C. P, et al. A double-negative feedback loop between ZEB1 SIP1 and the microRNA 200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846-7854 (2008).
-
(2008)
Cancer Res
, vol.68
, pp. 7846-7854
-
-
Bracken, C.P.1
-
110
-
-
47249091921
-
The miR 200 family inhibits transition and cancer cell migration by direct targeting of e cadherin transcriptional repressors ZEB1 and ZEB2
-
Korpal M, Lee E. S, Hu G, & Kang Y. The miR 200 family inhibits transition and cancer cell migration by direct targeting of E cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910-14914 (2008).
-
(2008)
J. Biol. Chem
, vol.283
, pp. 14910-14914
-
-
Korpal, M.1
Lee, E.S.2
Hu, G.3
Kang, Y.4
-
111
-
-
84871118304
-
MicroRNAs in the imprinted DLK1 DIO3 region repress the epithelial-To mesenchymal transition by targeting the TWIST1 protein signaling network
-
Haga C. L, & Phinney D. G. MicroRNAs in the imprinted DLK1 DIO3 region repress the epithelial-To mesenchymal transition by targeting the TWIST1 protein signaling network. J. Biol. Chem. 287, 42695-42707 (2012).
-
(2012)
J. Biol. Chem
, vol.287
, pp. 42695-42707
-
-
Haga, C.L.1
Phinney, D.G.2
-
112
-
-
84930216537
-
Autocrine/paracrine human growth hormone-stimulated microRNA 96 182 183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer
-
Zhang W, et al. Autocrine/paracrine human growth hormone-stimulated microRNA 96 182 183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J. Biol. Chem. 290, 13812-13829 (2015).
-
(2015)
J. Biol. Chem
, vol.290
, pp. 13812-13829
-
-
Zhang, W.1
-
113
-
-
85027949778
-
MicroRNA 193a 3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway
-
Yu T, et al. MicroRNA 193a 3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 34, 413-423 (2014).
-
(2014)
Oncogene
, vol.34
, pp. 413-423
-
-
Yu, T.1
-
114
-
-
2342449399
-
Identification and characterization of a novel gene, C13orf25, as a target for 13q31 q32 amplification in malignant lymphoma
-
Ota A. Identification and characterization of a novel gene, C13orf25, as a target for 13q31 q32 amplification in malignant lymphoma. Cancer Res. 64, 3087-3095 (2004).
-
(2004)
Cancer Res
, vol.64
, pp. 3087-3095
-
-
Ota, A.1
-
115
-
-
20444467290
-
A microRNA polycistron as a potential human oncogene
-
He L, et al. A microRNA polycistron as a potential human oncogene. Nature 435 828-833 (2005).
-
(2005)
Nature
, vol.435
, pp. 828-833
-
-
He, L.1
-
116
-
-
27544495514
-
A polycistronic microRNA cluster miR 17 92 is overexpressed in human lung cancers and enhances cell proliferation
-
Hayashita Y, et al. A polycistronic microRNA cluster, miR 17 92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628-9632 (2005).
-
(2005)
Cancer Res
, vol.65
, pp. 9628-9632
-
-
Hayashita, Y.1
-
117
-
-
35748967324
-
MRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer
-
Lanza G, et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54 (2007).
-
(2007)
Mol. Cancer
, vol.6
, pp. 54
-
-
Lanza, G.1
-
118
-
-
78649941638
-
The miR 17 92 microRNA cluster regulates multiple components of the TGF β pathway in neuroblastoma
-
Mestdagh P, et al. The miR 17 92 microRNA cluster regulates multiple components of the TGF β pathway in neuroblastoma. Mol. Cell 40, 762-773 (2010).
-
(2010)
Mol. Cell
, vol.40
, pp. 762-773
-
-
Mestdagh, P.1
-
119
-
-
84869135392
-
Differentiation-Associated microRNAs antagonize the Rb E2F pathway to restrict proliferation
-
Marzi M. J, et al. Differentiation-Associated microRNAs antagonize the Rb E2F pathway to restrict proliferation. J. Cell Biol. 199, 77-95 (2012).
-
(2012)
J. Cell Biol
, vol.199
, pp. 77-95
-
-
Marzi, M.J.1
-
120
-
-
84890708492
-
MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression
-
Frampton A. E, et al. MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146, 268-277 (2014).
-
(2014)
Gastroenterology
, vol.146
, pp. 268-277
-
-
Frampton, A.E.1
-
121
-
-
84908879686
-
MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1
-
Sharma S. B, et al. MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol. Cell. Biol. 34, 4143-4164 (2014).
-
(2014)
Mol. Cell. Biol
, vol.34
, pp. 4143-4164
-
-
Sharma, S.B.1
-
122
-
-
84904016399
-
Cooperative gene regulation by microRNA pairs and their identification using a computational workflow
-
Schmitz U, et al. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res. 42, 7539-7552 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 7539-7552
-
-
Schmitz, U.1
-
123
-
-
0346094457
-
Prediction of mammalian microRNA targets
-
Lewis B. P, Shih I. H, Jones-Rhoades M. W, & Bartel D. P. Prediction of mammalian microRNA targets. Cell 115, 787-798 (2003).
