-
1
-
-
0034003112
-
Iron-sulfur proteins: ancient structures, still full of surprises
-
Beinert H. Iron-sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 2000, 5(1):2-15.
-
(2000)
J. Biol. Inorg. Chem.
, vol.5
, Issue.1
, pp. 2-15
-
-
Beinert, H.1
-
2
-
-
33646368396
-
Iron-sulfur clusters: ever-expanding roles
-
Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat. Chem. Biol. 2006, 2(4):171-174.
-
(2006)
Nat. Chem. Biol.
, vol.2
, Issue.4
, pp. 171-174
-
-
Fontecave, M.1
-
3
-
-
0038352097
-
The role of Fe-S proteins in sensing and regulation in bacteria
-
Kiley P.J., Beinert H. The role of Fe-S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 2003, 6(2):181-185.
-
(2003)
Curr. Opin. Microbiol.
, vol.6
, Issue.2
, pp. 181-185
-
-
Kiley, P.J.1
Beinert, H.2
-
4
-
-
79953298366
-
Iron-containing transcription factors and their roles as sensors
-
Fleischhacker A.S., Kiley P.J. Iron-containing transcription factors and their roles as sensors. Curr. Opin. Chem. Biol. 2011, 15(2):335-341.
-
(2011)
Curr. Opin. Chem. Biol.
, vol.15
, Issue.2
, pp. 335-341
-
-
Fleischhacker, A.S.1
Kiley, P.J.2
-
5
-
-
84859646411
-
Iron-sulfur cluster sensor-regulators
-
Crack J.C., et al. Iron-sulfur cluster sensor-regulators. Curr. Opin. Chem. Biol. 2012, 16(1-2):35-44.
-
(2012)
Curr. Opin. Chem. Biol.
, vol.16
, Issue.1-2
, pp. 35-44
-
-
Crack, J.C.1
-
6
-
-
84865641390
-
Bacterial iron-sulfur regulatory proteins as biological sensor-switches
-
Crack J.C., et al. Bacterial iron-sulfur regulatory proteins as biological sensor-switches. Antioxid. Redox Signal. 2012, 17(9):1215-1231.
-
(2012)
Antioxid. Redox Signal.
, vol.17
, Issue.9
, pp. 1215-1231
-
-
Crack, J.C.1
-
7
-
-
33645065589
-
Iron-sulphur clusters and the problem with oxygen
-
Imlay J.A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 2006, 59(4):1073-1082.
-
(2006)
Mol. Microbiol.
, vol.59
, Issue.4
, pp. 1073-1082
-
-
Imlay, J.A.1
-
8
-
-
50649117912
-
Cellular defenses against superoxide and hydrogen peroxide
-
Imlay J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77:755-776.
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 755-776
-
-
Imlay, J.A.1
-
9
-
-
84879422944
-
The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium
-
Imlay J.A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 2013, 11(7):443-454.
-
(2013)
Nat. Rev. Microbiol.
, vol.11
, Issue.7
, pp. 443-454
-
-
Imlay, J.A.1
-
10
-
-
67649781729
-
Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology
-
Vanin A.F. Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide 2009, 21(1):1-13.
-
(2009)
Nitric Oxide
, vol.21
, Issue.1
, pp. 1-13
-
-
Vanin, A.F.1
-
11
-
-
33845491468
-
Iron-sulfur cluster stability. Kinetics and mechanism of ligand-promoted cluster degradation
-
Wu S.P., Cowan J.A. Iron-sulfur cluster stability. Kinetics and mechanism of ligand-promoted cluster degradation. Chem. Commun. (Camb.) 2007, (1):82-84.
-
(2007)
Chem. Commun. (Camb.)
, Issue.1
, pp. 82-84
-
-
Wu, S.P.1
Cowan, J.A.2
-
12
-
-
0035846906
-
The loop region covering the iron-sulfur cluster in bovine adrenodoxin comprises a new interaction site for redox partners
-
Hannemann F., et al. The loop region covering the iron-sulfur cluster in bovine adrenodoxin comprises a new interaction site for redox partners. J. Biol. Chem. 2001, 276(2):1369-1375.
-
(2001)
J. Biol. Chem.
, vol.276
, Issue.2
, pp. 1369-1375
-
-
Hannemann, F.1
-
13
-
-
0029770685
-
Human ferredoxin: overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cysteine-to-serine mutants
-
Xia B., et al. Human ferredoxin: overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cysteine-to-serine mutants. Biochemistry 1996, 35(29):9488-9495.
-
(1996)
Biochemistry
, vol.35
, Issue.29
, pp. 9488-9495
-
-
Xia, B.1
-
14
-
-
0028832648
-
4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP
-
4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP. Proc. Natl. Acad. Sci. U. S. A. 1995, 92(21):9440-9444.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, Issue.21
, pp. 9440-9444
-
-
Agarwal, A.1
Li, D.2
Cowan, J.A.3
-
15
-
-
0030463726
-
4] cluster
-
4] cluster. Biochemistry 1996, 35(46):14544-14552.
-
(1996)
Biochemistry
, vol.35
, Issue.46
, pp. 14544-14552
-
-
Bian, S.1
-
16
-
-
41949137280
-
Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA
-
Watanabe S., et al. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(11):4121-4126.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.11
, pp. 4121-4126
-
-
Watanabe, S.1
-
17
-
-
33644804529
-
Crystal structure of human iron regulatory protein 1 as cytosolic aconitase
-
Dupuy J., et al. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 2006, 14(1):129-139.
-
(2006)
Structure
, vol.14
, Issue.1
, pp. 129-139
-
-
Dupuy, J.1
-
18
-
-
84892869991
-
Alternative FeS cluster ligands: tuning redox potentials and chemistry
-
Bak D.W., Elliott S.J. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr. Opin. Chem. Biol. 2014, 19:50-58.
-
(2014)
Curr. Opin. Chem. Biol.
, vol.19
, pp. 50-58
-
-
Bak, D.W.1
Elliott, S.J.2
-
19
-
-
84908097207
-
Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide
-
Crack J.C., et al. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc. Chem. Res. 2014, 47(10):3196-3205.
-
(2014)
Acc. Chem. Res.
, vol.47
, Issue.10
, pp. 3196-3205
-
-
Crack, J.C.1
-
20
-
-
84901297224
-
Determining the control circuitry of redox metabolism at the genome-scale
-
Federowicz S., et al. Determining the control circuitry of redox metabolism at the genome-scale. PLoS Genet. 2014, 10(4):e1004264.
-
(2014)
PLoS Genet.
, vol.10
, Issue.4
, pp. e1004264
-
-
Federowicz, S.1
-
21
-
-
84879620270
-
Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding
-
Myers K.S., et al. Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet. 2013, 9(6):e1003565.
-
(2013)
PLoS Genet.
, vol.9
, Issue.6
, pp. e1003565
-
-
Myers, K.S.1
-
22
-
-
33846659467
-
Transcription factor distribution in Escherichia coli: studies with FNR protein
-
Grainger D.C., et al. Transcription factor distribution in Escherichia coli: studies with FNR protein. Nucleic Acids Res. 2007, 35(1):269-278.
-
(2007)
Nucleic Acids Res.
