메뉴 건너뛰기




Volumn 1853, Issue 6, 2015, Pages 1284-1293

Fe-S proteins that regulate gene expression

Author keywords

Gene expression; Iron sulfur (Fe S) cluster; Regulatory protein; Sensor; Transcription factor

Indexed keywords

BACTERIAL DNA; IRON; IRON SULFUR PROTEIN; PROTEIN BINDING;

EID: 84989287953     PISSN: 01674889     EISSN: 18792596     Source Type: Journal    
DOI: 10.1016/j.bbamcr.2014.11.018     Document Type: Review
Times cited : (96)

References (189)
  • 1
    • 0034003112 scopus 로고    scopus 로고
    • Iron-sulfur proteins: ancient structures, still full of surprises
    • Beinert H. Iron-sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 2000, 5(1):2-15.
    • (2000) J. Biol. Inorg. Chem. , vol.5 , Issue.1 , pp. 2-15
    • Beinert, H.1
  • 2
    • 33646368396 scopus 로고    scopus 로고
    • Iron-sulfur clusters: ever-expanding roles
    • Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat. Chem. Biol. 2006, 2(4):171-174.
    • (2006) Nat. Chem. Biol. , vol.2 , Issue.4 , pp. 171-174
    • Fontecave, M.1
  • 3
    • 0038352097 scopus 로고    scopus 로고
    • The role of Fe-S proteins in sensing and regulation in bacteria
    • Kiley P.J., Beinert H. The role of Fe-S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 2003, 6(2):181-185.
    • (2003) Curr. Opin. Microbiol. , vol.6 , Issue.2 , pp. 181-185
    • Kiley, P.J.1    Beinert, H.2
  • 4
    • 79953298366 scopus 로고    scopus 로고
    • Iron-containing transcription factors and their roles as sensors
    • Fleischhacker A.S., Kiley P.J. Iron-containing transcription factors and their roles as sensors. Curr. Opin. Chem. Biol. 2011, 15(2):335-341.
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , Issue.2 , pp. 335-341
    • Fleischhacker, A.S.1    Kiley, P.J.2
  • 5
    • 84859646411 scopus 로고    scopus 로고
    • Iron-sulfur cluster sensor-regulators
    • Crack J.C., et al. Iron-sulfur cluster sensor-regulators. Curr. Opin. Chem. Biol. 2012, 16(1-2):35-44.
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , Issue.1-2 , pp. 35-44
    • Crack, J.C.1
  • 6
    • 84865641390 scopus 로고    scopus 로고
    • Bacterial iron-sulfur regulatory proteins as biological sensor-switches
    • Crack J.C., et al. Bacterial iron-sulfur regulatory proteins as biological sensor-switches. Antioxid. Redox Signal. 2012, 17(9):1215-1231.
    • (2012) Antioxid. Redox Signal. , vol.17 , Issue.9 , pp. 1215-1231
    • Crack, J.C.1
  • 7
    • 33645065589 scopus 로고    scopus 로고
    • Iron-sulphur clusters and the problem with oxygen
    • Imlay J.A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 2006, 59(4):1073-1082.
    • (2006) Mol. Microbiol. , vol.59 , Issue.4 , pp. 1073-1082
    • Imlay, J.A.1
  • 8
    • 50649117912 scopus 로고    scopus 로고
    • Cellular defenses against superoxide and hydrogen peroxide
    • Imlay J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77:755-776.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 755-776
    • Imlay, J.A.1
  • 9
    • 84879422944 scopus 로고    scopus 로고
    • The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium
    • Imlay J.A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 2013, 11(7):443-454.
    • (2013) Nat. Rev. Microbiol. , vol.11 , Issue.7 , pp. 443-454
    • Imlay, J.A.1
  • 10
    • 67649781729 scopus 로고    scopus 로고
    • Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology
    • Vanin A.F. Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide 2009, 21(1):1-13.
    • (2009) Nitric Oxide , vol.21 , Issue.1 , pp. 1-13
    • Vanin, A.F.1
  • 11
    • 33845491468 scopus 로고    scopus 로고
    • Iron-sulfur cluster stability. Kinetics and mechanism of ligand-promoted cluster degradation
    • Wu S.P., Cowan J.A. Iron-sulfur cluster stability. Kinetics and mechanism of ligand-promoted cluster degradation. Chem. Commun. (Camb.) 2007, (1):82-84.
    • (2007) Chem. Commun. (Camb.) , Issue.1 , pp. 82-84
    • Wu, S.P.1    Cowan, J.A.2
  • 12
    • 0035846906 scopus 로고    scopus 로고
    • The loop region covering the iron-sulfur cluster in bovine adrenodoxin comprises a new interaction site for redox partners
    • Hannemann F., et al. The loop region covering the iron-sulfur cluster in bovine adrenodoxin comprises a new interaction site for redox partners. J. Biol. Chem. 2001, 276(2):1369-1375.
    • (2001) J. Biol. Chem. , vol.276 , Issue.2 , pp. 1369-1375
    • Hannemann, F.1
  • 13
    • 0029770685 scopus 로고    scopus 로고
    • Human ferredoxin: overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cysteine-to-serine mutants
    • Xia B., et al. Human ferredoxin: overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cysteine-to-serine mutants. Biochemistry 1996, 35(29):9488-9495.
    • (1996) Biochemistry , vol.35 , Issue.29 , pp. 9488-9495
    • Xia, B.1
  • 14
    • 0028832648 scopus 로고
    • 4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP
    • 4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP. Proc. Natl. Acad. Sci. U. S. A. 1995, 92(21):9440-9444.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , Issue.21 , pp. 9440-9444
    • Agarwal, A.1    Li, D.2    Cowan, J.A.3
  • 15
    • 0030463726 scopus 로고    scopus 로고
    • 4] cluster
    • 4] cluster. Biochemistry 1996, 35(46):14544-14552.
    • (1996) Biochemistry , vol.35 , Issue.46 , pp. 14544-14552
    • Bian, S.1
  • 16
    • 41949137280 scopus 로고    scopus 로고
    • Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA
    • Watanabe S., et al. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(11):4121-4126.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.11 , pp. 4121-4126
    • Watanabe, S.1
  • 17
    • 33644804529 scopus 로고    scopus 로고
    • Crystal structure of human iron regulatory protein 1 as cytosolic aconitase
    • Dupuy J., et al. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 2006, 14(1):129-139.
    • (2006) Structure , vol.14 , Issue.1 , pp. 129-139
    • Dupuy, J.1
  • 18
    • 84892869991 scopus 로고    scopus 로고
    • Alternative FeS cluster ligands: tuning redox potentials and chemistry
    • Bak D.W., Elliott S.J. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr. Opin. Chem. Biol. 2014, 19:50-58.
    • (2014) Curr. Opin. Chem. Biol. , vol.19 , pp. 50-58
    • Bak, D.W.1    Elliott, S.J.2
  • 19
    • 84908097207 scopus 로고    scopus 로고
    • Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide
    • Crack J.C., et al. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc. Chem. Res. 2014, 47(10):3196-3205.
    • (2014) Acc. Chem. Res. , vol.47 , Issue.10 , pp. 3196-3205
    • Crack, J.C.1
  • 20
    • 84901297224 scopus 로고    scopus 로고
    • Determining the control circuitry of redox metabolism at the genome-scale
    • Federowicz S., et al. Determining the control circuitry of redox metabolism at the genome-scale. PLoS Genet. 2014, 10(4):e1004264.
    • (2014) PLoS Genet. , vol.10 , Issue.4 , pp. e1004264
    • Federowicz, S.1
  • 21
    • 84879620270 scopus 로고    scopus 로고
    • Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding
    • Myers K.S., et al. Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet. 2013, 9(6):e1003565.
    • (2013) PLoS Genet. , vol.9 , Issue.6 , pp. e1003565
    • Myers, K.S.1
  • 22
    • 33846659467 scopus 로고    scopus 로고
    • Transcription factor distribution in Escherichia coli: studies with FNR protein
    • Grainger D.C., et al. Transcription factor distribution in Escherichia coli: studies with FNR protein. Nucleic Acids Res. 2007, 35(1):269-278.