-
(2003)
Cell
, vol.115
, pp. 787-798
-
-
Lewis, B.P.1
Shih, I.H.2
Jones-Rhoades, M.W.3
Bartel, D.P.4
-
124
-
-
33846045953
-
Principles of microRNA regulation of a human cellular signaling network
-
Cui Q, Yu Z, Purisima E. O, & Wang E. Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol. 2, 46 (2006).
-
(2006)
Mol. Syst. Biol
, vol.2
, pp. 46
-
-
Cui, Q.1
Yu, Z.2
Purisima, E.O.3
Wang, E.4
-
125
-
-
51949087680
-
Elegans genome-scale microRNA network contains composite feedback motifs with high flux-capacity
-
Martinez N, et al. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux-capacity. Genes Dev. 22, 2535-2549 (2008).
-
(2008)
Genes Dev
, vol.22
, pp. 2535-2549
-
-
Martinez, N.1
Et, Al.A.C.2
-
126
-
-
70349334678
-
Genome-wide survey of microRNA-Transcription factor feed-forward regulatory circuits in human
-
Re A, Cora D, Taverna D, & Caselle M. Genome-wide survey of microRNA-Transcription factor feed-forward regulatory circuits in human. Mol. Biosyst. 5, 854-867 (2009).
-
(2009)
Mol. Biosyst
, vol.5
, pp. 854-867
-
-
Re, A.1
Cora, D.2
Taverna, D.3
Caselle, M.4
-
127
-
-
77956520986
-
CircuitsDB: A database of mixed microRNA/.transcription factor feed-forward regulatory circuits in human and mouse
-
Friard O, Re A, Taverna D, De Bortoli M, & Corá D. CircuitsDB: a database of mixed microRNA/.transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 11, 435 (2010).
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 435
-
-
Friard, O.1
Re, A.2
Taverna, D.3
De Bortoli, M.4
Corá, D.5
-
128
-
-
34249819336
-
MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals
-
Tsang J, Zhu J, & van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753-767 (2007).
-
(2007)
Mol. Cell
, vol.26
, pp. 753-767
-
-
Tsang, J.1
Zhu, J.2
Van Oudenaarden, A.3
-
129
-
-
84883805211
-
The role of miRNAs in regulating gene expression networks
-
Gurtan A. M, & Sharp P. A. The role of miRNAs in regulating gene expression networks. J. Mol. Biol. 425, 3582-3600 (2013).
-
(2013)
J. Mol. Biol
, vol.425
, pp. 3582-3600
-
-
Gurtan, A.M.1
Sharp, P.A.2
-
130
-
-
79957579613
-
Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques
-
Su W. L, Kleinhanz R. R, & Schadt E. E. Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques. Mol. Syst. Biol. 7, 490 (2011).
-
(2011)
Mol. Syst. Biol
, vol.7
, pp. 490
-
-
Su, W.L.1
Kleinhanz, R.R.2
Schadt, E.E.3
-
131
-
-
84865739425
-
Architecture of the human regulatory network derived from ENCODE data
-
Gerstein M, et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91-100 (2012).
-
(2012)
Nature
, vol.489
, pp. 91-100
-
-
Gerstein, M.1
-
132
-
-
58549104795
-
A regulatory interplay between miR 27a and Runx1 during megakaryopoiesis
-
Ben-Ami O, Pencovich N, Lotem J, Levanon D, & Groner Y. A regulatory interplay between miR 27a and Runx1 during megakaryopoiesis. Proc. Natl Acad. Sci. USA 106, 238-243 (2009).
-
(2009)
Proc Natl Acad. Sci. USA
, vol.106
, pp. 238-243
-
-
Ben-Ami, O.1
Pencovich, N.2
Lotem, J.3
Levanon, D.4
Groner, Y.5
-
133
-
-
84863012238
-
A novel YY1 miR 1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1 miRNA network
-
Lu L, et al. A novel YY1 miR 1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1 miRNA network. PLoS ONE 7 e27596 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. e27596
-
-
Lu, L.1
-
134
-
-
78650179541
-
Involvement of NF ?B/miR 448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells
-
Li Q. Q, et al. Involvement of NF ?B/miR 448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 18, 16-25 (2011).
-
(2011)
Cell Death Differ
, vol.18
, pp. 16-25
-
-
Li, Q.Q.1
-
135
-
-
84908131048
-
YY1 C/EBPa miR34a regulatory circuitry is involved in renal cell carcinoma progression
-
Weng W, et al. YY1 C/EBPa miR34a regulatory circuitry is involved in renal cell carcinoma progression. Oncol. Rep. 31, 1921-1927 (2014).
-
(2014)
Oncol. Rep
, vol.31
, pp. 1921-1927
-
-
Weng, W.1
-
136
-
-
84920278549
-
A novel AP 1/miR 101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells
-
Liu J. J, et al. A novel AP 1/miR 101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res. 42, 12041-12051 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 12041-12051
-
-
Liu, J.J.1
-
137
-
-
84855729906
-
A p53/miRNA 34 axis regulates Snail1 dependent cancer cell epithelial-mesenchymal transition
-
Kim N. H, et al. A p53/miRNA 34 axis regulates Snail1 dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417-433 (2011).