, vol.35
, Issue.1
, pp. 269-278
-
-
Grainger, D.C.1
-
23
-
-
0043032584
-
Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR
-
Salmon K., et al. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J. Biol. Chem. 2003, 278(32):29837-29855.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.32
, pp. 29837-29855
-
-
Salmon, K.1
-
24
-
-
13244289800
-
Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function
-
Kang Y., et al. Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J. Bacteriol. 2005, 187(3):1135-1160.
-
(2005)
J. Bacteriol.
, vol.187
, Issue.3
, pp. 1135-1160
-
-
Kang, Y.1
-
25
-
-
33646184857
-
A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth
-
Constantinidou C., et al. A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J. Biol. Chem. 2006, 281(8):4802-4815.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.8
, pp. 4802-4815
-
-
Constantinidou, C.1
-
26
-
-
77957325735
-
Reconstruction of the core and extended regulons of global transcription factors
-
Dufour Y.S., Kiley P.J., Donohue T.J. Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet. 2010, 6(7):e1001027.
-
(2010)
PLoS Genet.
, vol.6
, Issue.7
, pp. e1001027
-
-
Dufour, Y.S.1
Kiley, P.J.2
Donohue, T.J.3
-
27
-
-
0344153756
-
Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs
-
Korner H., Sofia H.J., Zumft W.G. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev. 2003, 27(5):559-592.
-
(2003)
FEMS Microbiol. Rev.
, vol.27
, Issue.5
, pp. 559-592
-
-
Korner, H.1
Sofia, H.J.2
Zumft, W.G.3
-
28
-
-
0031000271
-
2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity
-
2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc. Natl. Acad. Sci. U. S. A. 1997, 94(12):6087-6092.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, Issue.12
, pp. 6087-6092
-
-
Khoroshilova, N.1
-
29
-
-
0030029817
-
DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen
-
Lazazzera B.A., et al. DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J. Biol. Chem. 1996, 271(5):2762-2768.
-
(1996)
J. Biol. Chem.
, vol.271
, Issue.5
, pp. 2762-2768
-
-
Lazazzera, B.A.1
-
30
-
-
0032505869
-
Mossbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli
-
Popescu C.V., et al. Mossbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 1998, 95(23):13431-13435.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, Issue.23
, pp. 13431-13435
-
-
Popescu, C.V.1
-
31
-
-
0030695304
-
FNR is a direct oxygen sensor having a biphasic response curve
-
Jordan P.A., et al. FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett. 1997, 416(3):349-352.
-
(1997)
FEBS Lett.
, vol.416
, Issue.3
, pp. 349-352
-
-
Jordan, P.A.1
-
32
-
-
0029797082
-
Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro
-
Green J., et al. Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro. Biochem. J. 1996, 316(Pt 3):887-892.
-
(1996)
Biochem. J.
, vol.316
, pp. 887-892
-
-
Green, J.1
-
33
-
-
0001531847
-
Iron-sulfur proteins with nonredox functions
-
Flint D.H., Allen R.M. Iron-sulfur proteins with nonredox functions. Chem. Rev. 1996, 96(7):2315-2334.
-
(1996)
Chem. Rev.
, vol.96
, Issue.7
, pp. 2315-2334
-
-
Flint, D.H.1
Allen, R.M.2
-
34
-
-
9244247618
-
2+ cluster
-
2+ cluster. J. Bacteriol. 2004, 186(23):8018-8025.
-
(2004)
J. Bacteriol.
, vol.186
, Issue.23
, pp. 8018-8025
-
-
Sutton, V.R.1
-
35
-
-
59149095309
-
Signal perception by FNR: the role of the iron-sulfur cluster
-
Crack J.C., et al. Signal perception by FNR: the role of the iron-sulfur cluster. Biochem. Soc. Trans. 2008, 36(Pt 6):1144-1148.
-
(2008)
Biochem. Soc. Trans.
, vol.36
, pp. 1144-1148
-
-
Crack, J.C.1
-
36
-
-
84866876886
-
Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein
-
Zhang B., et al. Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein. Proc. Natl. Acad. Sci. U. S. A. 2012, 109(39):15734-15739.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, Issue.39
, pp. 15734-15739
-
-
Zhang, B.1
-
37
-
-
1642453843
-
2+ cluster of FNR from Escherichia coli
-
2+ cluster of FNR from Escherichia coli. Biochemistry 2004, 43(3):791-798.
-
(2004)
Biochemistry
, vol.43
, Issue.3
, pp. 791-798
-
-
Sutton, V.R.1
-
39
-
-
34247857563
-
Contributions of [4Fe-4S]-FNR and integration host factor to fnr transcriptional regulation
-
Mettert E.L., Kiley P.J. Contributions of [4Fe-4S]-FNR and integration host factor to fnr transcriptional regulation. J. Bacteriol. 2007, 189(8):3036-3043.
-
(2007)
J. Bacteriol.
, vol.189
, Issue.8
, pp. 3036-3043
-
-
Mettert, E.L.1
Kiley, P.J.2
-
40
-
-
77950021681
-
Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli
-
Tolla D.A., Savageau M.A. Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli. J. Mol. Biol. 2010, 397(4):893-905.
-
(2010)
J. Mol. Biol.
, vol.397
, Issue.4
, pp. 893-905
-
-
Tolla, D.A.1
Savageau, M.A.2
-
41
-
-
84864269919
-
Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations
-
Rolfe M.D., et al. Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations. Open Biol. 2012, 2(7):120091.
-
(2012)
Open Biol.
, vol.2
, Issue.7
, pp. 120091
-
-
Rolfe, M.D.1
-
42
-
-
34249727710
-
Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components
-
Partridge J.D., et al. Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biol. Chem. 2007, 282(15):11230-11237.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.15
, pp. 11230-11237
-
-
Partridge, J.D.1
-
43
-
-
33747892469
-
A kinetic model of oxygen regulation of cytochrome production in Escherichia coli
-
Peercy B.E., et al. A kinetic model of oxygen regulation of cytochrome production in Escherichia coli. J. Theor. Biol. 2006, 242(3):547-563.
-
(2006)
J. Theor. Biol.
, vol.242
, Issue.3
, pp. 547-563
-
-
Peercy, B.E.1
-
44
-
-
84901362496
-
Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli
-
Bai H., et al. Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli. PLoS Comput. Biol. 2014, 10(4):e1003595.
-
(2014)
PLoS Comput. Biol.
, vol.10
, Issue.4
, pp. e1003595
-
-
Bai, H.1
-
45
-
-
78650248379
-
Phenotypic repertoire of the FNR regulatory network in Escherichia coli
-
Tolla D.A., Savageau M.A. Phenotypic repertoire of the FNR regulatory network in Escherichia coli. Mol. Microbiol. 2011, 79(1):149-165.
-
(2011)
Mol. Microbiol.
, vol.79
, Issue.1
, pp. 149-165
-
-
Tolla, D.A.1
Savageau, M.A.2
-
46
-
-
0032457906
-
Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster
-
Kiley P.J., Beinert H. Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol. Rev. 1998, 22(5):341-352.
-
(1998)
FEMS Microbiol. Rev.
, vol.22
, Issue.5
, pp. 341-352
-
-
Kiley, P.J.1
Beinert, H.2
-
47
-
-
33744500236
-
Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state
-
Reents H., et al. Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state. Mol. Microbiol. 2006, 60(6):1432-1445.