    • (2007) Nucleic Acids Res. , vol.35 , Issue.1 , pp. 269-278
    • Grainger, D.C.1
  • 23
    • 0043032584 scopus 로고    scopus 로고
    • Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR
    • Salmon K., et al. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J. Biol. Chem. 2003, 278(32):29837-29855.
    • (2003) J. Biol. Chem. , vol.278 , Issue.32 , pp. 29837-29855
    • Salmon, K.1
  • 24
    • 13244289800 scopus 로고    scopus 로고
    • Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function
    • Kang Y., et al. Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J. Bacteriol. 2005, 187(3):1135-1160.
    • (2005) J. Bacteriol. , vol.187 , Issue.3 , pp. 1135-1160
    • Kang, Y.1
  • 25
    • 33646184857 scopus 로고    scopus 로고
    • A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth
    • Constantinidou C., et al. A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J. Biol. Chem. 2006, 281(8):4802-4815.
    • (2006) J. Biol. Chem. , vol.281 , Issue.8 , pp. 4802-4815
    • Constantinidou, C.1
  • 26
    • 77957325735 scopus 로고    scopus 로고
    • Reconstruction of the core and extended regulons of global transcription factors
    • Dufour Y.S., Kiley P.J., Donohue T.J. Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet. 2010, 6(7):e1001027.
    • (2010) PLoS Genet. , vol.6 , Issue.7 , pp. e1001027
    • Dufour, Y.S.1    Kiley, P.J.2    Donohue, T.J.3
  • 27
    • 0344153756 scopus 로고    scopus 로고
    • Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs
    • Korner H., Sofia H.J., Zumft W.G. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev. 2003, 27(5):559-592.
    • (2003) FEMS Microbiol. Rev. , vol.27 , Issue.5 , pp. 559-592
    • Korner, H.1    Sofia, H.J.2    Zumft, W.G.3
  • 28
    • 0031000271 scopus 로고    scopus 로고
    • 2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity
    • 2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc. Natl. Acad. Sci. U. S. A. 1997, 94(12):6087-6092.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , Issue.12 , pp. 6087-6092
    • Khoroshilova, N.1
  • 29
    • 0030029817 scopus 로고    scopus 로고
    • DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen
    • Lazazzera B.A., et al. DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J. Biol. Chem. 1996, 271(5):2762-2768.
    • (1996) J. Biol. Chem. , vol.271 , Issue.5 , pp. 2762-2768
    • Lazazzera, B.A.1
  • 30
    • 0032505869 scopus 로고    scopus 로고
    • Mossbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli
    • Popescu C.V., et al. Mossbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 1998, 95(23):13431-13435.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , Issue.23 , pp. 13431-13435
    • Popescu, C.V.1
  • 31
    • 0030695304 scopus 로고    scopus 로고
    • FNR is a direct oxygen sensor having a biphasic response curve
    • Jordan P.A., et al. FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett. 1997, 416(3):349-352.
    • (1997) FEBS Lett. , vol.416 , Issue.3 , pp. 349-352
    • Jordan, P.A.1
  • 32
    • 0029797082 scopus 로고    scopus 로고
    • Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro
    • Green J., et al. Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro. Biochem. J. 1996, 316(Pt 3):887-892.
    • (1996) Biochem. J. , vol.316 , pp. 887-892
    • Green, J.1
  • 33
    • 0001531847 scopus 로고    scopus 로고
    • Iron-sulfur proteins with nonredox functions
    • Flint D.H., Allen R.M. Iron-sulfur proteins with nonredox functions. Chem. Rev. 1996, 96(7):2315-2334.
    • (1996) Chem. Rev. , vol.96 , Issue.7 , pp. 2315-2334
    • Flint, D.H.1    Allen, R.M.2
  • 34
    • 9244247618 scopus 로고    scopus 로고
    • 2+ cluster
    • 2+ cluster. J. Bacteriol. 2004, 186(23):8018-8025.
    • (2004) J. Bacteriol. , vol.186 , Issue.23 , pp. 8018-8025
    • Sutton, V.R.1
  • 35
    • 59149095309 scopus 로고    scopus 로고
    • Signal perception by FNR: the role of the iron-sulfur cluster
    • Crack J.C., et al. Signal perception by FNR: the role of the iron-sulfur cluster. Biochem. Soc. Trans. 2008, 36(Pt 6):1144-1148.
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 1144-1148
    • Crack, J.C.1
  • 36
    • 84866876886 scopus 로고    scopus 로고
    • Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein
    • Zhang B., et al. Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein. Proc. Natl. Acad. Sci. U. S. A. 2012, 109(39):15734-15739.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , Issue.39 , pp. 15734-15739
    • Zhang, B.1
  • 37
    • 1642453843 scopus 로고    scopus 로고
    • 2+ cluster of FNR from Escherichia coli
    • 2+ cluster of FNR from Escherichia coli. Biochemistry 2004, 43(3):791-798.
    • (2004) Biochemistry , vol.43 , Issue.3 , pp. 791-798
    • Sutton, V.R.1
  • 39
    • 34247857563 scopus 로고    scopus 로고
    • Contributions of [4Fe-4S]-FNR and integration host factor to fnr transcriptional regulation
    • Mettert E.L., Kiley P.J. Contributions of [4Fe-4S]-FNR and integration host factor to fnr transcriptional regulation. J. Bacteriol. 2007, 189(8):3036-3043.
    • (2007) J. Bacteriol. , vol.189 , Issue.8 , pp. 3036-3043
    • Mettert, E.L.1    Kiley, P.J.2
  • 40
    • 77950021681 scopus 로고    scopus 로고
    • Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli
    • Tolla D.A., Savageau M.A. Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli. J. Mol. Biol. 2010, 397(4):893-905.
    • (2010) J. Mol. Biol. , vol.397 , Issue.4 , pp. 893-905
    • Tolla, D.A.1    Savageau, M.A.2
  • 41
    • 84864269919 scopus 로고    scopus 로고
    • Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations
    • Rolfe M.D., et al. Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations. Open Biol. 2012, 2(7):120091.
    • (2012) Open Biol. , vol.2 , Issue.7 , pp. 120091
    • Rolfe, M.D.1
  • 42
    • 34249727710 scopus 로고    scopus 로고
    • Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components
    • Partridge J.D., et al. Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biol. Chem. 2007, 282(15):11230-11237.
    • (2007) J. Biol. Chem. , vol.282 , Issue.15 , pp. 11230-11237
    • Partridge, J.D.1
  • 43
    • 33747892469 scopus 로고    scopus 로고
    • A kinetic model of oxygen regulation of cytochrome production in Escherichia coli
    • Peercy B.E., et al. A kinetic model of oxygen regulation of cytochrome production in Escherichia coli. J. Theor. Biol. 2006, 242(3):547-563.
    • (2006) J. Theor. Biol. , vol.242 , Issue.3 , pp. 547-563
    • Peercy, B.E.1
  • 44
    • 84901362496 scopus 로고    scopus 로고
    • Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli
    • Bai H., et al. Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli. PLoS Comput. Biol. 2014, 10(4):e1003595.
    • (2014) PLoS Comput. Biol. , vol.10 , Issue.4 , pp. e1003595
    • Bai, H.1
  • 45
    • 78650248379 scopus 로고    scopus 로고
    • Phenotypic repertoire of the FNR regulatory network in Escherichia coli
    • Tolla D.A., Savageau M.A. Phenotypic repertoire of the FNR regulatory network in Escherichia coli. Mol. Microbiol. 2011, 79(1):149-165.
    • (2011) Mol. Microbiol. , vol.79 , Issue.1 , pp. 149-165
    • Tolla, D.A.1    Savageau, M.A.2
  • 46
    • 0032457906 scopus 로고    scopus 로고
    • Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster
    • Kiley P.J., Beinert H. Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol. Rev. 1998, 22(5):341-352.
    • (1998) FEMS Microbiol. Rev. , vol.22 , Issue.5 , pp. 341-352
    • Kiley, P.J.1    Beinert, H.2
  • 47
    • 33744500236 scopus 로고    scopus 로고
    • Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state
    • Reents H., et al. Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state. Mol. Microbiol. 2006, 60(6):1432-1445.