-
(2011)
J. Cell Biol
, vol.195
, pp. 417-433
-
-
Kim, N.H.1
-
138
-
-
84055184850
-
MiR 34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions
-
Siemens H, et al. miR 34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256-4271 (2011).
-
(2011)
Cell Cycle
, vol.10
, pp. 4256-4271
-
-
Siemens, H.1
-
139
-
-
58149382580
-
MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR 17 92, E2F, and Myc
-
Aguda B. D, Kim Y, Piper-Hunter M. G, Friedman A, & Marsh C. B. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR 17 92, E2F, and Myc. Proc. Natl Acad. Sci. USA 105, 19678-19683 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 19678-19683
-
-
Aguda, B.D.1
Kim, Y.2
Piper-Hunter, M.G.3
Friedman, A.4
Marsh, C.B.5
-
140
-
-
84943257078
-
RegNetwork: An integrated database of transcriptional and post-Transcriptional regulatory networks in human and mouse
-
Liu Z, Wu C, Miao H, & Wu H. RegNetwork: an integrated database of transcriptional and post-Transcriptional regulatory networks in human and mouse. Database http://dx.doi.org/10.1093/database/.bav095 (2015).
-
(2015)
Database
-
-
Liu, Z.1
Wu, C.2
Miao, H.3
Wu, H.4
-
141
-
-
84925298664
-
Direct transcriptional regulation by nuclear microRNAs
-
Salmanidis M, Pillman K, Goodall G, & Bracken C. Direct transcriptional regulation by nuclear microRNAs. Int. J. Biochem. Cell Biol. 54, 304-311 (2014).
-
(2014)
Int. J. Biochem. Cell Biol
, vol.54
, pp. 304-311
-
-
Salmanidis, M.1
Pillman, K.2
Goodall, G.3
Bracken, C.4
-
142
-
-
84966335519
-
Regulation of mammalian transcription and splicing by nuclear RNAi
-
Kalantari R, Chiang C, & Corey D. R. Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res. 44, 524-537 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 524-537
-
-
Kalantari, R.1
Chiang, C.2
Corey, D.R.3
-
143
-
-
84924962270
-
Dysregulation of microRNA biogenesis and gene silencing in cancer
-
Hata A, & Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci. Signal. 8, re3 (2015).
-
(2015)
Sci. Signal
, vol.8
, pp. re3
-
-
Hata, A.1
Lieberman, J.2
-
144
-
-
12144290519
-
Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers
-
Calin G. A, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999-3004 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 2999-3004
-
-
Calin, G.A.1
-
145
-
-
33745168962
-
MicroRNAs exhibit high frequency genomic alterations in human cancer
-
Zhang L, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136-9141 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 9136-9141
-
-
Zhang, L.1
-
146
-
-
20444479428
-
C Myc-regulated microRNAs modulate E2F1 expression
-
O'Donnell K. A, Wentzel E. A, Zeller K. I, Dang C. V, & Mendell J. T. c Myc-regulated microRNAs modulate E2F1 expression. Nature 435 839-843 (2005).
-
(2005)
Nature
, vol.435
, pp. 839-843
-
-
O'Donnell, K.A.1
Wentzel, E.A.2
Zeller, K.I.3
Dang, C.V.4
Mendell, J.T.5
-
147
-
-
33748302836
-
Augmentation of tumor angiogenesis by a Myc-Activated microRNA cluster
-
Dews M, et al. Augmentation of tumor angiogenesis by a Myc-Activated microRNA cluster. Nat. Genet. 38, 1060-1065 (2006).
-
(2006)
Nat. Genet
, vol.38
, pp. 1060-1065
-
-
Dews, M.1
-
148
-
-
51649083501
-
A microRNA DNA methylation signature for human cancer metastasis
-
Lujambio A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556-13561 (2008).
-
(2008)
Proc Natl Acad. Sci. USA
, vol.105
, pp. 13556-13561
-
-
Lujambio, A.1
-
149
-
-
77955484492
-
Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha
-
Davis B. N, Hilyard A. C, Nguyen P. H, Lagna G, & Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39, 373-384 (2010).
-
(2010)
Mol. Cell
, vol.39
, pp. 373-384
-
-
Davis, B.N.1
Hilyard, A.C.2
Nguyen, P.H.3
Lagna, G.4
Hata, A.5
-
150
-
-
67649277689
-
The RNA-binding protein KSRP promotes the biogenesis of a subset of miRNAs
-
Trabucchi M, et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of miRNAs. Nat. Genet. 459, 1010-1014 (2009).
-
(2009)
Nat. Genet
, vol.459
, pp. 1010-1014
-
-
Trabucchi, M.1
-
151
-
-
84896847445
-
Hippo signaling regulates microprocessor and links cell density-dependent miRNA biogenesis to cancer
-
Mori M, et al. Hippo signaling regulates microprocessor and links cell density-dependent miRNA biogenesis to cancer. Cell 156, 893-906 (2015).