-
(2006)
Mol. Microbiol.
, vol.60
, Issue.6
, pp. 1432-1445
-
-
Reents, H.1
-
48
-
-
78751533609
-
2+ cluster of Bacillus subtilis transcriptional regulator Fnr
-
2+ cluster of Bacillus subtilis transcriptional regulator Fnr. J. Biol. Chem. 2011, 286(3):2017-2021.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.3
, pp. 2017-2021
-
-
Gruner, I.1
-
49
-
-
84862631277
-
Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR
-
Esbelin J., Jouanneau Y., Duport C. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR. BMC Microbiol. 2012, 12:125.
-
(2012)
BMC Microbiol.
, vol.12
, pp. 125
-
-
Esbelin, J.1
Jouanneau, Y.2
Duport, C.3
-
50
-
-
44949094526
-
ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus
-
Esbelin J., et al. ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J. Bacteriol. 2008, 190(12):4242-4251.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.12
, pp. 4242-4251
-
-
Esbelin, J.1
-
51
-
-
84876524887
-
Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators
-
Crack J.C., et al. Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators. J. Biol. Chem. 2013, 288(16):11492-11502.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.16
, pp. 11492-11502
-
-
Crack, J.C.1
-
52
-
-
0036646484
-
NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp
-
Cruz-Ramos H., et al. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 2002, 21(13):3235-3244.
-
(2002)
EMBO J.
, vol.21
, Issue.13
, pp. 3235-3244
-
-
Cruz-Ramos, H.1
-
53
-
-
13244299310
-
New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide
-
Justino M.C., et al. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J. Biol. Chem. 2005, 280(4):2636-2643.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.4
, pp. 2636-2643
-
-
Justino, M.C.1
-
54
-
-
33947420458
-
Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation
-
Pullan S.T., et al. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J. Bacteriol. 2007, 189(5):1845-1855.
-
(2007)
J. Bacteriol.
, vol.189
, Issue.5
, pp. 1845-1855
-
-
Pullan, S.T.1
-
55
-
-
0036889030
-
The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC
-
Fedtke I., et al. The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC. J. Bacteriol. 2002, 184(23):6624-6634.
-
(2002)
J. Bacteriol.
, vol.184
, Issue.23
, pp. 6624-6634
-
-
Fedtke, I.1
-
56
-
-
57349161245
-
Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus
-
Schlag S., et al. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J. Bacteriol. 2008, 190(23):7847-7858.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.23
, pp. 7847-7858
-
-
Schlag, S.1
-
57
-
-
2442629407
-
Staphylococcal NreB: an O(2)-sensing histidine protein kinase with an O(2)-labile iron-sulphur cluster of the FNR type
-
Kamps A., et al. Staphylococcal NreB: an O(2)-sensing histidine protein kinase with an O(2)-labile iron-sulphur cluster of the FNR type. Mol. Microbiol. 2004, 52(3):713-723.
-
(2004)
Mol. Microbiol.
, vol.52
, Issue.3
, pp. 713-723
-
-
Kamps, A.1
-
58
-
-
58849147983
-
A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus
-
Mullner M., et al. A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus. Biochemistry 2008, 47(52):13921-13932.
-
(2008)
Biochemistry
, vol.47
, Issue.52
, pp. 13921-13932
-
-
Mullner, M.1
-
59
-
-
84891944747
-
Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus
-
Nilkens S., et al. Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus. Mol. Microbiol. 2014, 91(2):381-393.
-
(2014)
Mol. Microbiol.
, vol.91
, Issue.2
, pp. 381-393
-
-
Nilkens, S.1
-
60
-
-
84855667761
-
AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus
-
Sun F., et al. AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J. Am. Chem. Soc. 2012, 134(1):305-314.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.1
, pp. 305-314
-
-
Sun, F.1
-
61
-
-
84889850708
-
Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus NCTC8325
-
Sun H., et al. Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus NCTC8325. BMC Microbiol. 2013, 13:286.
-
(2013)
BMC Microbiol.
, vol.13
, pp. 286
-
-
Sun, H.1
-
62
-
-
84870619546
-
The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus
-
Yan M., et al. The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus. PLoS One 2012, 7(11):e50608.
-
(2012)
PLoS One
, vol.7
, Issue.11
, pp. e50608
-
-
Yan, M.1
-
63
-
-
79955375769
-
The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus
-
Yan M., et al. The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus. J. Bacteriol. 2011, 193(8):1799-1805.
-
(2011)
J. Bacteriol.
, vol.193
, Issue.8
, pp. 1799-1805
-
-
Yan, M.1
-
64
-
-
84897114854
-
Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR
-
Kobayashi K., Fujikawa M., Kozawa T. Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. J. Inorg. Biochem. 2014, 133:87-91.
-
(2014)
J. Inorg. Biochem.
, vol.133
, pp. 87-91
-
-
Kobayashi, K.1
Fujikawa, M.2
Kozawa, T.3
-
65
-
-
84864600170
-
Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria
-
Chiang S.M., Schellhorn H.E. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch. Biochem. Biophys. 2012, 525(2):161-169.
-
(2012)
Arch. Biochem. Biophys.
, vol.525
, Issue.2
, pp. 161-169
-
-
Chiang, S.M.1
Schellhorn, H.E.2
-
66
-
-
79951789722
-
The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide
-
Gu M., Imlay J.A. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 2011, 79(5):1136-1150.
-
(2011)
Mol. Microbiol.
, vol.79
, Issue.5
, pp. 1136-1150
-
-
Gu, M.1
Imlay, J.A.2
-
67
-
-
50649098819
-
Redox-active antibiotics control gene expression and community behavior in divergent bacteria
-
Dietrich L.E., et al. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008, 321(5893):1203-1206.
-
(2008)
Science
, vol.321
, Issue.5893
, pp. 1203-1206
-
-
Dietrich, L.E.1
-
68
-
-
33747082622
-
The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa
-
Dietrich L.E., et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61(5):1308-1321.
-
(2006)
Mol. Microbiol.
, vol.61
, Issue.5
, pp. 1308-1321
-
-
Dietrich, L.E.1
-
69
-
-
78649647804
-
Expression of the Streptomyces coelicolor SoxR regulon is intimately linked with actinorhodin production
-
Dela Cruz R., et al. Expression of the Streptomyces coelicolor SoxR regulon is intimately linked with actinorhodin production. J. Bacteriol. 2010, 192(24):6428-6438.
-
(2010)
J. Bacteriol.
, vol.192
, Issue.24
, pp. 6428-6438
-
-
Dela Cruz, R.1
-
70
-
-
78650114522
-
Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin
-
Shin J.H., et al. Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin. J. Bacteriol. 2011, 193(1):75-81.
-
(2011)
J. Bacteriol.
, vol.193
, Issue.1
, pp. 75-81
-
-
Shin, J.H.1
-
71
-
-
84872424732
-
Species-specific residues calibrate SoxR sensitivity to redox-active molecules
-
Sheplock R., et al. Species-specific residues calibrate SoxR sensitivity to redox-active molecules. Mol. Microbiol. 2013, 87(2):368-381.
-
(2013)
Mol. Microbiol.
, vol.87
, Issue.2
, pp. 368-381
-
-
Sheplock, R.1
-
72
-
-
84888345885
-
Comparative study of SoxR activation by redox-active compounds
-
Singh A.K., et al. Comparative study of SoxR activation by redox-active compounds. Mol. Microbiol. 2013, 90(5):983-996.
