메뉴 건너뛰기




Volumn 24, Issue 11, 2013, Pages 569-577

When less is more: Novel mechanisms of iron conservation

Author keywords

Cth1 2; Diabetes; Iron deficiency; Metabolism; Tristetraprolin

Indexed keywords

GLUCOSE; HEME; HEME OXYGENASE; HYPOXIA INDUCIBLE FACTOR 1ALPHA; HYPOXIA INDUCIBLE FACTOR 2ALPHA; INSULIN; INSULIN RECEPTOR; IRON; IRON REGULATORY PROTEIN 1; IRON REGULATORY PROTEIN 2; MESSENGER RNA; MITOCHONDRIAL PROTEIN; TRISTETRAPROLIN;

EID: 84886305458     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2013.07.003     Document Type: Review
Times cited : (28)

References (51)
  • 1
    • 65449184945 scopus 로고    scopus 로고
    • Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005
    • McLean E., et al. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr. 2009, 12:444-454.
    • (2009) Public Health Nutr. , vol.12 , pp. 444-454
    • McLean, E.1
  • 2
    • 0037063758 scopus 로고    scopus 로고
    • Center for Disease Control, USA
    • Iron deficiency-United States, 1999-2000. MMWR Morb. Mortal. Wkly. Rep
    • Center for Disease Control, USA (2002) Iron deficiency-United States, 1999-2000. MMWR Morb. Mortal. Wkly. Rep. 51, 897-899.
    • (2002) , vol.51 , pp. 897-899
  • 3
    • 0029965281 scopus 로고    scopus 로고
    • Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy
    • Milman N. Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy. Int. J. Hematol. 1996, 63:103-135.
    • (1996) Int. J. Hematol. , vol.63 , pp. 103-135
    • Milman, N.1
  • 4
    • 20444460288 scopus 로고    scopus 로고
    • Prevalence of iron deficiency with and without anemia in recreationally active men and women
    • Sinclair L.M., Hinton P.S. Prevalence of iron deficiency with and without anemia in recreationally active men and women. J. Am. Diet. Assoc. 2005, 105:975-978.
    • (2005) J. Am. Diet. Assoc. , vol.105 , pp. 975-978
    • Sinclair, L.M.1    Hinton, P.S.2
  • 5
    • 35549010259 scopus 로고    scopus 로고
    • Nonhematological benefits of iron
    • Agarwal R. Nonhematological benefits of iron. Am. J. Nephrol. 2007, 27:565-571.
    • (2007) Am. J. Nephrol. , vol.27 , pp. 565-571
    • Agarwal, R.1
  • 6
    • 0034536866 scopus 로고    scopus 로고
    • Iron deficiency, general health and fatigue: results from the Australian Longitudinal Study on Women's Health
    • Patterson A.J., et al. Iron deficiency, general health and fatigue: results from the Australian Longitudinal Study on Women's Health. Qual. Life Res. 2000, 9:491-497.
    • (2000) Qual. Life Res. , vol.9 , pp. 491-497
    • Patterson, A.J.1
  • 7
    • 1642393242 scopus 로고    scopus 로고
    • Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women
    • Brownlie T., et al. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am. J. Clin. Nutr. 2004, 79:437-443.
    • (2004) Am. J. Clin. Nutr. , vol.79 , pp. 437-443
    • Brownlie, T.1
  • 8
    • 37349059256 scopus 로고    scopus 로고
    • Oxygen-binding haem proteins
    • Wilson M.T., Reeder B.J. Oxygen-binding haem proteins. Exp. Physiol. 2008, 93:128-132.
    • (2008) Exp. Physiol. , vol.93 , pp. 128-132
    • Wilson, M.T.1    Reeder, B.J.2
  • 9
    • 0026535637 scopus 로고
    • Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis
    • Furukawa T., et al. Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis. Life Sci. 1992, 50:2059-2065.
    • (1992) Life Sci. , vol.50 , pp. 2059-2065
    • Furukawa, T.1
  • 10
    • 84863769552 scopus 로고    scopus 로고
    • MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism
    • Gari K., et al. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 2012, 337:243-245.
    • (2012) Science , vol.337 , pp. 243-245
    • Gari, K.1
  • 11
    • 20044391418 scopus 로고    scopus 로고
    • Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria
    • Kispal G., et al. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J. 2005, 24:589-598.
    • (2005) EMBO J. , vol.24 , pp. 589-598
    • Kispal, G.1
  • 12
    • 77951996417 scopus 로고    scopus 로고
    • Metabolic response to iron deficiency in Saccharomyces cerevisiae
    • Shakoury-Elizeh M., et al. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285:14823-14833.
    • (2010) J. Biol. Chem. , vol.285 , pp. 14823-14833
    • Shakoury-Elizeh, M.1
  • 13
    • 84886279411 scopus 로고    scopus 로고
    • Iron: heme proteins, peroxidases, catalases & catalase-peroxidases
    • John Wiley and Sons, R.B. King (Ed.)
    • Bhaskar B., et al. Iron: heme proteins, peroxidases, catalases & catalase-peroxidases. Encyclopedia of Inorganic Chemistry 2006, John Wiley and Sons. R.B. King (Ed.).
    • (2006) Encyclopedia of Inorganic Chemistry
    • Bhaskar, B.1
  • 14