-
(2015)
Cell
, vol.156
, pp. 893-906
-
-
Mori, M.1
-
152
-
-
84910004413
-
DICER1: Mutations, microRNAs and mechanisms
-
Foulkes W. D, Priest J. R, & Duchaine T. F. DICER1: mutations, microRNAs and mechanisms. Nat. Rev. Cancer 14, 662-672 (2014).
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 662-672
-
-
Foulkes, W.D.1
Priest, J.R.2
Duchaine, T.F.3
-
153
-
-
84863863372
-
DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-Tumor predisposition syndrome
-
Doros L, et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-Tumor predisposition syndrome. Pediatr. Blood Cancer 59, 558-560 (2012).
-
(2012)
Pediatr. Blood Cancer
, vol.59
, pp. 558-560
-
-
Doros, L.1
-
154
-
-
84892553849
-
DICER1 mutations in an adolescent with cervical embryonal rhabdomyosarcoma (cERMS
-
Tomiak E, de Kock L, Grynspan D, Ramphal R, & Foulkes W. D. DICER1 mutations in an adolescent with cervical embryonal rhabdomyosarcoma (cERMS). Pediatr. Blood Cancer 61, 568-569 (2014).
-
(2014)
Pediatr. Blood Cancer
, vol.61
, pp. 568-569
-
-
Tomiak, E.1
De Kock, L.2
Grynspan, D.3
Ramphal, R.4
Foulkes, W.D.5
-
155
-
-
84922792031
-
Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumors
-
Rakheja D, et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumors. Nat. Commun. 2, 4802 (2015).
-
(2015)
Nat. Commun
, vol.2
, pp. 4802
-
-
Rakheja, D.1
-
156
-
-
67749129007
-
DICER1 mutations in familial pleuropulmonary blastoma
-
Hill D. A, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science. 325, 965 (2009).
-
(2009)
Science
, vol.325
, pp. 965
-
-
Hill, D.A.1
-
157
-
-
84902289852
-
Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour
-
Torrezan G. T, et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).
-
(2014)
Nat. Commun
, vol.5
, pp. 4039
-
-
Torrezan, G.T.1
-
158
-
-
20144373433
-
Reduced expression of Dicer associated with poor prognosis in lung cancer patients
-
Karube Y, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111-115 (2005).
-
(2005)
Cancer Sci
, vol.96
, pp. 111-115
-
-
Karube, Y.1
-
159
-
-
58049213696
-
Dicer, Drosha, and outcomes in patients with ovarian cancer
-
Merritt W. M, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641-2650 (2008).
-
(2008)
N. Engl. J. Med
, vol.359
, pp. 2641-2650
-
-
Merritt, W.M.1
-
160
-
-
84958039024
-
Pleuropulmonary blastoma: Evolution of an entity as an entry into a familial tumor predisposition syndrome
-
Dehner L. P, et al. Pleuropulmonary blastoma: evolution of an entity as an entry into a familial tumor predisposition syndrome. Pediatr. Dev. Pathol. 18, 504-511 (2015).
-
(2015)
Pediatr. Dev. Pathol
, vol.18
, pp. 504-511
-
-
Dehner, L.P.1
-
161
-
-
84930814891
-
Fibroblast growth factor 9 regulation by microRNAs controls lung development and links DICER1 loss to the pathogenesis of pleuropulmonary blastoma
-
Yin Y, et al. Fibroblast growth factor 9 regulation by microRNAs controls lung development and links DICER1 loss to the pathogenesis of pleuropulmonary blastoma. PLoS Genet. 11, e1005242 (2015).
-
(2015)
PLoS Genet
, vol.11
, pp. e1005242
-
-
Yin, Y.1
-
162
-
-
58149097010
-
Posttranscriptional crossregulation between Drosha and DGCR8
-
Han J, et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75-84 (2009).
-
(2009)
Cell
, vol.136
, pp. 75-84
-
-
Han, J.1
-
163
-
-
84871922444
-
MicroRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein
-
Pinder B. D, & Smibert C. A. MicroRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep. 14, 80-86 (2012).
-
(2012)
EMBO Rep
, vol.14
, pp. 80-86
-
-
Pinder, B.D.1
Smibert, C.A.2
-
164
-
-
84862879743
-
Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs
-
Knuckles P, et al. Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs. Nat. Neurosci. 15, 962-969 (2012).
-
(2012)
Nat. Neurosci
, vol.15
, pp. 962-969
-
-
Knuckles, P.1
-
165
-
-
79952786337
-
DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration
-
Kaneko H, et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325-332 (2011).
-
(2011)
Nature
, vol.471
, pp. 325-332
-
-
Kaneko, H.1
-
166
-
-
0034711308
-
Human RNase III is a 160 kDa protein involved in preribosomal RNA processing
-
Wu H, Xu H, Miraglia L. J, & Crooke S. T. Human RNase III is a 160 kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275, 36957-36965 (2000).
-
(2000)
J. Biol. Chem
, vol.275
, pp. 36957-36965
-
-
Wu, H.1
Xu, H.2
Miraglia, L.J.3
Crooke, S.T.4
-
167
-
-
80053380735
-
Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism
-
Oskowitz A. Z, Penfornis P, Tucker A, Prockop D. J, & Pochampally R. Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism. Int. J. Biochem. Cell Biol. 43, 1563-1572 (2011).