-
(2013)
Mol. Microbiol.
, vol.90
, Issue.5
, pp. 983-996
-
-
Singh, A.K.1
-
73
-
-
69449087074
-
DNA-mediated redox signaling for transcriptional activation of SoxR
-
Lee P.E., Demple B., Barton J.K. DNA-mediated redox signaling for transcriptional activation of SoxR. Proc. Natl. Acad. Sci. U. S. A. 2009, 106(32):13164-13168.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, Issue.32
, pp. 13164-13168
-
-
Lee, P.E.1
Demple, B.2
Barton, J.K.3
-
74
-
-
0034625165
-
Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator
-
Ding H., Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(10):5146-5150.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, Issue.10
, pp. 5146-5150
-
-
Ding, H.1
Demple, B.2
-
75
-
-
0035909963
-
IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins
-
Schwartz C.J., et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. U. S. A. 2001, 98(26):14895-14900.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, Issue.26
, pp. 14895-14900
-
-
Schwartz, C.J.1
-
76
-
-
84873059613
-
Regulation of iron-sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe-2S]-IscR in Escherichia coli
-
Giel J.L., et al. Regulation of iron-sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe-2S]-IscR in Escherichia coli. Mol. Microbiol. 2013, 87(3):478-492.
-
(2013)
Mol. Microbiol.
, vol.87
, Issue.3
, pp. 478-492
-
-
Giel, J.L.1
-
77
-
-
2442567822
-
A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli
-
Outten F.W., Djaman O., Storz G. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol. Microbiol. 2004, 52(3):861-872.
-
(2004)
Mol. Microbiol.
, vol.52
, Issue.3
, pp. 861-872
-
-
Outten, F.W.1
Djaman, O.2
Storz, G.3
-
78
-
-
33745187803
-
IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins
-
Yeo W.S., et al. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol. 2006, 61(1):206-218.
-
(2006)
Mol. Microbiol.
, vol.61
, Issue.1
, pp. 206-218
-
-
Yeo, W.S.1
-
79
-
-
0034932337
-
DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide
-
Zheng M., et al. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 2001, 183(15):4562-4570.
-
(2001)
J. Bacteriol.
, vol.183
, Issue.15
, pp. 4562-4570
-
-
Zheng, M.1
-
80
-
-
43149105201
-
Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks
-
Blanchard J.L., et al. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS ONE 2007, 2(11):e1186.
-
(2007)
PLoS ONE
, vol.2
, Issue.11
, pp. e1186
-
-
Blanchard, J.L.1
-
81
-
-
84873058881
-
In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli
-
Vinella D., et al. In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli. Mol. Microbiol. 2013, 87(3):493-508.
-
(2013)
Mol. Microbiol.
, vol.87
, Issue.3
, pp. 493-508
-
-
Vinella, D.1
-
82
-
-
57349087129
-
Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli
-
Lee K.C., Yeo W.S., Roe J.H. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J. Bacteriol. 2008, 190(24):8244-8247.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.24
, pp. 8244-8247
-
-
Lee, K.C.1
Yeo, W.S.2
Roe, J.H.3
-
83
-
-
33646427470
-
2-regulated genes in Escherichia coli
-
2-regulated genes in Escherichia coli. Mol. Microbiol. 2006, 60(4):1058-1075.
-
(2006)
Mol. Microbiol.
, vol.60
, Issue.4
, pp. 1058-1075
-
-
Giel, J.L.1
-
84
-
-
79953850801
-
The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation
-
Martin J.E., Imlay J.A. The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Mol. Microbiol. 2011, 80(2):319-334.
-
(2011)
Mol. Microbiol.
, vol.80
, Issue.2
, pp. 319-334
-
-
Martin, J.E.1
Imlay, J.A.2
-
85
-
-
60849099323
-
IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression
-
Wu Y., Outten F.W. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J. Bacteriol. 2009, 191(4):1248-1257.
-
(2009)
J. Bacteriol.
, vol.191
, Issue.4
, pp. 1248-1257
-
-
Wu, Y.1
Outten, F.W.2
-
86
-
-
84867074451
-
Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis
-
Butala M., et al. Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Mol. Microbiol. 2012, 86(1):129-139.
-
(2012)
Mol. Microbiol.
, vol.86
, Issue.1
, pp. 129-139
-
-
Butala, M.1
-
87
-
-
78349231296
-
IscR regulates RNase LS activity by repressing rnlA transcription
-
Otsuka Y., et al. IscR regulates RNase LS activity by repressing rnlA transcription. Genetics 2010, 185(3):823-830.
-
(2010)
Genetics
, vol.185
, Issue.3
, pp. 823-830
-
-
Otsuka, Y.1
-
88
-
-
84892983417
-
IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells
-
Lim J.G., Choi S.H. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect. Immun. 2014, 82(2):569-578.
-
(2014)
Infect. Immun.
, vol.82
, Issue.2
, pp. 569-578
-
-
Lim, J.G.1
Choi, S.H.2
-
89
-
-
39849096561
-
Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions
-
Rincon-Enriquez G., et al. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol. Microbiol. 2008, 67(6):1257-1273.
-
(2008)
Mol. Microbiol.
, vol.67
, Issue.6
, pp. 1257-1273
-
-
Rincon-Enriquez, G.1
-
90
-
-
84903462842
-
IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence
-
Miller H.K., et al. IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence. PLoS Pathog. 2014, 10(6):e1004194.
-
(2014)
PLoS Pathog.
, vol.10
, Issue.6
, pp. e1004194
-
-
Miller, H.K.1
-
91
-
-
74749093665
-
IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14
-
Kim S.H., et al. IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14. J. Microbiol. Biotechnol. 2009, 19(12):1520-1526.
-
(2009)
J. Microbiol. Biotechnol.
, vol.19
, Issue.12
, pp. 1520-1526
-
-
Kim, S.H.1
-
92
-
-
40749134607
-
Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence
-
Runyen-Janecky L., et al. Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence. Infect. Immun. 2008, 76(3):1083-1092.
-
(2008)
Infect. Immun.
, vol.76
, Issue.3
, pp. 1083-1092
-
-
Runyen-Janecky, L.1
-
93
-
-
61349134073
-
Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation
-
Nesbit A.D., et al. Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J. Mol. Biol. 2009, 387(1):28-41.
-
(2009)
J. Mol. Biol.
, vol.387
, Issue.1
, pp. 28-41
-
-
Nesbit, A.D.1
-
94
-
-
33845971293
-
Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-Proteobacteria
-
Rodionov D.A., et al. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-Proteobacteria. PLoS Comput. Biol. 2006, 2(12):e163.
-
(2006)
PLoS Comput. Biol.
, vol.2
, Issue.12
, pp. e163
-
-
Rodionov, D.A.1
-
95
-
-
79960598587
-
Insights into the Rrf2 repressor family-the structure of CymR, the global cysteine regulator of Bacillus subtilis
-
Shepard W., et al. Insights into the Rrf2 repressor family-the structure of CymR, the global cysteine regulator of Bacillus subtilis. FEBS J. 2011, 278(15):2689-2701.
-
(2011)
FEBS J.