    • (2006) Mol. Microbiol. , vol.60 , Issue.6 , pp. 1432-1445
    • Reents, H.1
  • 48
    • 78751533609 scopus 로고    scopus 로고
    • 2+ cluster of Bacillus subtilis transcriptional regulator Fnr
    • 2+ cluster of Bacillus subtilis transcriptional regulator Fnr. J. Biol. Chem. 2011, 286(3):2017-2021.
    • (2011) J. Biol. Chem. , vol.286 , Issue.3 , pp. 2017-2021
    • Gruner, I.1
  • 49
    • 84862631277 scopus 로고    scopus 로고
    • Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR
    • Esbelin J., Jouanneau Y., Duport C. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR. BMC Microbiol. 2012, 12:125.
    • (2012) BMC Microbiol. , vol.12 , pp. 125
    • Esbelin, J.1    Jouanneau, Y.2    Duport, C.3
  • 50
    • 44949094526 scopus 로고    scopus 로고
    • ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus
    • Esbelin J., et al. ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J. Bacteriol. 2008, 190(12):4242-4251.
    • (2008) J. Bacteriol. , vol.190 , Issue.12 , pp. 4242-4251
    • Esbelin, J.1
  • 51
    • 84876524887 scopus 로고    scopus 로고
    • Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators
    • Crack J.C., et al. Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators. J. Biol. Chem. 2013, 288(16):11492-11502.
    • (2013) J. Biol. Chem. , vol.288 , Issue.16 , pp. 11492-11502
    • Crack, J.C.1
  • 52
    • 0036646484 scopus 로고    scopus 로고
    • NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp
    • Cruz-Ramos H., et al. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 2002, 21(13):3235-3244.
    • (2002) EMBO J. , vol.21 , Issue.13 , pp. 3235-3244
    • Cruz-Ramos, H.1
  • 53
    • 13244299310 scopus 로고    scopus 로고
    • New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide
    • Justino M.C., et al. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J. Biol. Chem. 2005, 280(4):2636-2643.
    • (2005) J. Biol. Chem. , vol.280 , Issue.4 , pp. 2636-2643
    • Justino, M.C.1
  • 54
    • 33947420458 scopus 로고    scopus 로고
    • Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation
    • Pullan S.T., et al. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J. Bacteriol. 2007, 189(5):1845-1855.
    • (2007) J. Bacteriol. , vol.189 , Issue.5 , pp. 1845-1855
    • Pullan, S.T.1
  • 55
    • 0036889030 scopus 로고    scopus 로고
    • The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC
    • Fedtke I., et al. The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC. J. Bacteriol. 2002, 184(23):6624-6634.
    • (2002) J. Bacteriol. , vol.184 , Issue.23 , pp. 6624-6634
    • Fedtke, I.1
  • 56
    • 57349161245 scopus 로고    scopus 로고
    • Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus
    • Schlag S., et al. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J. Bacteriol. 2008, 190(23):7847-7858.
    • (2008) J. Bacteriol. , vol.190 , Issue.23 , pp. 7847-7858
    • Schlag, S.1
  • 57
    • 2442629407 scopus 로고    scopus 로고
    • Staphylococcal NreB: an O(2)-sensing histidine protein kinase with an O(2)-labile iron-sulphur cluster of the FNR type
    • Kamps A., et al. Staphylococcal NreB: an O(2)-sensing histidine protein kinase with an O(2)-labile iron-sulphur cluster of the FNR type. Mol. Microbiol. 2004, 52(3):713-723.
    • (2004) Mol. Microbiol. , vol.52 , Issue.3 , pp. 713-723
    • Kamps, A.1
  • 58
    • 58849147983 scopus 로고    scopus 로고
    • A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus
    • Mullner M., et al. A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus. Biochemistry 2008, 47(52):13921-13932.
    • (2008) Biochemistry , vol.47 , Issue.52 , pp. 13921-13932
    • Mullner, M.1
  • 59
    • 84891944747 scopus 로고    scopus 로고
    • Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus
    • Nilkens S., et al. Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus. Mol. Microbiol. 2014, 91(2):381-393.
    • (2014) Mol. Microbiol. , vol.91 , Issue.2 , pp. 381-393
    • Nilkens, S.1
  • 60
    • 84855667761 scopus 로고    scopus 로고
    • AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus
    • Sun F., et al. AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J. Am. Chem. Soc. 2012, 134(1):305-314.
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.1 , pp. 305-314
    • Sun, F.1
  • 61
    • 84889850708 scopus 로고    scopus 로고
    • Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus NCTC8325
    • Sun H., et al. Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus NCTC8325. BMC Microbiol. 2013, 13:286.
    • (2013) BMC Microbiol. , vol.13 , pp. 286
    • Sun, H.1
  • 62
    • 84870619546 scopus 로고    scopus 로고
    • The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus
    • Yan M., et al. The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus. PLoS One 2012, 7(11):e50608.
    • (2012) PLoS One , vol.7 , Issue.11 , pp. e50608
    • Yan, M.1
  • 63
    • 79955375769 scopus 로고    scopus 로고
    • The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus
    • Yan M., et al. The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus. J. Bacteriol. 2011, 193(8):1799-1805.
    • (2011) J. Bacteriol. , vol.193 , Issue.8 , pp. 1799-1805
    • Yan, M.1
  • 64
    • 84897114854 scopus 로고    scopus 로고
    • Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR
    • Kobayashi K., Fujikawa M., Kozawa T. Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. J. Inorg. Biochem. 2014, 133:87-91.
    • (2014) J. Inorg. Biochem. , vol.133 , pp. 87-91
    • Kobayashi, K.1    Fujikawa, M.2    Kozawa, T.3
  • 65
    • 84864600170 scopus 로고    scopus 로고
    • Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria
    • Chiang S.M., Schellhorn H.E. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch. Biochem. Biophys. 2012, 525(2):161-169.
    • (2012) Arch. Biochem. Biophys. , vol.525 , Issue.2 , pp. 161-169
    • Chiang, S.M.1    Schellhorn, H.E.2
  • 66
    • 79951789722 scopus 로고    scopus 로고
    • The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide
    • Gu M., Imlay J.A. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 2011, 79(5):1136-1150.
    • (2011) Mol. Microbiol. , vol.79 , Issue.5 , pp. 1136-1150
    • Gu, M.1    Imlay, J.A.2
  • 67
    • 50649098819 scopus 로고    scopus 로고
    • Redox-active antibiotics control gene expression and community behavior in divergent bacteria
    • Dietrich L.E., et al. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008, 321(5893):1203-1206.
    • (2008) Science , vol.321 , Issue.5893 , pp. 1203-1206
    • Dietrich, L.E.1
  • 68
    • 33747082622 scopus 로고    scopus 로고
    • The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa
    • Dietrich L.E., et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61(5):1308-1321.
    • (2006) Mol. Microbiol. , vol.61 , Issue.5 , pp. 1308-1321
    • Dietrich, L.E.1
  • 69
    • 78649647804 scopus 로고    scopus 로고
    • Expression of the Streptomyces coelicolor SoxR regulon is intimately linked with actinorhodin production
    • Dela Cruz R., et al. Expression of the Streptomyces coelicolor SoxR regulon is intimately linked with actinorhodin production. J. Bacteriol. 2010, 192(24):6428-6438.
    • (2010) J. Bacteriol. , vol.192 , Issue.24 , pp. 6428-6438
    • Dela Cruz, R.1
  • 70
    • 78650114522 scopus 로고    scopus 로고
    • Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin
    • Shin J.H., et al. Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin. J. Bacteriol. 2011, 193(1):75-81.
    • (2011) J. Bacteriol. , vol.193 , Issue.1 , pp. 75-81
    • Shin, J.H.1
  • 71
    • 84872424732 scopus 로고    scopus 로고
    • Species-specific residues calibrate SoxR sensitivity to redox-active molecules
    • Sheplock R., et al. Species-specific residues calibrate SoxR sensitivity to redox-active molecules. Mol. Microbiol. 2013, 87(2):368-381.