-
(2011)
Int. J. Biochem. Cell Biol
, vol.43
, pp. 1563-1572
-
-
Oskowitz, A.Z.1
Penfornis, P.2
Tucker, A.3
Prockop, D.J.4
Pochampally, R.5
-
168
-
-
84897924680
-
Microrna-independent roles of the rnase III enzymes drosha and dicer
-
Johanson T. M, Lew A. M, & Chong M. M. W. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol. 3, 130144 (2013).
-
(2013)
Open Biol
, vol.3
, pp. 130144
-
-
Johanson, T.M.1
Lew, A.M.2
Chong, M.M.W.3
-
169
-
-
77956278269
-
Canonical and alternate functions of the microRNA biogenesis machinery
-
Chong M. M. W, et al. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 24, 1951-1960 (2010).
-
(2010)
Genes Dev
, vol.24
, pp. 1951-1960
-
-
Chong, M.M.W.1
-
170
-
-
68749113985
-
Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells
-
Mayr C, & Bartel D. P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684 (2010).
-
(2010)
Cell
, vol.138
, pp. 673-684
-
-
Mayr, C.1
Bartel, D.P.2
-
171
-
-
84930448501
-
Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis
-
Lai D. P, et al. Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum. Mol. Genet. 24, 3410-3417 (2015).
-
(2015)
Hum. Mol. Genet
, vol.24
, pp. 3410-3417
-
-
Lai, D.P.1
-
172
-
-
84973131266
-
Aberrant PD L1 expression through 3' UTR disruption in multiple cancers
-
Kataoka K, et al. Aberrant PD L1 expression through 3' UTR disruption in multiple cancers. Nature 534, 402-406 (2016).
-
(2016)
Nature
, vol.534
, pp. 402-406
-
-
Kataoka, K.1
-
173
-
-
46249092601
-
Proliferating cells express mRNAs with shortened 3'UTRs and fewer microRNA target sites
-
Sandberg R, Neilson J. R, Sarma A, Sharp P. A, & Burge C. B. Proliferating cells express mRNAs with shortened 3'UTRs and fewer microRNA target sites. Science. 320, 1643-1647 (2008).
-
(2008)
Science
, vol.320
, pp. 1643-1647
-
-
Sandberg, R.1
Neilson, J.R.2
Sarma, A.3
Sharp, P.A.4
Burge, C.B.5
-
174
-
-
57649211993
-
Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection
-
Flavell S. W, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022-1038 (2008).
-
(2008)
Neuron
, vol.60
, pp. 1022-1038
-
-
Flavell, S.W.1
-
175
-
-
66049104920
-
Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development
-
Ji Z, Lee J. Y, Pan Z, Jiang B, & Tian B. Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl Acad. Sci. USA 106, 7028-7033 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 7028-7033
-
-
Ji, Z.1
Lee, J.Y.2
Pan, Z.3
Jiang, B.4
Tian, B.5
-
177
-
-
33847665108
-
Human polymorphism at microRNAs and microRNA target sites
-
Saunders M. a, Liang H, & Li W. H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA 104, 3300-3305 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 3300-3305
-
-
Saunders, M.A.1
Liang, H.2
Li, W.H.3
-
178
-
-
34447319406
-
Single nucleotide polymorphism associated with mature miR 125a alters the processing of pri-miRNA
-
Duan R, Pak C. H, & Jin P. Single nucleotide polymorphism associated with mature miR 125a alters the processing of pri-miRNA. Hum. Mol. Genet. 16, 1124-1131 (2007).
-
(2007)
Hum. Mol. Genet
, vol.16
, pp. 1124-1131
-
-
Duan, R.1
Pak, C.H.2
Jin, P.3
-
179
-
-
84915820575
-
MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies
-
Dzikiewicz-Krawczyk A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Crit. Rev. Oncol. Hematol. 93, 1-17 (2015).
-
(2015)
Crit. Rev. Oncol. Hematol
, vol.93
, pp. 1-17
-
-
Dzikiewicz-Krawczyk, A.1
-
180
-
-
84897027079
-
MicroRNA-related sequence variations in human cancers
-
Wojcicka A, de la Chapelle A, & Jazdzewski K. MicroRNA-related sequence variations in human cancers. Hum. Genet. 133, 463-469 (2014).
-
(2014)
Hum. Genet
, vol.133
, pp. 463-469
-
-
Wojcicka, A.1
De La Chapelle, A.2
Jazdzewski, K.3
-
181
-
-
54249117763
-
A SNP in a let 7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk
-
Chin L. J, et al. A SNP in a let 7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535-8540 (2008).
-
(2008)
Cancer Res
, vol.68
, pp. 8535-8540
-
-
Chin, L.J.1
-
182
-
-
84856082575
-
KRAS alleles: The LCS6 3'UTR variant and KRAS coding sequence mutations in the NCI 60 panel
-
Kundu S. T, et al. KRAS alleles: the LCS6 3'UTR variant and KRAS coding sequence mutations in the NCI 60 panel. Cell Cycle 11, 361-366 (2012).