, vol.278
, Issue.15
, pp. 2689-2701
-
-
Shepard, W.1
-
96
-
-
84861856399
-
Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR
-
Fleischhacker A.S., et al. Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR. Biochemistry 2012, 51(22):4453-4462.
-
(2012)
Biochemistry
, vol.51
, Issue.22
, pp. 4453-4462
-
-
Fleischhacker, A.S.1
-
97
-
-
84878896186
-
Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity
-
Rajagopalan S., et al. Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat. Struct. Mol. Biol. 2013, 20(6):740-747.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, Issue.6
, pp. 740-747
-
-
Rajagopalan, S.1
-
98
-
-
84901821729
-
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium
-
Santos J.A., et al. The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(22):E2251-E2260.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, Issue.22
, pp. E2251-E2260
-
-
Santos, J.A.1
-
99
-
-
0033954256
-
The Protein Data Bank
-
Berman H.M., et al. The Protein Data Bank. Nucleic Acids Res. 2000, 28(1):235-242.
-
(2000)
Nucleic Acids Res.
, vol.28
, Issue.1
, pp. 235-242
-
-
Berman, H.M.1
-
100
-
-
36148932962
-
SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria
-
Shen G., et al. SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. J. Biol. Chem. 2007, 282(44):31909-31919.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.44
, pp. 31909-31919
-
-
Shen, G.1
-
101
-
-
1142298511
-
The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria
-
Wang T., et al. The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria. J. Bacteriol. 2004, 186(4):956-967.
-
(2004)
J. Bacteriol.
, vol.186
, Issue.4
, pp. 956-967
-
-
Wang, T.1
-
102
-
-
33748294172
-
Light-responsive transcriptional regulation of the suf promoters involved in cyanobacterium Synechocystis sp. PCC 6803 Fe-S cluster biogenesis
-
Seki A., et al. Light-responsive transcriptional regulation of the suf promoters involved in cyanobacterium Synechocystis sp. PCC 6803 Fe-S cluster biogenesis. FEBS Lett. 2006, 580(21):5044-5048.
-
(2006)
FEBS Lett.
, vol.580
, Issue.21
, pp. 5044-5048
-
-
Seki, A.1
-
103
-
-
34248657278
-
Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria
-
Johnston A.W., et al. Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 2007, 20(3-4):501-511.
-
(2007)
Biometals
, vol.20
, Issue.3-4
, pp. 501-511
-
-
Johnston, A.W.1
-
104
-
-
33744979998
-
Beyond the Fur paradigm: iron-controlled gene expression in rhizobia
-
Rudolph G., Hennecke H., Fischer H.M. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol. Rev. 2006, 30(4):631-648.
-
(2006)
FEMS Microbiol. Rev.
, vol.30
, Issue.4
, pp. 631-648
-
-
Rudolph, G.1
Hennecke, H.2
Fischer, H.M.3
-
105
-
-
0036947502
-
RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum
-
Todd J.D., et al. RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology 2002, 148(Pt 12):4059-4071.
-
(2002)
Microbiology
, vol.148
, pp. 4059-4071
-
-
Todd, J.D.1
-
106
-
-
11044224180
-
Evidence that the Rhizobium regulatory protein RirA binds to cis-acting iron-responsive operators (IROs) at promoters of some Fe-regulated genes
-
Yeoman K.H., et al. Evidence that the Rhizobium regulatory protein RirA binds to cis-acting iron-responsive operators (IROs) at promoters of some Fe-regulated genes. Microbiology 2004, 150(Pt 12):4065-4074.
-
(2004)
Microbiology
, vol.150
, pp. 4065-4074
-
-
Yeoman, K.H.1
-
107
-
-
18744373036
-
Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae
-
Todd J.D., Sawers G., Johnston A.W. Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae. Mol. Genet. Genomics 2005, 273(2):197-206.
-
(2005)
Mol. Genet. Genomics
, vol.273
, Issue.2
, pp. 197-206
-
-
Todd, J.D.1
Sawers, G.2
Johnston, A.W.3
-
108
-
-
19544373761
-
RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011
-
Viguier C., et al. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011. FEMS Microbiol. Lett. 2005, 246(2):235-242.
-
(2005)
FEMS Microbiol. Lett.
, vol.246
, Issue.2
, pp. 235-242
-
-
Viguier, C.1
-
109
-
-
26844485363
-
Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation
-
Chao T.C., et al. Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Appl. Environ. Microbiol. 2005, 71(10):5969-5982.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, Issue.10
, pp. 5969-5982
-
-
Chao, T.C.1
-
110
-
-
64049097152
-
Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence
-
Ngok-Ngam P., et al. Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J. Bacteriol. 2009, 191(7):2083-2090.
-
(2009)
J. Bacteriol.
, vol.191
, Issue.7
, pp. 2083-2090
-
-
Ngok-Ngam, P.1
-
111
-
-
79960418333
-
Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens
-
Hibbing M.E., Fuqua C. Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens. J. Bacteriol. 2011, 193(14):3461-3472.
-
(2011)
J. Bacteriol.
, vol.193
, Issue.14
, pp. 3461-3472
-
-
Hibbing, M.E.1
Fuqua, C.2
-
112
-
-
84891615683
-
Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens
-
Bhubhanil S., et al. Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. Microbiology 2014, 160(Pt 1):79-90.
-
(2014)
Microbiology
, vol.160
, pp. 79-90
-
-
Bhubhanil, S.1
-
113
-
-
84861850380
-
Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis
-
Li H., Outten C.E. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 2012, 51(22):4377-4389.
-
(2012)
Biochemistry
, vol.51
, Issue.22
, pp. 4377-4389
-
-
Li, H.1
Outten, C.E.2
-
114
-
-
84888133282
-
Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details
-
Outten C.E., Albetel A.N. Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details. Curr. Opin. Microbiol. 2013, 16(6):662-668.
-
(2013)
Curr. Opin. Microbiol.
, vol.16
, Issue.6
, pp. 662-668
-
-
Outten, C.E.1
Albetel, A.N.2
-
115
-
-
70350070125
-
The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation
-
Li H., et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 2009, 48(40):9569-9581.
-
(2009)
Biochemistry
, vol.48
, Issue.40
, pp. 9569-9581
-
-
Li, H.1
-
116
-
-
78650949287
-
Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast
-
Li H., et al. Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J. Biol. Chem. 2011, 286(1):867-876.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.1
, pp. 867-876
-
-
Li, H.1
-
117
-
-
33745872884
-
Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
-
Ojeda L., et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281(26):17661-17669.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.26
, pp. 17661-17669
-
-
Ojeda, L.1
-
118
-
-
84896541032
-
Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2
-
Poor C.B., et al. Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(11):4043-4048.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, Issue.11
, pp. 4043-4048
-
-
Poor, C.B.1
-
119
-
-
67650999518
-
Evolution and diversity of glutaredoxins in photosynthetic organisms
-
Couturier J., Jacquot J.P., Rouhier N. Evolution and diversity of glutaredoxins in photosynthetic organisms. Cell. Mol. Life Sci. 2009, 66(15):2539-2557.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, Issue.15
, pp. 2539-2557
-
-
Couturier, J.1
Jacquot, J.P.2
Rouhier, N.3
-
120
-
-
84870520180
-
BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion
-
Willems P., et al. BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid. Redox Signal. 2013, 18(2):129-138.