    • (2013) Mol. Microbiol. , vol.87 , Issue.2 , pp. 368-381
    • Sheplock, R.1
  • 72
    • 84888345885 scopus 로고    scopus 로고
    • Comparative study of SoxR activation by redox-active compounds
    • Singh A.K., et al. Comparative study of SoxR activation by redox-active compounds. Mol. Microbiol. 2013, 90(5):983-996.
    • (2013) Mol. Microbiol. , vol.90 , Issue.5 , pp. 983-996
    • Singh, A.K.1
  • 73
    • 69449087074 scopus 로고    scopus 로고
    • DNA-mediated redox signaling for transcriptional activation of SoxR
    • Lee P.E., Demple B., Barton J.K. DNA-mediated redox signaling for transcriptional activation of SoxR. Proc. Natl. Acad. Sci. U. S. A. 2009, 106(32):13164-13168.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , Issue.32 , pp. 13164-13168
    • Lee, P.E.1    Demple, B.2    Barton, J.K.3
  • 74
    • 0034625165 scopus 로고    scopus 로고
    • Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator
    • Ding H., Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(10):5146-5150.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , Issue.10 , pp. 5146-5150
    • Ding, H.1    Demple, B.2
  • 75
    • 0035909963 scopus 로고    scopus 로고
    • IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins
    • Schwartz C.J., et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. U. S. A. 2001, 98(26):14895-14900.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , Issue.26 , pp. 14895-14900
    • Schwartz, C.J.1
  • 76
    • 84873059613 scopus 로고    scopus 로고
    • Regulation of iron-sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe-2S]-IscR in Escherichia coli
    • Giel J.L., et al. Regulation of iron-sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe-2S]-IscR in Escherichia coli. Mol. Microbiol. 2013, 87(3):478-492.
    • (2013) Mol. Microbiol. , vol.87 , Issue.3 , pp. 478-492
    • Giel, J.L.1
  • 77
    • 2442567822 scopus 로고    scopus 로고
    • A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli
    • Outten F.W., Djaman O., Storz G. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol. Microbiol. 2004, 52(3):861-872.
    • (2004) Mol. Microbiol. , vol.52 , Issue.3 , pp. 861-872
    • Outten, F.W.1    Djaman, O.2    Storz, G.3
  • 78
    • 33745187803 scopus 로고    scopus 로고
    • IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins
    • Yeo W.S., et al. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol. 2006, 61(1):206-218.
    • (2006) Mol. Microbiol. , vol.61 , Issue.1 , pp. 206-218
    • Yeo, W.S.1
  • 79
    • 0034932337 scopus 로고    scopus 로고
    • DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide
    • Zheng M., et al. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 2001, 183(15):4562-4570.
    • (2001) J. Bacteriol. , vol.183 , Issue.15 , pp. 4562-4570
    • Zheng, M.1
  • 80
    • 43149105201 scopus 로고    scopus 로고
    • Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks
    • Blanchard J.L., et al. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS ONE 2007, 2(11):e1186.
    • (2007) PLoS ONE , vol.2 , Issue.11 , pp. e1186
    • Blanchard, J.L.1
  • 81
    • 84873058881 scopus 로고    scopus 로고
    • In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli
    • Vinella D., et al. In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli. Mol. Microbiol. 2013, 87(3):493-508.
    • (2013) Mol. Microbiol. , vol.87 , Issue.3 , pp. 493-508
    • Vinella, D.1
  • 82
    • 57349087129 scopus 로고    scopus 로고
    • Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli
    • Lee K.C., Yeo W.S., Roe J.H. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J. Bacteriol. 2008, 190(24):8244-8247.
    • (2008) J. Bacteriol. , vol.190 , Issue.24 , pp. 8244-8247
    • Lee, K.C.1    Yeo, W.S.2    Roe, J.H.3
  • 83
    • 33646427470 scopus 로고    scopus 로고
    • 2-regulated genes in Escherichia coli
    • 2-regulated genes in Escherichia coli. Mol. Microbiol. 2006, 60(4):1058-1075.
    • (2006) Mol. Microbiol. , vol.60 , Issue.4 , pp. 1058-1075
    • Giel, J.L.1
  • 84
    • 79953850801 scopus 로고    scopus 로고
    • The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation
    • Martin J.E., Imlay J.A. The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Mol. Microbiol. 2011, 80(2):319-334.
    • (2011) Mol. Microbiol. , vol.80 , Issue.2 , pp. 319-334
    • Martin, J.E.1    Imlay, J.A.2
  • 85
    • 60849099323 scopus 로고    scopus 로고
    • IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression
    • Wu Y., Outten F.W. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J. Bacteriol. 2009, 191(4):1248-1257.
    • (2009) J. Bacteriol. , vol.191 , Issue.4 , pp. 1248-1257
    • Wu, Y.1    Outten, F.W.2
  • 86
    • 84867074451 scopus 로고    scopus 로고
    • Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis
    • Butala M., et al. Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Mol. Microbiol. 2012, 86(1):129-139.
    • (2012) Mol. Microbiol. , vol.86 , Issue.1 , pp. 129-139
    • Butala, M.1
  • 87
    • 78349231296 scopus 로고    scopus 로고
    • IscR regulates RNase LS activity by repressing rnlA transcription
    • Otsuka Y., et al. IscR regulates RNase LS activity by repressing rnlA transcription. Genetics 2010, 185(3):823-830.
    • (2010) Genetics , vol.185 , Issue.3 , pp. 823-830
    • Otsuka, Y.1
  • 88
    • 84892983417 scopus 로고    scopus 로고
    • IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells
    • Lim J.G., Choi S.H. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect. Immun. 2014, 82(2):569-578.
    • (2014) Infect. Immun. , vol.82 , Issue.2 , pp. 569-578
    • Lim, J.G.1    Choi, S.H.2
  • 89
    • 39849096561 scopus 로고    scopus 로고
    • Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions
    • Rincon-Enriquez G., et al. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol. Microbiol. 2008, 67(6):1257-1273.
    • (2008) Mol. Microbiol. , vol.67 , Issue.6 , pp. 1257-1273
    • Rincon-Enriquez, G.1
  • 90
    • 84903462842 scopus 로고    scopus 로고
    • IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence
    • Miller H.K., et al. IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence. PLoS Pathog. 2014, 10(6):e1004194.
    • (2014) PLoS Pathog. , vol.10 , Issue.6 , pp. e1004194
    • Miller, H.K.1
  • 91
    • 74749093665 scopus 로고    scopus 로고
    • IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14
    • Kim S.H., et al. IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14. J. Microbiol. Biotechnol. 2009, 19(12):1520-1526.
    • (2009) J. Microbiol. Biotechnol. , vol.19 , Issue.12 , pp. 1520-1526
    • Kim, S.H.1
  • 92
    • 40749134607 scopus 로고    scopus 로고
    • Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence
    • Runyen-Janecky L., et al. Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence. Infect. Immun. 2008, 76(3):1083-1092.
    • (2008) Infect. Immun. , vol.76 , Issue.3 , pp. 1083-1092
    • Runyen-Janecky, L.1
  • 93
    • 61349134073 scopus 로고    scopus 로고
    • Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation
    • Nesbit A.D., et al. Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J. Mol. Biol. 2009, 387(1):28-41.
    • (2009) J. Mol. Biol. , vol.387 , Issue.1 , pp. 28-41
    • Nesbit, A.D.1
  • 94
    • 33845971293 scopus 로고    scopus 로고
    • Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-Proteobacteria
    • Rodionov D.A., et al. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-Proteobacteria. PLoS Comput. Biol. 2006, 2(12):e163.
    • (2006) PLoS Comput. Biol. , vol.2 , Issue.12 , pp. e163
    • Rodionov, D.A.1
  • 95
    • 79960598587 scopus 로고    scopus 로고
    • Insights into the Rrf2 repressor family-the structure of CymR, the global cysteine regulator of Bacillus subtilis
    • Shepard W., et al. Insights into the Rrf2 repressor family-the structure of CymR, the global cysteine regulator of Bacillus subtilis. FEBS J. 2011, 278(15):2689-2701.