-
(2012)
Cell Cycle
, vol.11
, pp. 361-366
-
-
Kundu, S.T.1
-
183
-
-
84971664078
-
Single nucleotide polymorphism in the microRNA 199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes
-
Wang X, et al. Single nucleotide polymorphism in the microRNA 199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget 7, 13717-13729 (2016).
-
(2016)
Oncotarget
, vol.7
, pp. 13717-13729
-
-
Wang, X.1
-
184
-
-
80052001024
-
Functional SNP in the microRNA 367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification
-
Zhang L, et al. Functional SNP in the microRNA 367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc. Natl Acad. Sci. USA 108, 13653-13658 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 13653-13658
-
-
Zhang, L.1
-
185
-
-
34547843634
-
Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers
-
Yu Z, et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 35, 4535-4541 (2007).
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 4535-4541
-
-
Yu, Z.1
-
186
-
-
79955581917
-
MicroRNAs and epigenetics
-
Sato F, Tsuchiya S, Meltzer S. J, & Shimizu K. MicroRNAs and epigenetics. FEBS Lett. 278, 1598-1609 (2011).
-
(2011)
FEBS Lett
, vol.278
, pp. 1598-1609
-
-
Sato, F.1
Tsuchiya, S.2
Meltzer, S.J.3
Shimizu, K.4
-
187
-
-
84889680701
-
Modulation of epigenetic regulators and cell fate decisions by miRNAs
-
Gruber A. J, & Zavolan M. Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5, 671-683 (2013).
-
(2013)
Epigenomics
, vol.5
, pp. 671-683
-
-
Gruber, A.J.1
Zavolan, M.2
-
188
-
-
84983384302
-
MicroRNA epigenetic signatures in human disease
-
Piletič K, & Kunej T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. http://dx.doi.org/.10.1007/s00204-016-1815-7 2016).
-
(2016)
Arch. Toxicol
-
-
Piletič, K.1
Kunej, T.2
-
189
-
-
84982836627
-
Understanding microRNA-mediated gene regulatory networks through mathematical modelling
-
Lai X, Wolkenhauer O, & Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 44, 6019-6035 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 6019-6035
-
-
Lai, X.1
Wolkenhauer, O.2
Vera, J.3
-
190
-
-
84959526423
-
Large-scale profiling of micrornas for the cancer genome atlas
-
Chu A, et al. Large-scale profiling of microRNAs for The Cancer Genome Atlas. Nucleic Acids Res. 44, e3 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. e3
-
-
Chu, A.1
-
191
-
-
84995605183
-
Oncogenomic portals for the visualization and analysis of genome-wide cancer data
-
Klonowska K, Czubak K, & Wojciechowska M. Oncogenomic portals for the visualization and analysis of genome-wide cancer data. Oncotarget 7, 176-192 (2016).
-
(2016)
Oncotarget
, vol.7
, pp. 176-192
-
-
Klonowska, K.1
Czubak, K.2
Wojciechowska, M.3
-
192
-
-
84886099830
-
Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer
-
Plass C, Pfister S. M, Lindroth A. M, & Bogatyrova O. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765-780 (2013).
-
(2013)
Nat. Rev. Genet
, vol.14
, pp. 765-780
-
-
Plass, C.1
Pfister, S.M.2
Lindroth, A.M.3
Bogatyrova, O.4
-
193
-
-
84994613720
-
Alterations of miRNAs and miRNA-regulated mRNA expression in GC B cell lymphomas determined by integrative sequencing analysis
-
Hezaveh K, et al. Alterations of miRNAs and miRNA-regulated mRNA expression in GC B cell lymphomas determined by integrative sequencing analysis. Haematologica http://dx.doi.org/10.3324/.HAEMATOL.2016.143891 (2016).
-
(2016)
Haematologica
-
-
Hezaveh, K.1
-
194
-
-
81855224576
-
MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy Andrea
-
Kasinski A. L, & Slack F. J. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy Andrea. Nat. Rev. Cancer 11, 849-864 (2011).
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 849-864
-
-
Kasinski, A.L.1
Slack, F.J.2
-
195
-
-
84986587264
-
A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer
-
Kasinski A. L, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 34 3547-3555 (2015).
-
(2015)
Oncogene
, vol.34
, pp. 3547-3555
-
-
Kasinski, A.L.1
-
196
-
-
84877258007
-
Treatment of HCV infection by targeting microRNA
-
Janssen H. L, et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685-1694 (2013).
-
(2013)
N. Engl. J. Med
, vol.368
, pp. 1685-1694
-
-
Janssen, H.L.1
-
197
-
-
74249112787
-
Therapeutic silencing of microRNA 122 in primates with chronic hepatitis C virus infection
-
Lanford R. E, et al. Therapeutic silencing of microRNA 122 in primates with chronic hepatitis C virus infection. Science. 327, 198-201 (2012).
-
(2012)
Science
, vol.327
, pp. 198-201
-
-
Lanford, R.E.1
-
199
-
-
84906313950
-
Identification and consequences of miRNA-Target interactions - Beyond repression of gene expression
-
Hausser J, & Zavolan M. Identification and consequences of miRNA-Target interactions - beyond repression of gene expression. Nat. Rev. Genet. 15, 599-612 (2014).