-
(2013)
Antioxid. Redox Signal.
, vol.18
, Issue.2
, pp. 129-138
-
-
Willems, P.1
-
121
-
-
84891777061
-
Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1
-
Couturier J., et al. Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1. Mol. Plant 2014, 7(1):187-205.
-
(2014)
Mol. Plant
, vol.7
, Issue.1
, pp. 187-205
-
-
Couturier, J.1
-
122
-
-
84899147325
-
Putative roles of glutaredoxin-BolA holo-heterodimers in plants
-
Dhalleine T., Rouhier N., Couturier J. Putative roles of glutaredoxin-BolA holo-heterodimers in plants. Plant Signal. Behav. 2014, 9(3).
-
(2014)
Plant Signal. Behav.
, vol.9
, Issue.3
-
-
Dhalleine, T.1
Rouhier, N.2
Couturier, J.3
-
123
-
-
80054720193
-
The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes
-
Yeung N., et al. The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes. Biochemistry 2011, 50(41):8957-8969.
-
(2011)
Biochemistry
, vol.50
, Issue.41
, pp. 8957-8969
-
-
Yeung, N.1
-
124
-
-
84863229142
-
Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2
-
Li H., et al. Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry 2012, 51(8):1687-1696.
-
(2012)
Biochemistry
, vol.51
, Issue.8
, pp. 1687-1696
-
-
Li, H.1
-
125
-
-
39149112760
-
The functional duality of iron regulatory protein 1
-
Volz K. The functional duality of iron regulatory protein 1. Curr. Opin. Struct. Biol. 2008, 18(1):106-111.
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, Issue.1
, pp. 106-111
-
-
Volz, K.1
-
126
-
-
84864319642
-
Mammalian iron metabolism and its control by iron regulatory proteins
-
Anderson C.P., et al. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 2012, 1823(9):1468-1483.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, Issue.9
, pp. 1468-1483
-
-
Anderson, C.P.1
-
127
-
-
79952162002
-
Regulation of cellular iron metabolism
-
Wang J., Pantopoulos K. Regulation of cellular iron metabolism. Biochem. J. 2011, 434(3):365-381.
-
(2011)
Biochem. J.
, vol.434
, Issue.3
, pp. 365-381
-
-
Wang, J.1
Pantopoulos, K.2
-
128
-
-
84886305458
-
When less is more: novel mechanisms of iron conservation
-
Bayeva M., et al. When less is more: novel mechanisms of iron conservation. Trends Endocrinol. Metab. 2013, 24(11):569-577.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, Issue.11
, pp. 569-577
-
-
Bayeva, M.1
-
129
-
-
79551496683
-
Nitrosative stress in Escherichia coli: reduction of nitric oxide
-
Vine C.E., Cole J.A. Nitrosative stress in Escherichia coli: reduction of nitric oxide. Biochem. Soc. Trans. 2011, 39(1):213-215.
-
(2011)
Biochem. Soc. Trans.
, vol.39
, Issue.1
, pp. 213-215
-
-
Vine, C.E.1
Cole, J.A.2
-
130
-
-
81855176064
-
Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress
-
Vine C.E., Cole J.A. Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress. FEMS Microbiol. Lett. 2011, 325(2):99-107.
-
(2011)
FEMS Microbiol. Lett.
, vol.325
, Issue.2
, pp. 99-107
-
-
Vine, C.E.1
Cole, J.A.2
-
131
-
-
33846892483
-
Regulators of bacterial responses to nitric oxide
-
Spiro S. Regulators of bacterial responses to nitric oxide. FEMS Microbiol. Rev. 2007, 31(2):193-211.
-
(2007)
FEMS Microbiol. Rev.
, vol.31
, Issue.2
, pp. 193-211
-
-
Spiro, S.1
-
132
-
-
85044710067
-
Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks
-
(Epub 2005 Oct 28)
-
Rodionov D.A., et al. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput. Biol. 2005, 1(5):e55. (Epub 2005 Oct 28).
-
(2005)
PLoS Comput. Biol.
, vol.1
, Issue.5
, pp. e55
-
-
Rodionov, D.A.1
-
133
-
-
77950862348
-
There's NO stopping NsrR, a global regulator of the bacterial NO stress response
-
Tucker N.P., et al. There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol. 2010, 18(4):149-156.
-
(2010)
Trends Microbiol.
, vol.18
, Issue.4
, pp. 149-156
-
-
Tucker, N.P.1
-
134
-
-
84860318059
-
Global transcriptional control by NsrR in Bacillus subtilis
-
Kommineni S., et al. Global transcriptional control by NsrR in Bacillus subtilis. J. Bacteriol. 2012, 194(7):1679-1688.
-
(2012)
J. Bacteriol.
, vol.194
, Issue.7
, pp. 1679-1688
-
-
Kommineni, S.1
-
135
-
-
70350144292
-
NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility
-
Partridge J.D., et al. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol. Microbiol. 2009, 73(4):680-694.
-
(2009)
Mol. Microbiol.
, vol.73
, Issue.4
, pp. 680-694
-
-
Partridge, J.D.1
-
136
-
-
84890912786
-
The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control
-
Henares B., et al. The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control. J. Bacteriol. 2014, 196(2):493-503.
-
(2014)
J. Bacteriol.
, vol.196
, Issue.2
, pp. 493-503
-
-
Henares, B.1
-
137
-
-
57349188976
-
Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis
-
Wang W., et al. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J. Bacteriol. 2008, 190(23):7762-7772.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.23
, pp. 7762-7772
-
-
Wang, W.1
-
138
-
-
77954402786
-
Down-regulation of the Escherichia coli K-12 nrf promoter by binding of the NsrR nitric oxide-sensing transcription repressor to an upstream site
-
Browning D.F., et al. Down-regulation of the Escherichia coli K-12 nrf promoter by binding of the NsrR nitric oxide-sensing transcription repressor to an upstream site. J. Bacteriol. 2010, 192(14):3824-3828.
-
(2010)
J. Bacteriol.
, vol.192
, Issue.14
, pp. 3824-3828
-
-
Browning, D.F.1
-
139
-
-
84866045625
-
The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium
-
Karlinsey J.E., et al. The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2012, 85(6):1179-1193.
-
(2012)
Mol. Microbiol.
, vol.85
, Issue.6
, pp. 1179-1193
-
-
Karlinsey, J.E.1
-
140
-
-
41549143961
-
The nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification
-
Heurlier K., et al. The nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification. J. Bacteriol. 2008, 190(7):2488-2495.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.7
, pp. 2488-2495
-
-
Heurlier, K.1
-
141
-
-
84893740053
-
NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide
-
Branchu P., et al. NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide. PLoS Pathog. 2014, 10(1):e1003874.
-
(2014)
PLoS Pathog.
, vol.10
, Issue.1
, pp. e1003874
-
-
Branchu, P.1
-
142
-
-
78349299469
-
Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis
-
Wang Y., et al. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis. Mol. Microbiol. 2010, 78(4):903-915.
-
(2010)
Mol. Microbiol.