    • (2011) FEBS J. , vol.278 , Issue.15 , pp. 2689-2701
    • Shepard, W.1
  • 96
    • 84861856399 scopus 로고    scopus 로고
    • Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR
    • Fleischhacker A.S., et al. Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR. Biochemistry 2012, 51(22):4453-4462.
    • (2012) Biochemistry , vol.51 , Issue.22 , pp. 4453-4462
    • Fleischhacker, A.S.1
  • 97
    • 84878896186 scopus 로고    scopus 로고
    • Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity
    • Rajagopalan S., et al. Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat. Struct. Mol. Biol. 2013, 20(6):740-747.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , Issue.6 , pp. 740-747
    • Rajagopalan, S.1
  • 98
    • 84901821729 scopus 로고    scopus 로고
    • The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium
    • Santos J.A., et al. The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(22):E2251-E2260.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.22 , pp. E2251-E2260
    • Santos, J.A.1
  • 99
    • 0033954256 scopus 로고    scopus 로고
    • The Protein Data Bank
    • Berman H.M., et al. The Protein Data Bank. Nucleic Acids Res. 2000, 28(1):235-242.
    • (2000) Nucleic Acids Res. , vol.28 , Issue.1 , pp. 235-242
    • Berman, H.M.1
  • 100
    • 36148932962 scopus 로고    scopus 로고
    • SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria
    • Shen G., et al. SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. J. Biol. Chem. 2007, 282(44):31909-31919.
    • (2007) J. Biol. Chem. , vol.282 , Issue.44 , pp. 31909-31919
    • Shen, G.1
  • 101
    • 1142298511 scopus 로고    scopus 로고
    • The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria
    • Wang T., et al. The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria. J. Bacteriol. 2004, 186(4):956-967.
    • (2004) J. Bacteriol. , vol.186 , Issue.4 , pp. 956-967
    • Wang, T.1
  • 102
    • 33748294172 scopus 로고    scopus 로고
    • Light-responsive transcriptional regulation of the suf promoters involved in cyanobacterium Synechocystis sp. PCC 6803 Fe-S cluster biogenesis
    • Seki A., et al. Light-responsive transcriptional regulation of the suf promoters involved in cyanobacterium Synechocystis sp. PCC 6803 Fe-S cluster biogenesis. FEBS Lett. 2006, 580(21):5044-5048.
    • (2006) FEBS Lett. , vol.580 , Issue.21 , pp. 5044-5048
    • Seki, A.1
  • 103
    • 34248657278 scopus 로고    scopus 로고
    • Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria
    • Johnston A.W., et al. Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 2007, 20(3-4):501-511.
    • (2007) Biometals , vol.20 , Issue.3-4 , pp. 501-511
    • Johnston, A.W.1
  • 104
    • 33744979998 scopus 로고    scopus 로고
    • Beyond the Fur paradigm: iron-controlled gene expression in rhizobia
    • Rudolph G., Hennecke H., Fischer H.M. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol. Rev. 2006, 30(4):631-648.
    • (2006) FEMS Microbiol. Rev. , vol.30 , Issue.4 , pp. 631-648
    • Rudolph, G.1    Hennecke, H.2    Fischer, H.M.3
  • 105
    • 0036947502 scopus 로고    scopus 로고
    • RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum
    • Todd J.D., et al. RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology 2002, 148(Pt 12):4059-4071.
    • (2002) Microbiology , vol.148 , pp. 4059-4071
    • Todd, J.D.1
  • 106
    • 11044224180 scopus 로고    scopus 로고
    • Evidence that the Rhizobium regulatory protein RirA binds to cis-acting iron-responsive operators (IROs) at promoters of some Fe-regulated genes
    • Yeoman K.H., et al. Evidence that the Rhizobium regulatory protein RirA binds to cis-acting iron-responsive operators (IROs) at promoters of some Fe-regulated genes. Microbiology 2004, 150(Pt 12):4065-4074.
    • (2004) Microbiology , vol.150 , pp. 4065-4074
    • Yeoman, K.H.1
  • 107
    • 18744373036 scopus 로고    scopus 로고
    • Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae
    • Todd J.D., Sawers G., Johnston A.W. Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae. Mol. Genet. Genomics 2005, 273(2):197-206.
    • (2005) Mol. Genet. Genomics , vol.273 , Issue.2 , pp. 197-206
    • Todd, J.D.1    Sawers, G.2    Johnston, A.W.3
  • 108
    • 19544373761 scopus 로고    scopus 로고
    • RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011
    • Viguier C., et al. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011. FEMS Microbiol. Lett. 2005, 246(2):235-242.
    • (2005) FEMS Microbiol. Lett. , vol.246 , Issue.2 , pp. 235-242
    • Viguier, C.1
  • 109
    • 26844485363 scopus 로고    scopus 로고
    • Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation
    • Chao T.C., et al. Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Appl. Environ. Microbiol. 2005, 71(10):5969-5982.
    • (2005) Appl. Environ. Microbiol. , vol.71 , Issue.10 , pp. 5969-5982
    • Chao, T.C.1
  • 110
    • 64049097152 scopus 로고    scopus 로고
    • Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence
    • Ngok-Ngam P., et al. Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J. Bacteriol. 2009, 191(7):2083-2090.
    • (2009) J. Bacteriol. , vol.191 , Issue.7 , pp. 2083-2090
    • Ngok-Ngam, P.1
  • 111
    • 79960418333 scopus 로고    scopus 로고
    • Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens
    • Hibbing M.E., Fuqua C. Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens. J. Bacteriol. 2011, 193(14):3461-3472.
    • (2011) J. Bacteriol. , vol.193 , Issue.14 , pp. 3461-3472
    • Hibbing, M.E.1    Fuqua, C.2
  • 112
    • 84891615683 scopus 로고    scopus 로고
    • Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens
    • Bhubhanil S., et al. Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. Microbiology 2014, 160(Pt 1):79-90.
    • (2014) Microbiology , vol.160 , pp. 79-90
    • Bhubhanil, S.1
  • 113
    • 84861850380 scopus 로고    scopus 로고
    • Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis
    • Li H., Outten C.E. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 2012, 51(22):4377-4389.
    • (2012) Biochemistry , vol.51 , Issue.22 , pp. 4377-4389
    • Li, H.1    Outten, C.E.2
  • 114
    • 84888133282 scopus 로고    scopus 로고
    • Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details
    • Outten C.E., Albetel A.N. Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details. Curr. Opin. Microbiol. 2013, 16(6):662-668.
    • (2013) Curr. Opin. Microbiol. , vol.16 , Issue.6 , pp. 662-668
    • Outten, C.E.1    Albetel, A.N.2
  • 115
    • 70350070125 scopus 로고    scopus 로고
    • The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation
    • Li H., et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 2009, 48(40):9569-9581.
    • (2009) Biochemistry , vol.48 , Issue.40 , pp. 9569-9581
    • Li, H.1
  • 116
    • 78650949287 scopus 로고    scopus 로고
    • Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast
    • Li H., et al. Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J. Biol. Chem. 2011, 286(1):867-876.
    • (2011) J. Biol. Chem. , vol.286 , Issue.1 , pp. 867-876
    • Li, H.1
  • 117
    • 33745872884 scopus 로고    scopus 로고
    • Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
    • Ojeda L., et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281(26):17661-17669.
    • (2006) J. Biol. Chem. , vol.281 , Issue.26 , pp. 17661-17669
    • Ojeda, L.1
  • 118
    • 84896541032 scopus 로고    scopus 로고
    • Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2
    • Poor C.B., et al. Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(11):4043-4048.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.11 , pp. 4043-4048
    • Poor, C.B.1
  • 119
    • 67650999518 scopus 로고    scopus 로고
    • Evolution and diversity of glutaredoxins in photosynthetic organisms
    • Couturier J., Jacquot J.P., Rouhier N. Evolution and diversity of glutaredoxins in photosynthetic organisms. Cell. Mol. Life Sci. 2009, 66(15):2539-2557.