-
(2014)
Nat. Rev. Genet
, vol.15
, pp. 599-612
-
-
Hausser, J.1
Zavolan, M.2
-
200
-
-
80052451056
-
Experimental strategies for microRNA target identification
-
Thomson D. W, Bracken C. P, & Goodall G. J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845-6853 (2011).
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 6845-6853
-
-
Thomson, D.W.1
Bracken, C.P.2
Goodall, G.J.3
-
201
-
-
77953928753
-
HITS-CLIP: Panoramic views of protein- RNA regulation in living cells
-
Darnell R. B. HITS-CLIP: panoramic views of protein- RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266-286 (2010).
-
(2010)
Wiley Interdiscip. Rev. RNA
, vol.1
, pp. 266-286
-
-
Darnell, R.B.1
-
202
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman R. C, Farh K. K. H, Burge C. B, & Bartel D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105 (2009).
-
(2009)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.H.2
Burge, C.B.3
Bartel, D.P.4
-
203
-
-
84876523096
-
DIANA-LncBase: Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs
-
Paraskevopoulou M. D, et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 41, 239-245 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 239-245
-
-
Paraskevopoulou, M.D.1
-
204
-
-
77955963884
-
Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites
-
Betel D, Koppal A, Agius P, Sander C, & Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010).
-
(2010)
Genome Biol
, vol.11
, pp. R90
-
-
Betel, D.1
Koppal, A.2
Agius, P.3
Sander, C.4
Leslie, C.5
-
205
-
-
84941083219
-
MiRDB: An online resource for microRNA target prediction and functional annotations
-
Wong N, & Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146-D152 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D146-D152
-
-
Wong, N.1
Wang, X.2
-
206
-
-
70350000602
-
TargetMiner: MicroRNA target prediction with systematic identification of tissue-specific negative examples
-
Bandyopadhyay S, & Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25, 2625-2631 (2009).
-
(2009)
Bioinformatics
, vol.25
, pp. 2625-2631
-
-
Bandyopadhyay, S.1
Mitra, R.2
-
207
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A, et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495-500 (2005).
-
(2005)
Nat. Genet
, vol.37
, pp. 495-500
-
-
Krek, A.1
-
208
-
-
33748587841
-
A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes
-
Miranda K. C, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126 1203-1217 (2006).
-
(2006)
Cell
, vol.126
, pp. 1203-1217
-
-
Miranda, K.C.1
-
209
-
-
79955975777
-
Two-Tiered approach identifies a network of cancer and liver disease-related genes regulated by miR 122
-
Boutz D. R, et al. Two-Tiered approach identifies a network of cancer and liver disease-related genes regulated by miR 122. J. Biol. Chem. 286, 18066-18078 (2011).
-
(2011)
J. Biol. Chem
, vol.286
, pp. 18066-18078
-
-
Boutz, D.R.1
-
210
-
-
70449124423
-
Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines
-
Leivonen S. K, et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28, 3926-3936 (2009).
-
(2009)
Oncogene
, vol.28
, pp. 3926-3936
-
-
Leivonen, S.K.1
-
211
-
-
84995578817
-
Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA
-
Hendrickson D. G, et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, 25-29 (2009).
-
(2009)
PLoS Biol
, vol.7
, pp. 25-29
-
-
Hendrickson, D.G.1
-
212
-
-
67749132423
-
Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
-
Chi S. W, Zang J. B, Mele A, & Darnell R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486 (2009).
-
(2009)
Nature
, vol.460
, pp. 479-486
-
-
Chi, S.W.1
Zang, J.B.2
Mele, A.3
Darnell, R.B.4
-
213
-
-
34548671165
-
Isolation of microRNA targets using biotinylated synthetic microRNAs
-
Orom U, & Lund A. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43, 162-165 (2007).
-
(2007)
Methods
, vol.43
, pp. 162-165
-
-
Orom, U.1
Lund, A.2
-
214
-
-
84876005449
-
Functional genomic analysis of the let 7 regulatory network in Caenorhabditis elegans
-
Hunter S. E, et al. Functional genomic analysis of the let 7 regulatory network in Caenorhabditis elegans. PLoS Genet. 9, e1003353 (2013).
-
(2013)
PLoS Genet
, vol.9
, pp. e1003353
-
-
Hunter, S.E.1
-
215
-
-
33748346026
-
Perfect seed pairing is not a generally reliable predictor for miRNA-Target interactions
-
Didiano D, & Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-Target interactions. Nat. Struct. Mol. Biol. 13, 849-851 (2006).
-
(2006)
Nat. Struct. Mol. Biol
, vol.13
, pp. 849-851
-
-
Didiano, D.1
Hobert, O.2
-
216
-
-
84995560333
-
Specificity of microRNA target selection in translational repression
-
Doench J. G, & Sharp P. A. Specificity of microRNA target selection in translational repression. Genes (Basel) 504, 504-511 (2004).
-
(2004)
Genes (Basel
, vol.504
, pp. 504-511
-
-
Doench, J.G.1
Sharp, P.A.2
-
217
-
-
78651307694
-
StarBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-seq and Degradome-seq data
-
Yang J. H, et al. StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-seq and Degradome-seq data. Nucleic Acids Res. 39, 202-209 (2011).