, vol.78
, Issue.4
, pp. 903-915
-
-
Wang, Y.1
-
143
-
-
84861205714
-
Genomic rearrangements leading to overexpression of aldo-keto reductase YafB of Escherichia coli confer resistance to glyoxal
-
Kwon M., et al. Genomic rearrangements leading to overexpression of aldo-keto reductase YafB of Escherichia coli confer resistance to glyoxal. J. Bacteriol. 2012, 194(8):1979-1988.
-
(2012)
J. Bacteriol.
, vol.194
, Issue.8
, pp. 1979-1988
-
-
Kwon, M.1
-
144
-
-
56649095726
-
The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster
-
Tucker N.P., et al. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One 2008, 3(11):e3623.
-
(2008)
PLoS One
, vol.3
, Issue.11
, pp. e3623
-
-
Tucker, N.P.1
-
145
-
-
57449099080
-
Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster (dagger)
-
Yukl E.T., et al. Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster (dagger). Biochemistry 2008, 47(49):13084-13092.
-
(2008)
Biochemistry
, vol.47
, Issue.49
, pp. 13084-13092
-
-
Yukl, E.T.1
-
146
-
-
58149136356
-
Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae
-
Isabella V.M., et al. Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol. Microbiol. 2009, 71(1):227-239.
-
(2009)
Mol. Microbiol.
, vol.71
, Issue.1
, pp. 227-239
-
-
Isabella, V.M.1
-
147
-
-
78649728803
-
Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter
-
Kommineni S., et al. Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter. Mol. Microbiol. 2010, 78(5):1280-1293.
-
(2010)
Mol. Microbiol.
, vol.78
, Issue.5
, pp. 1280-1293
-
-
Kommineni, S.1
-
148
-
-
84921930691
-
Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide
-
Green J., Rolfe M.D., Smith L.J. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014, 5(4).
-
(2014)
Virulence
, vol.5
, Issue.4
-
-
Green, J.1
Rolfe, M.D.2
Smith, L.J.3
-
149
-
-
84897113579
-
Insights into redox sensing metalloproteins in Mycobacterium tuberculosis
-
Chim N., Johnson P.M., Goulding C.W. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis. J. Inorg. Biochem. 2014, 133:118-126.
-
(2014)
J. Inorg. Biochem.
, vol.133
, pp. 118-126
-
-
Chim, N.1
Johnson, P.M.2
Goulding, C.W.3
-
150
-
-
84867328208
-
The mechanism of redox sensing in Mycobacterium tuberculosis
-
Bhat S.A., et al. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic. Biol. Med. 2012, 53(8):1625-1641.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, Issue.8
, pp. 1625-1641
-
-
Bhat, S.A.1
-
151
-
-
84862103955
-
The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives
-
Zheng F., Long Q., Xie J. The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives. Cell Biochem. Biophys. 2012, 63(2):103-108.
-
(2012)
Cell Biochem. Biophys.
, vol.63
, Issue.2
, pp. 103-108
-
-
Zheng, F.1
Long, Q.2
Xie, J.3
-
152
-
-
57449092525
-
The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum
-
Choi W.W., et al. The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS Microbiol. Lett. 2009, 290(1):32-38.
-
(2009)
FEMS Microbiol. Lett.
, vol.290
, Issue.1
, pp. 32-38
-
-
Choi, W.W.1
-
153
-
-
70149116303
-
Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response
-
Singh A., et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog. 2009, 5(8):e1000545.
-
(2009)
PLoS Pathog.
, vol.5
, Issue.8
, pp. e1000545
-
-
Singh, A.1
-
154
-
-
79955755909
-
The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2)
-
Fowler-Goldsworthy K., et al. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 2011, 157(Pt 5):1312-1328.
-
(2011)
Microbiology
, vol.157
, pp. 1312-1328
-
-
Fowler-Goldsworthy, K.1
-
155
-
-
84864376879
-
Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus
-
Averina O.V., Zakharevich N.V., Danilenko V.N. Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus. Anaerobe 2012, 18(4):421-429.
-
(2012)
Anaerobe
, vol.18
, Issue.4
, pp. 421-429
-
-
Averina, O.V.1
Zakharevich, N.V.2
Danilenko, V.N.3
-
156
-
-
84855286330
-
The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance
-
Burian J., et al. The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance. J. Biol. Chem. 2012, 287(1):299-310.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.1
, pp. 299-310
-
-
Burian, J.1
-
157
-
-
84867615104
-
WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation
-
Casonato S., et al. WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation. Infect. Immun. 2012, 80(9):3132-3144.
-
(2012)
Infect. Immun.
, vol.80
, Issue.9
, pp. 3132-3144
-
-
Casonato, S.1
-
158
-
-
84866029444
-
Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo
-
Chawla M., et al. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol. Microbiol. 2012, 85(6):1148-1165.
-
(2012)
Mol. Microbiol.
, vol.85
, Issue.6
, pp. 1148-1165
-
-
Chawla, M.1
-
159
-
-
84888986254
-
WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria
-
Ramon-Garcia S., et al. WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. J. Biol. Chem. 2013, 288(48):34514-34528.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.48
, pp. 34514-34528
-
-
Ramon-Garcia, S.1
-
160
-
-
84903272174
-
Transcriptional response to vancomycin in a highly vancomycin-resistant Streptomyces coelicolor mutant
-
Santos-Beneit F., et al. Transcriptional response to vancomycin in a highly vancomycin-resistant Streptomyces coelicolor mutant. Future Microbiol 2014, 9:603-622.
-
(2014)
Future Microbiol
, vol.9
, pp. 603-622
-
-
Santos-Beneit, F.1
-
161
-
-
84861319681
-
Negative role of wblA in response to oxidative stress in Streptomyces coelicolor
-
Kim J.S., et al. Negative role of wblA in response to oxidative stress in Streptomyces coelicolor. J. Microbiol. Biotechnol. 2012, 22(6):736-741.
-
(2012)
J. Microbiol. Biotechnol.
, vol.22
, Issue.6
, pp. 736-741
-
-
Kim, J.S.1
-
162
-
-
0033983745
-
Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes
-
Soliveri J.A., et al. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 2000, 146(Pt 2):333-343.
-
(2000)
Microbiology
, vol.146
, pp. 333-343
-
-
Soliveri, J.A.1
-
163
-
-
84899937003
-
Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences
-
Chandra G., Chater K.F. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol. Rev. 2014, 38(3):345-379.
-
(2014)
FEMS Microbiol. Rev.
, vol.38
, Issue.3
, pp. 345-379
-
-
Chandra, G.1
Chater, K.F.2
-
164
-
-
57649186810
-
Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv
-
Alam M.S., Garg S.K., Agrawal P. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J. 2009, 276(1):76-93.
-
(2009)
FEBS J.
, vol.276
, Issue.1
, pp. 76-93
-
-
Alam, M.S.1
Garg, S.K.2
Agrawal, P.3
-
165
-
-
84864050604
-
Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments
-
Larsson C., et al. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS One 2012, 7(7):e37516.
-
(2012)
PLoS One
, vol.7
, Issue.7
, pp. e37516
-
-
Larsson, C.1
-
166
-
-
33846942978
-
Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase
-
Alam M.S., Garg S.K., Agrawal P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol. Microbiol. 2007, 63(5):1414-1431.
-
(2007)
Mol. Microbiol.