    • (2009) Cell. Mol. Life Sci. , vol.66 , Issue.15 , pp. 2539-2557
    • Couturier, J.1    Jacquot, J.P.2    Rouhier, N.3
  • 120
    • 84870520180 scopus 로고    scopus 로고
    • BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion
    • Willems P., et al. BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid. Redox Signal. 2013, 18(2):129-138.
    • (2013) Antioxid. Redox Signal. , vol.18 , Issue.2 , pp. 129-138
    • Willems, P.1
  • 121
    • 84891777061 scopus 로고    scopus 로고
    • Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1
    • Couturier J., et al. Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1. Mol. Plant 2014, 7(1):187-205.
    • (2014) Mol. Plant , vol.7 , Issue.1 , pp. 187-205
    • Couturier, J.1
  • 122
    • 84899147325 scopus 로고    scopus 로고
    • Putative roles of glutaredoxin-BolA holo-heterodimers in plants
    • Dhalleine T., Rouhier N., Couturier J. Putative roles of glutaredoxin-BolA holo-heterodimers in plants. Plant Signal. Behav. 2014, 9(3).
    • (2014) Plant Signal. Behav. , vol.9 , Issue.3
    • Dhalleine, T.1    Rouhier, N.2    Couturier, J.3
  • 123
    • 80054720193 scopus 로고    scopus 로고
    • The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes
    • Yeung N., et al. The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes. Biochemistry 2011, 50(41):8957-8969.
    • (2011) Biochemistry , vol.50 , Issue.41 , pp. 8957-8969
    • Yeung, N.1
  • 124
    • 84863229142 scopus 로고    scopus 로고
    • Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2
    • Li H., et al. Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry 2012, 51(8):1687-1696.
    • (2012) Biochemistry , vol.51 , Issue.8 , pp. 1687-1696
    • Li, H.1
  • 125
    • 39149112760 scopus 로고    scopus 로고
    • The functional duality of iron regulatory protein 1
    • Volz K. The functional duality of iron regulatory protein 1. Curr. Opin. Struct. Biol. 2008, 18(1):106-111.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , Issue.1 , pp. 106-111
    • Volz, K.1
  • 126
    • 84864319642 scopus 로고    scopus 로고
    • Mammalian iron metabolism and its control by iron regulatory proteins
    • Anderson C.P., et al. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 2012, 1823(9):1468-1483.
    • (2012) Biochim. Biophys. Acta , vol.1823 , Issue.9 , pp. 1468-1483
    • Anderson, C.P.1
  • 127
    • 79952162002 scopus 로고    scopus 로고
    • Regulation of cellular iron metabolism
    • Wang J., Pantopoulos K. Regulation of cellular iron metabolism. Biochem. J. 2011, 434(3):365-381.
    • (2011) Biochem. J. , vol.434 , Issue.3 , pp. 365-381
    • Wang, J.1    Pantopoulos, K.2
  • 128
    • 84886305458 scopus 로고    scopus 로고
    • When less is more: novel mechanisms of iron conservation
    • Bayeva M., et al. When less is more: novel mechanisms of iron conservation. Trends Endocrinol. Metab. 2013, 24(11):569-577.
    • (2013) Trends Endocrinol. Metab. , vol.24 , Issue.11 , pp. 569-577
    • Bayeva, M.1
  • 129
    • 79551496683 scopus 로고    scopus 로고
    • Nitrosative stress in Escherichia coli: reduction of nitric oxide
    • Vine C.E., Cole J.A. Nitrosative stress in Escherichia coli: reduction of nitric oxide. Biochem. Soc. Trans. 2011, 39(1):213-215.
    • (2011) Biochem. Soc. Trans. , vol.39 , Issue.1 , pp. 213-215
    • Vine, C.E.1    Cole, J.A.2
  • 130
    • 81855176064 scopus 로고    scopus 로고
    • Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress
    • Vine C.E., Cole J.A. Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress. FEMS Microbiol. Lett. 2011, 325(2):99-107.
    • (2011) FEMS Microbiol. Lett. , vol.325 , Issue.2 , pp. 99-107
    • Vine, C.E.1    Cole, J.A.2
  • 131
    • 33846892483 scopus 로고    scopus 로고
    • Regulators of bacterial responses to nitric oxide
    • Spiro S. Regulators of bacterial responses to nitric oxide. FEMS Microbiol. Rev. 2007, 31(2):193-211.
    • (2007) FEMS Microbiol. Rev. , vol.31 , Issue.2 , pp. 193-211
    • Spiro, S.1
  • 132
    • 85044710067 scopus 로고    scopus 로고
    • Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks
    • (Epub 2005 Oct 28)
    • Rodionov D.A., et al. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput. Biol. 2005, 1(5):e55. (Epub 2005 Oct 28).
    • (2005) PLoS Comput. Biol. , vol.1 , Issue.5 , pp. e55
    • Rodionov, D.A.1
  • 133
    • 77950862348 scopus 로고    scopus 로고
    • There's NO stopping NsrR, a global regulator of the bacterial NO stress response
    • Tucker N.P., et al. There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol. 2010, 18(4):149-156.
    • (2010) Trends Microbiol. , vol.18 , Issue.4 , pp. 149-156
    • Tucker, N.P.1
  • 134
    • 84860318059 scopus 로고    scopus 로고
    • Global transcriptional control by NsrR in Bacillus subtilis
    • Kommineni S., et al. Global transcriptional control by NsrR in Bacillus subtilis. J. Bacteriol. 2012, 194(7):1679-1688.
    • (2012) J. Bacteriol. , vol.194 , Issue.7 , pp. 1679-1688
    • Kommineni, S.1
  • 135
    • 70350144292 scopus 로고    scopus 로고
    • NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility
    • Partridge J.D., et al. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol. Microbiol. 2009, 73(4):680-694.
    • (2009) Mol. Microbiol. , vol.73 , Issue.4 , pp. 680-694
    • Partridge, J.D.1
  • 136
    • 84890912786 scopus 로고    scopus 로고
    • The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control
    • Henares B., et al. The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control. J. Bacteriol. 2014, 196(2):493-503.
    • (2014) J. Bacteriol. , vol.196 , Issue.2 , pp. 493-503
    • Henares, B.1
  • 137
    • 57349188976 scopus 로고    scopus 로고
    • Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis
    • Wang W., et al. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J. Bacteriol. 2008, 190(23):7762-7772.
    • (2008) J. Bacteriol. , vol.190 , Issue.23 , pp. 7762-7772
    • Wang, W.1
  • 138
    • 77954402786 scopus 로고    scopus 로고
    • Down-regulation of the Escherichia coli K-12 nrf promoter by binding of the NsrR nitric oxide-sensing transcription repressor to an upstream site
    • Browning D.F., et al. Down-regulation of the Escherichia coli K-12 nrf promoter by binding of the NsrR nitric oxide-sensing transcription repressor to an upstream site. J. Bacteriol. 2010, 192(14):3824-3828.
    • (2010) J. Bacteriol. , vol.192 , Issue.14 , pp. 3824-3828
    • Browning, D.F.1
  • 139
    • 84866045625 scopus 로고    scopus 로고
    • The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium
    • Karlinsey J.E., et al. The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2012, 85(6):1179-1193.
    • (2012) Mol. Microbiol. , vol.85 , Issue.6 , pp. 1179-1193
    • Karlinsey, J.E.1
  • 140
    • 41549143961 scopus 로고    scopus 로고
    • The nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification
    • Heurlier K., et al. The nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification. J. Bacteriol. 2008, 190(7):2488-2495.
    • (2008) J. Bacteriol. , vol.190 , Issue.7 , pp. 2488-2495
    • Heurlier, K.1
  • 141
    • 84893740053 scopus 로고    scopus 로고
    • NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide
    • Branchu P., et al. NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide. PLoS Pathog. 2014, 10(1):e1003874.
    • (2014) PLoS Pathog. , vol.10 , Issue.1 , pp. e1003874
    • Branchu, P.1
  • 142
    • 78349299469 scopus 로고    scopus 로고
    • Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis
    • Wang Y., et al. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis. Mol. Microbiol. 2010, 78(4):903-915.