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 202-209
-
-
Yang, J.H.1
-
218
-
-
84976907502
-
KEGG as a reference resource for gene and protein annotation
-
Kanehisa M, Sato Y, Kanwashima M, Furumichi M, & Tanabe M, KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44c D457-D462 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. D457-D462
-
-
Kanehisa, M.1
Sato, Y.2
Kanwashima, M.3
Furumichi, M.4
Tanabe, M.5
-
219
-
-
0033982936
-
Kegg: Kyoto encyclopedia of genes and genomes
-
Kanehisa M, & Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27-30 (2000).
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
220
-
-
84873669680
-
MiRNA target enrichment analysis reveals directly active miRNAs in health and disease
-
Steinfeld I, Navon R, Ach R, & Yakhini Z. miRNA target enrichment analysis reveals directly active miRNAs in health and disease. Nucleic Acids Res. 41, e45 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. e45
-
-
Steinfeld, I.1
Navon, R.2
Ach, R.3
Yakhini, Z.4
-
221
-
-
84864464973
-
Diana miRPath v20: Investigating the combinatorial effect of microRNAs in pathways
-
Vlachos I. S, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 40, 498-504 (2012).
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 498-504
-
-
Vlachos, I.S.1
-
222
-
-
84857204573
-
MiRTrail - A comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases
-
Laczny C, et al. miRTrail - A comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics 13, 36 (2012).
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 36
-
-
Laczny, C.1
-
223
-
-
85018192719
-
MiRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data
-
Jung D, et al. miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data. BMC Proc. 9, S2 (2015).
-
(2015)
BMC Proc
, vol.9
, pp. S2
-
-
Jung, D.1
-
224
-
-
85015442772
-
MiRNet - Dissecting miRNA-Target interactions and functional associations through network-based visual analysis
-
Fan Y, et al. miRNet - dissecting miRNA-Target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 1, W135-W141 (2016).
-
(2016)
Nucleic Acids Res
, vol.1
, pp. W135-W141
-
-
Fan, Y.1
-
225
-
-
84907029461
-
Mirin: Identifying microRNA regulatory modules in protein- protein interaction networks
-
Yang K, Hsu C, Lin C, Juan H, & Huang H. Mirin: identifying microRNA regulatory modules in protein- protein interaction networks. Bioinformatics 30, 2527-2528 (2014).
-
(2014)
Bioinformatics
, vol.30
, pp. 2527-2528
-
-
Yang, K.1
Hsu, C.2
Lin, C.3
Juan, H.4
Huang, H.5
-
226
-
-
77954276691
-
MAGIA, a web-based tool for miRNA and genes integrated analysis
-
Sales G, et al. MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res. 38, 352-359 (2010).
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 352-359
-
-
Sales, G.1
-
227
-
-
84979227262
-
MiEAA: MicroRNA enrichment analysis and annotation
-
Backes C, Khaleeq Q. T, Meese E, & Keller A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 44, 110-116 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 110-116
-
-
Backes, C.1
Khaleeq, Q.T.2
Meese, E.3
Keller, A.4
-
228
-
-
77955286897
-
TAM: A method for enrichment and depletion analysis of a microRNA category in a list of microRNAs
-
Lu M, Shi B, Wang J, Cao Q, & Cui Q. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. Bioinformatics 11, 419 (2010).
-
(2010)
Bioinformatics
, vol.11
, pp. 419
-
-
Lu, M.1
Shi, B.2
Wang, J.3
Cao, Q.4
Cui, Q.5
-
229
-
-
84864777932
-
MiRSystem: An integrated system for characterizing enriched functions and pathways of microRNA targets
-
Lu T, et al. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE 7, e42390 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. e42390
-
-
Lu, T.1
-
230
-
-
62549089305
-
CORNA: Testing gene lists for regulation by microRNAs
-
Wu X, & Watson M. CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25, 832-833 (2009).
-
(2009)
Bioinformatics
, vol.25
, pp. 832-833
-
-
Wu, X.1
Watson, M.2
-
231
-
-
67849101186
-
MicroRNA and mRNA Integrated Analysis (MMIA): A web tool for examining biological functions of microRNA expression
-
Nam S, et al. MicroRNA and mRNA Integrated Analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res. 37, 356-362 (2009).
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 356-362
-
-
Nam, S.1
-
232
-
-
77956117850
-
Towards computational prediction of microRNA function and activity
-
Ulitsky I, Laurent L. C, & Shamir R. Towards computational prediction of microRNA function and activity. Nucleic Acids Res. 38, e160 (2010).
-
(2010)
Nucleic Acids Res
, vol.38
, pp. e160
-
-
Ulitsky, I.1
Laurent, L.C.2
Shamir, R.3
-
233
-
-
84934986022
-
BioSystems miSEA: MicroRNA set enrichment analysis
-
Corapcioglu M, E, & Hasan O. BioSystems miSEA: microRNA set enrichment analysis. Biosystems 134, 37-42 (2015).
-
(2015)
Biosystems
, vol.134
, pp. 37-42
-
-
Corapcioglu, M.E.1
Hasan, O.2
|