, vol.63
, Issue.5
, pp. 1414-1431
-
-
Alam, M.S.1
Garg, S.K.2
Agrawal, P.3
-
167
-
-
34547463011
-
2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival
-
2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc. Natl. Acad. Sci. U. S. A. 2007, 104(28):11562-11567.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, Issue.28
, pp. 11562-11567
-
-
Singh, A.1
-
168
-
-
79851472229
-
Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins
-
Crack J.C., et al. Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins. J. Am. Chem. Soc. 2011, 133(4):1112-1121.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.4
, pp. 1112-1121
-
-
Crack, J.C.1
-
169
-
-
78649856315
-
Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster
-
Smith L.J., et al. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem. J. 2010, 432(3):417-427.
-
(2010)
Biochem. J.
, vol.432
, Issue.3
, pp. 417-427
-
-
Smith, L.J.1
-
170
-
-
73149093841
-
Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD
-
Crack J.C., et al. Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 2009, 48(51):12252-12264.
-
(2009)
Biochemistry
, vol.48
, Issue.51
, pp. 12252-12264
-
-
Crack, J.C.1
-
171
-
-
77954835360
-
Insights into the function of the WhiB-like protein of mycobacteriophage TM4-a transcriptional inhibitor of WhiB2
-
Rybniker J., et al. Insights into the function of the WhiB-like protein of mycobacteriophage TM4-a transcriptional inhibitor of WhiB2. Mol. Microbiol. 2010, 77(3):642-657.
-
(2010)
Mol. Microbiol.
, vol.77
, Issue.3
, pp. 642-657
-
-
Rybniker, J.1
-
172
-
-
84863402400
-
Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2
-
Stapleton M.R., et al. Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis (Edinb) 2012, 92(4):328-332.
-
(2012)
Tuberculosis (Edinb)
, vol.92
, Issue.4
, pp. 328-332
-
-
Stapleton, M.R.1
-
173
-
-
84889059036
-
The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV)
-
Burian J., et al. The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res. 2013, 41(22):10062-10076.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.22
, pp. 10062-10076
-
-
Burian, J.1
-
174
-
-
60249085849
-
Redox biology of Mycobacterium tuberculosis H37Rv: protein-protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide
-
Garg S., et al. Redox biology of Mycobacterium tuberculosis H37Rv: protein-protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide. BMC Biochem. 2009, 10:1.
-
(2009)
BMC Biochem.
, vol.10
, pp. 1
-
-
Garg, S.1
-
175
-
-
84863849311
-
WhiB2/Rv3260c, a cell division-associated protein of Mycobacterium tuberculosis H37Rv, has properties of a chaperone
-
Konar M., et al. WhiB2/Rv3260c, a cell division-associated protein of Mycobacterium tuberculosis H37Rv, has properties of a chaperone. FEBS J. 2012, 279(15):2781-2792.
-
(2012)
FEBS J.
, vol.279
, Issue.15
, pp. 2781-2792
-
-
Konar, M.1
-
176
-
-
42549123126
-
ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum
-
Nishimura T., et al. ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J. Bacteriol. 2008, 190(9):3264-3273.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.9
, pp. 3264-3273
-
-
Nishimura, T.1
-
177
-
-
84890280939
-
Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner
-
Nishimura T., et al. Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J. Bacteriol. 2014, 196(1):60-69.
-
(2014)
J. Bacteriol.
, vol.196
, Issue.1
, pp. 60-69
-
-
Nishimura, T.1
-
178
-
-
35748971055
-
RsmA is an anti-sigma factor that modulates its activity through a [2Fe-2S] cluster cofactor
-
Gaskell A.A., et al. RsmA is an anti-sigma factor that modulates its activity through a [2Fe-2S] cluster cofactor. J. Biol. Chem. 2007, 282(43):31812-31820.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.43
, pp. 31812-31820
-
-
Gaskell, A.A.1
-
179
-
-
23844442155
-
A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor
-
Lee E.J., et al. A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol. Microbiol. 2005, 57(5):1252-1264.
-
(2005)
Mol. Microbiol.
, vol.57
, Issue.5
, pp. 1252-1264
-
-
Lee, E.J.1
-
180
-
-
4444236429
-
Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons
-
Martinez-Perez O., et al. Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons. J. Bacteriol. 2004, 186(18):6101-6109.
-
(2004)
J. Bacteriol.
, vol.186
, Issue.18
, pp. 6101-6109
-
-
Martinez-Perez, O.1
-
181
-
-
78751516684
-
ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression
-
Garcia L.L., et al. ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression. J. Biol. Chem. 2011, 286(3):1709-1718.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.3
, pp. 1709-1718
-
-
Garcia, L.L.1
-
182
-
-
84884188121
-
The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway
-
Ledesma-Garcia L., Reyes-Ramirez F., Santero E. The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway. PLoS One 2013, 8(9):e73910.
-
(2013)
PLoS One
, vol.8
, Issue.9
, pp. e73910
-
-
Ledesma-Garcia, L.1
Reyes-Ramirez, F.2
Santero, E.3
-
183
-
-
75149184073
-
The role of the Fe-S cluster in the sensory domain of nitrogenase transcriptional activator VnfA from Azotobacter vinelandii
-
Nakajima H., et al. The role of the Fe-S cluster in the sensory domain of nitrogenase transcriptional activator VnfA from Azotobacter vinelandii. FEBS J. 2010, 277(3):817-832.
-
(2010)
FEBS J.
, vol.277
, Issue.3
, pp. 817-832
-
-
Nakajima, H.1
-
184
-
-
80052514783
-
The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii
-
Yoshimitsu K., et al. The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii. FEBS J. 2011, 278(18):3287-3297.
-
(2011)
FEBS J.
, vol.278
, Issue.18
, pp. 3287-3297
-
-
Yoshimitsu, K.1
-
185
-
-
84878625223
-
The solution structure of apo-iron regulatory protein 1
-
Shand O., Volz K. The solution structure of apo-iron regulatory protein 1. Gene 2013, 524(2):341-346.
-
(2013)
Gene
, vol.524
, Issue.2
, pp. 341-346
-
-
Shand, O.1
Volz, K.2
-
186
-
-
80155186777
-
Protein conformational changes of the oxidative stress sensor, SoxR, upon redox changes of the [2Fe-2S] cluster probed with ultraviolet resonance Raman spectroscopy
-
Kobayashi K., et al. Protein conformational changes of the oxidative stress sensor, SoxR, upon redox changes of the [2Fe-2S] cluster probed with ultraviolet resonance Raman spectroscopy. Biochemistry 2011, 50(44):9468-9474.
-
(2011)
Biochemistry
, vol.50
, Issue.44
, pp. 9468-9474
-
-
Kobayashi, K.1
-
187
-
-
80053651587
-
GenBank
-
Benson D.A., et al. GenBank. Nucleic Acids Res. 2013, 41(Database issue):D36-D42.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.DATABASE ISSUE
, pp. D36-D42
-
-
Benson, D.A.1
-
188
-
-
80054078476
-
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
-
Sievers F., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7:539.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 539
-
-
Sievers, F.1
-
189
-
-
77954296666
-
A new bioinformatics analysis tools framework at EMBL-EBI
-
Goujon M., et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010, 38(Web Server issue):W695-W699.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.WEB SERVER ISSUE
, pp. W695-W699
-
-
Goujon, M.1
|