    • (2010) Mol. Microbiol. , vol.78 , Issue.4 , pp. 903-915
    • Wang, Y.1
  • 143
    • 84861205714 scopus 로고    scopus 로고
    • Genomic rearrangements leading to overexpression of aldo-keto reductase YafB of Escherichia coli confer resistance to glyoxal
    • Kwon M., et al. Genomic rearrangements leading to overexpression of aldo-keto reductase YafB of Escherichia coli confer resistance to glyoxal. J. Bacteriol. 2012, 194(8):1979-1988.
    • (2012) J. Bacteriol. , vol.194 , Issue.8 , pp. 1979-1988
    • Kwon, M.1
  • 144
    • 56649095726 scopus 로고    scopus 로고
    • The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster
    • Tucker N.P., et al. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One 2008, 3(11):e3623.
    • (2008) PLoS One , vol.3 , Issue.11 , pp. e3623
    • Tucker, N.P.1
  • 145
    • 57449099080 scopus 로고    scopus 로고
    • Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster (dagger)
    • Yukl E.T., et al. Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster (dagger). Biochemistry 2008, 47(49):13084-13092.
    • (2008) Biochemistry , vol.47 , Issue.49 , pp. 13084-13092
    • Yukl, E.T.1
  • 146
    • 58149136356 scopus 로고    scopus 로고
    • Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae
    • Isabella V.M., et al. Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol. Microbiol. 2009, 71(1):227-239.
    • (2009) Mol. Microbiol. , vol.71 , Issue.1 , pp. 227-239
    • Isabella, V.M.1
  • 147
    • 78649728803 scopus 로고    scopus 로고
    • Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter
    • Kommineni S., et al. Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter. Mol. Microbiol. 2010, 78(5):1280-1293.
    • (2010) Mol. Microbiol. , vol.78 , Issue.5 , pp. 1280-1293
    • Kommineni, S.1
  • 148
    • 84921930691 scopus 로고    scopus 로고
    • Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide
    • Green J., Rolfe M.D., Smith L.J. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014, 5(4).
    • (2014) Virulence , vol.5 , Issue.4
    • Green, J.1    Rolfe, M.D.2    Smith, L.J.3
  • 149
    • 84897113579 scopus 로고    scopus 로고
    • Insights into redox sensing metalloproteins in Mycobacterium tuberculosis
    • Chim N., Johnson P.M., Goulding C.W. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis. J. Inorg. Biochem. 2014, 133:118-126.
    • (2014) J. Inorg. Biochem. , vol.133 , pp. 118-126
    • Chim, N.1    Johnson, P.M.2    Goulding, C.W.3
  • 150
    • 84867328208 scopus 로고    scopus 로고
    • The mechanism of redox sensing in Mycobacterium tuberculosis
    • Bhat S.A., et al. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic. Biol. Med. 2012, 53(8):1625-1641.
    • (2012) Free Radic. Biol. Med. , vol.53 , Issue.8 , pp. 1625-1641
    • Bhat, S.A.1
  • 151
    • 84862103955 scopus 로고    scopus 로고
    • The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives
    • Zheng F., Long Q., Xie J. The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives. Cell Biochem. Biophys. 2012, 63(2):103-108.
    • (2012) Cell Biochem. Biophys. , vol.63 , Issue.2 , pp. 103-108
    • Zheng, F.1    Long, Q.2    Xie, J.3
  • 152
    • 57449092525 scopus 로고    scopus 로고
    • The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum
    • Choi W.W., et al. The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS Microbiol. Lett. 2009, 290(1):32-38.
    • (2009) FEMS Microbiol. Lett. , vol.290 , Issue.1 , pp. 32-38
    • Choi, W.W.1
  • 153
    • 70149116303 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response
    • Singh A., et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog. 2009, 5(8):e1000545.
    • (2009) PLoS Pathog. , vol.5 , Issue.8 , pp. e1000545
    • Singh, A.1
  • 154
    • 79955755909 scopus 로고    scopus 로고
    • The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2)
    • Fowler-Goldsworthy K., et al. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 2011, 157(Pt 5):1312-1328.
    • (2011) Microbiology , vol.157 , pp. 1312-1328
    • Fowler-Goldsworthy, K.1
  • 155
    • 84864376879 scopus 로고    scopus 로고
    • Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus
    • Averina O.V., Zakharevich N.V., Danilenko V.N. Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus. Anaerobe 2012, 18(4):421-429.
    • (2012) Anaerobe , vol.18 , Issue.4 , pp. 421-429
    • Averina, O.V.1    Zakharevich, N.V.2    Danilenko, V.N.3
  • 156
    • 84855286330 scopus 로고    scopus 로고
    • The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance
    • Burian J., et al. The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance. J. Biol. Chem. 2012, 287(1):299-310.
    • (2012) J. Biol. Chem. , vol.287 , Issue.1 , pp. 299-310
    • Burian, J.1
  • 157
    • 84867615104 scopus 로고    scopus 로고
    • WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation
    • Casonato S., et al. WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation. Infect. Immun. 2012, 80(9):3132-3144.
    • (2012) Infect. Immun. , vol.80 , Issue.9 , pp. 3132-3144
    • Casonato, S.1
  • 158
    • 84866029444 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo
    • Chawla M., et al. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol. Microbiol. 2012, 85(6):1148-1165.
    • (2012) Mol. Microbiol. , vol.85 , Issue.6 , pp. 1148-1165
    • Chawla, M.1
  • 159
    • 84888986254 scopus 로고    scopus 로고
    • WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria
    • Ramon-Garcia S., et al. WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. J. Biol. Chem. 2013, 288(48):34514-34528.
    • (2013) J. Biol. Chem. , vol.288 , Issue.48 , pp. 34514-34528
    • Ramon-Garcia, S.1
  • 160
    • 84903272174 scopus 로고    scopus 로고
    • Transcriptional response to vancomycin in a highly vancomycin-resistant Streptomyces coelicolor mutant
    • Santos-Beneit F., et al. Transcriptional response to vancomycin in a highly vancomycin-resistant Streptomyces coelicolor mutant. Future Microbiol 2014, 9:603-622.
    • (2014) Future Microbiol , vol.9 , pp. 603-622
    • Santos-Beneit, F.1
  • 161
    • 84861319681 scopus 로고    scopus 로고
    • Negative role of wblA in response to oxidative stress in Streptomyces coelicolor
    • Kim J.S., et al. Negative role of wblA in response to oxidative stress in Streptomyces coelicolor. J. Microbiol. Biotechnol. 2012, 22(6):736-741.
    • (2012) J. Microbiol. Biotechnol. , vol.22 , Issue.6 , pp. 736-741
    • Kim, J.S.1
  • 162
    • 0033983745 scopus 로고    scopus 로고
    • Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes
    • Soliveri J.A., et al. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 2000, 146(Pt 2):333-343.
    • (2000) Microbiology , vol.146 , pp. 333-343
    • Soliveri, J.A.1
  • 163
    • 84899937003 scopus 로고    scopus 로고
    • Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences
    • Chandra G., Chater K.F. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol. Rev. 2014, 38(3):345-379.
    • (2014) FEMS Microbiol. Rev. , vol.38 , Issue.3 , pp. 345-379
    • Chandra, G.1    Chater, K.F.2
  • 164
    • 57649186810 scopus 로고    scopus 로고
    • Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv
    • Alam M.S., Garg S.K., Agrawal P. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J. 2009, 276(1):76-93.
    • (2009) FEBS J. , vol.276 , Issue.1 , pp. 76-93
    • Alam, M.S.1    Garg, S.K.2    Agrawal, P.3
  • 165
    • 84864050604 scopus 로고    scopus 로고
    • Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments
    • Larsson C., et al. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS One 2012, 7(7):e37516.
    • (2012) PLoS One , vol.7 , Issue.7 , pp. e37516
    • Larsson, C.1
  • 166
    • 33846942978 scopus 로고    scopus 로고
    • Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase
    • Alam M.S., Garg S.K., Agrawal P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol. Microbiol. 2007, 63(5):1414-1431.
    • (2007) Mol. Microbiol. , vol.63 , Issue.5 , pp. 1414-1431
    • Alam, M.S.1    Garg, S.K.2    Agrawal, P.3
  • 167
    • 34547463011 scopus 로고    scopus 로고
    • 2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival
    • 2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc. Natl. Acad. Sci. U. S. A. 2007, 104(28):11562-11567.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , Issue.28 , pp. 11562-11567
    • Singh, A.1
  • 168
    • 79851472229 scopus 로고    scopus 로고
    • Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins
    • Crack J.C., et al. Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins. J. Am. Chem. Soc. 2011, 133(4):1112-1121.
    • (2011) J. Am. Chem. Soc. , vol.133 , Issue.4 , pp. 1112-1121
    • Crack, J.C.1
  • 169
    • 78649856315 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster
    • Smith L.J., et al. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem. J. 2010, 432(3):417-427.
    • (2010) Biochem. J. , vol.432 , Issue.3 , pp. 417-427
    • Smith, L.J.1
  • 170
    • 73149093841 scopus 로고    scopus 로고
    • Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD
    • Crack J.C., et al. Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 2009, 48(51):12252-12264.
    • (2009) Biochemistry , vol.48 , Issue.51 , pp. 12252-12264
    • Crack, J.C.1
  • 171
    • 77954835360 scopus 로고    scopus 로고
    • Insights into the function of the WhiB-like protein of mycobacteriophage TM4-a transcriptional inhibitor of WhiB2
    • Rybniker J., et al. Insights into the function of the WhiB-like protein of mycobacteriophage TM4-a transcriptional inhibitor of WhiB2. Mol. Microbiol. 2010, 77(3):642-657.
    • (2010) Mol. Microbiol. , vol.77 , Issue.3 , pp. 642-657
    • Rybniker, J.1
  • 172
    • 84863402400 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2
    • Stapleton M.R., et al. Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis (Edinb) 2012, 92(4):328-332.
    • (2012) Tuberculosis (Edinb) , vol.92 , Issue.4 , pp. 328-332
    • Stapleton, M.R.1
  • 173
    • 84889059036 scopus 로고    scopus 로고
    • The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV)
    • Burian J., et al. The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res. 2013, 41(22):10062-10076.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.22 , pp. 10062-10076
    • Burian, J.1
  • 174
    • 60249085849 scopus 로고    scopus 로고
    • Redox biology of Mycobacterium tuberculosis H37Rv: protein-protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide
    • Garg S., et al. Redox biology of Mycobacterium tuberculosis H37Rv: protein-protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide. BMC Biochem. 2009, 10:1.
    • (2009) BMC Biochem. , vol.10 , pp. 1
    • Garg, S.1
  • 175
    • 84863849311 scopus 로고    scopus 로고
    • WhiB2/Rv3260c, a cell division-associated protein of Mycobacterium tuberculosis H37Rv, has properties of a chaperone
    • Konar M., et al. WhiB2/Rv3260c, a cell division-associated protein of Mycobacterium tuberculosis H37Rv, has properties of a chaperone. FEBS J. 2012, 279(15):2781-2792.
    • (2012) FEBS J. , vol.279 , Issue.15 , pp. 2781-2792
    • Konar, M.1
  • 176
    • 42549123126 scopus 로고    scopus 로고
    • ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum
    • Nishimura T., et al. ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J. Bacteriol. 2008, 190(9):3264-3273.
    • (2008) J. Bacteriol. , vol.190 , Issue.9 , pp. 3264-3273
    • Nishimura, T.1
  • 177
    • 84890280939 scopus 로고    scopus 로고
    • Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner
    • Nishimura T., et al. Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J. Bacteriol. 2014, 196(1):60-69.
    • (2014) J. Bacteriol. , vol.196 , Issue.1 , pp. 60-69
    • Nishimura, T.1
  • 178
    • 35748971055 scopus 로고    scopus 로고
    • RsmA is an anti-sigma factor that modulates its activity through a [2Fe-2S] cluster cofactor
    • Gaskell A.A., et al. RsmA is an anti-sigma factor that modulates its activity through a [2Fe-2S] cluster cofactor. J. Biol. Chem. 2007, 282(43):31812-31820.
    • (2007) J. Biol. Chem. , vol.282 , Issue.43 , pp. 31812-31820
    • Gaskell, A.A.1
  • 179
    • 23844442155 scopus 로고    scopus 로고
    • A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor
    • Lee E.J., et al. A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol. Microbiol. 2005, 57(5):1252-1264.
    • (2005) Mol. Microbiol. , vol.57 , Issue.5 , pp. 1252-1264
    • Lee, E.J.1
  • 180
    • 4444236429 scopus 로고    scopus 로고
    • Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons
    • Martinez-Perez O., et al. Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons. J. Bacteriol. 2004, 186(18):6101-6109.
    • (2004) J. Bacteriol. , vol.186 , Issue.18 , pp. 6101-6109
    • Martinez-Perez, O.1
  • 181
    • 78751516684 scopus 로고    scopus 로고
    • ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression
    • Garcia L.L., et al. ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression. J. Biol. Chem. 2011, 286(3):1709-1718.
    • (2011) J. Biol. Chem. , vol.286 , Issue.3 , pp. 1709-1718
    • Garcia, L.L.1
  • 182
    • 84884188121 scopus 로고    scopus 로고
    • The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway
    • Ledesma-Garcia L., Reyes-Ramirez F., Santero E. The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway. PLoS One 2013, 8(9):e73910.
    • (2013) PLoS One , vol.8 , Issue.9 , pp. e73910
    • Ledesma-Garcia, L.1    Reyes-Ramirez, F.2    Santero, E.3
  • 183
    • 75149184073 scopus 로고    scopus 로고
    • The role of the Fe-S cluster in the sensory domain of nitrogenase transcriptional activator VnfA from Azotobacter vinelandii
    • Nakajima H., et al. The role of the Fe-S cluster in the sensory domain of nitrogenase transcriptional activator VnfA from Azotobacter vinelandii. FEBS J. 2010, 277(3):817-832.
    • (2010) FEBS J. , vol.277 , Issue.3 , pp. 817-832
    • Nakajima, H.1
  • 184
    • 80052514783 scopus 로고    scopus 로고
    • The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii
    • Yoshimitsu K., et al. The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii. FEBS J. 2011, 278(18):3287-3297.
    • (2011) FEBS J. , vol.278 , Issue.18 , pp. 3287-3297
    • Yoshimitsu, K.1
  • 185
    • 84878625223 scopus 로고    scopus 로고
    • The solution structure of apo-iron regulatory protein 1
    • Shand O., Volz K. The solution structure of apo-iron regulatory protein 1. Gene 2013, 524(2):341-346.
    • (2013) Gene , vol.524 , Issue.2 , pp. 341-346
    • Shand, O.1    Volz, K.2
  • 186
    • 80155186777 scopus 로고    scopus 로고
    • Protein conformational changes of the oxidative stress sensor, SoxR, upon redox changes of the [2Fe-2S] cluster probed with ultraviolet resonance Raman spectroscopy
    • Kobayashi K., et al. Protein conformational changes of the oxidative stress sensor, SoxR, upon redox changes of the [2Fe-2S] cluster probed with ultraviolet resonance Raman spectroscopy. Biochemistry 2011, 50(44):9468-9474.
    • (2011) Biochemistry , vol.50 , Issue.44 , pp. 9468-9474
    • Kobayashi, K.1
  • 187
    • 80053651587 scopus 로고    scopus 로고
    • GenBank
    • Benson D.A., et al. GenBank. Nucleic Acids Res. 2013, 41(Database issue):D36-D42.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.DATABASE ISSUE , pp. D36-D42
    • Benson, D.A.1
  • 188
    • 80054078476 scopus 로고    scopus 로고
    • Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
    • Sievers F., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7:539.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 539
    • Sievers, F.1
  • 189
    • 77954296666 scopus 로고    scopus 로고
    • A new bioinformatics analysis tools framework at EMBL-EBI
    • Goujon M., et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010, 38(Web Server issue):W695-W699.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.WEB SERVER ISSUE , pp. W695-W699
    • Goujon, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.