    • 0029873802 scopus 로고    scopus 로고
    • Cytochrome P450 and its interactions with the heme biosynthetic pathway
    • De Matteis F., Marks G.S. Cytochrome P450 and its interactions with the heme biosynthetic pathway. Can. J. Physiol. Pharmacol. 1996, 74:1-8.
    • (1996) Can. J. Physiol. Pharmacol. , vol.74 , pp. 1-8
    • De Matteis, F.1    Marks, G.S.2
  • 15
    • 10844258104 scopus 로고    scopus 로고
    • Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
    • Nemeth E., et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306:2090-2093.
    • (2004) Science , vol.306 , pp. 2090-2093
    • Nemeth, E.1
  • 16
    • 66449124596 scopus 로고    scopus 로고
    • HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice
    • Mastrogiannaki M., et al. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 2009, 119:1159-1166.
    • (2009) J. Clin. Invest. , vol.119 , pp. 1159-1166
    • Mastrogiannaki, M.1
  • 17
    • 58749094789 scopus 로고    scopus 로고
    • Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency
    • Shah Y.M., et al. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 2009, 9:152-164.
    • (2009) Cell Metab. , vol.9 , pp. 152-164
    • Shah, Y.M.1
  • 18
    • 0000655498 scopus 로고    scopus 로고
    • Identification of a hypoxia response element in the transferrin receptor gene
    • Lok C.N., Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J. Biol. Chem. 1999, 274:24147-24152.
    • (1999) J. Biol. Chem. , vol.274 , pp. 24147-24152
    • Lok, C.N.1    Ponka, P.2
  • 19
    • 4143075772 scopus 로고    scopus 로고
    • Regulation of ferrochelatase gene expression by hypoxia
    • Liu Y.L., et al. Regulation of ferrochelatase gene expression by hypoxia. Life Sci. 2004, 75:2035-2043.
    • (2004) Life Sci. , vol.75 , pp. 2035-2043
    • Liu, Y.L.1
  • 20
    • 34447120059 scopus 로고    scopus 로고
    • Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs)
    • Peyssonnaux C., et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 2007, 117:1926-1932.
    • (2007) J. Clin. Invest. , vol.117 , pp. 1926-1932
    • Peyssonnaux, C.1
  • 21
    • 75149190912 scopus 로고    scopus 로고
    • Iron homeostasis and its interaction with prolyl hydroxylases
    • Mole D.R. Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid. Redox. Signal. 2010, 12:445-458.
    • (2010) Antioxid. Redox. Signal. , vol.12 , pp. 445-458
    • Mole, D.R.1
  • 22
    • 84860574815 scopus 로고    scopus 로고
    • Iron sensing and signalling
    • Evstatiev R., Gasche C. Iron sensing and signalling. Gut 2012, 61:933-952.
    • (2012) Gut , vol.61 , pp. 933-952
    • Evstatiev, R.1    Gasche, C.2
  • 24
    • 84864319642 scopus 로고    scopus 로고
    • Mammalian iron metabolism and its control by iron regulatory proteins
    • Anderson C.P., et al. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 2012, 1823:1468-1483.
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 1468-1483
    • Anderson, C.P.1
  • 25
    • 84863393257 scopus 로고    scopus 로고
    • Structural and molecular characterization of iron-sensing hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5)
    • Thompson J.W., et al. Structural and molecular characterization of iron-sensing hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5). J. Biol. Chem. 2012, 287:7357-7365.
    • (2012) J. Biol. Chem. , vol.287 , pp. 7357-7365
    • Thompson, J.W.1
  • 26
    • 40649120516 scopus 로고    scopus 로고
    • Response to iron deprivation in Saccharomyces cerevisiae
    • Philpott C.C., Protchenko O. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell 2008, 7:20-27.
    • (2008) Eukaryot. Cell , vol.7 , pp. 20-27
    • Philpott, C.C.1    Protchenko, O.2
  • 27
    • 12144289449 scopus 로고    scopus 로고
    • Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae
    • Shakoury-Elizeh M., et al. Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol. Biol. Cell 2004, 15:1233-1243.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1233-1243
    • Shakoury-Elizeh, M.1
  • 28
    • 11844257593 scopus 로고    scopus 로고
    • Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation
    • Puig S., et al. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005, 120:99-110.
    • (2005) Cell , vol.120 , pp. 99-110
    • Puig, S.1
  • 29
    • 84864320453 scopus 로고    scopus 로고
    • Metabolic remodeling in iron-deficient fungi
    • Philpott C.C., et al. Metabolic remodeling in iron-deficient fungi. Biochim. Biophys. Acta 2012, 1823:1509-1520.
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 1509-1520
    • Philpott, C.C.1
  • 30
    • 0033577827 scopus 로고    scopus 로고
    • Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake
    • Phalip V., et al. Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. Gene 1999, 232:43-51.
    • (1999) Gene , vol.232 , pp. 43-51
    • Phalip, V.1
  • 31
    • 0037326381 scopus 로고    scopus 로고
    • Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe
    • Stolz J. Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe. Yeast 2003, 20:221-231.
    • (2003) Yeast , vol.20 , pp. 221-231
    • Stolz, J.1
  • 32
    • 0141704206 scopus 로고    scopus 로고
    • Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae
    • Protchenko O., Philpott C.C. Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278:36582-36587.
    • (2003) J. Biol. Chem. , vol.278 , pp. 36582-36587
    • Protchenko, O.1    Philpott, C.C.2
  • 33
    • 84871434445 scopus 로고    scopus 로고
    • MTOR regulates cellular iron homeostasis through tristetraprolin
    • Bayeva M., et al. mTOR regulates cellular iron homeostasis through tristetraprolin. Cell Metab. 2012, 16:645-657.
    • (2012) Cell Metab. , vol.16 , pp. 645-657
    • Bayeva, M.1
  • 34
    • 57649140337 scopus 로고    scopus 로고
    • The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency
    • Pedro-Segura E., et al. The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency. J. Biol. Chem. 2008, 283:28527-28535.
    • (2008) J. Biol. Chem. , vol.283 , pp. 28527-28535
    • Pedro-Segura, E.1
  • 35
    • 44349183685 scopus 로고    scopus 로고
    • Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency
    • Puig S., et al. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab. 2008, 7:555-564.
    • (2008) Cell Metab. , vol.7 , pp. 555-564
    • Puig, S.1
  • 36
    • 0032881005 scopus 로고    scopus 로고
    • Protoporphyrin IX and oxidative stress
    • Afonso S., et al. Protoporphyrin IX and oxidative stress. Free Radic. Res. 1999, 31:161-170.
    • (1999) Free Radic. Res. , vol.31 , pp. 161-170
    • Afonso, S.1
  • 37
    • 84876407703 scopus 로고    scopus 로고
    • Metabolomic analysis of cerebrospinal fluid indicates iron deficiency compromises cerebral energy metabolism in the infant monkey
    • Rao R., et al. Metabolomic analysis of cerebrospinal fluid indicates iron deficiency compromises cerebral energy metabolism in the infant monkey. Neurochem. Res. 2013, 38:573-580.
    • (2013) Neurochem. Res. , vol.38 , pp. 573-580
    • Rao, R.1
  • 38
    • 0037313166 scopus 로고    scopus 로고
    • Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning
    • Algarin C., et al. Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr. Res. 2003, 53:217-223.
    • (2003) Pediatr. Res. , vol.53 , pp. 217-223
    • Algarin, C.1
  • 39
    • 0023037095 scopus 로고
    • Effect of prenatal iron deficiency on myelination in rat pups
    • Yu G.S., et al. Effect of prenatal iron deficiency on myelination in rat pups. Am. J. Pathol. 1986, 125:620-624.
    • (1986) Am. J. Pathol. , vol.125 , pp. 620-624
    • Yu, G.S.1
  • 40
    • 78650777704 scopus 로고    scopus 로고
    • The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes
    • Lisi L., et al. The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes. J. Neuroinflammation 2011, 8:1.
    • (2011) J. Neuroinflammation , vol.8 , pp. 1
    • Lisi, L.1
  • 41
    • 33749822544 scopus 로고    scopus 로고
    • Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling
    • Marderosian M., et al. Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene 2006, 25:6277-6290.
    • (2006) Oncogene , vol.25 , pp. 6277-6290
    • Marderosian, M.1
  • 42
    • 42049085250 scopus 로고    scopus 로고
    • Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes
    • Cao H., et al. Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes. Obesity (Silver Spring) 2008, 16:1208-1218.
    • (2008) Obesity (Silver Spring) , vol.16 , pp. 1208-1218
    • Cao, H.1
  • 43
    • 33846420169 scopus 로고    scopus 로고
    • Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes
    • Lin N.Y., et al. Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes. FEBS J. 2007, 274:867-878.
    • (2007) FEBS J. , vol.274 , pp. 867-878
    • Lin, N.Y.1
  • 44
    • 0025051298 scopus 로고
    • Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein
    • Lai W.S., et al. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J. Biol. Chem. 1990, 265:16556-16563.
    • (1990) J. Biol. Chem. , vol.265 , pp. 16556-16563
    • Lai, W.S.1
  • 45
    • 34247487760 scopus 로고    scopus 로고
    • ZFP36: a promising candidate gene for obesity-related metabolic complications identified by converging genomics
    • Bouchard L., et al. ZFP36: a promising candidate gene for obesity-related metabolic complications identified by converging genomics. Obes. Surg. 2007, 17:372-382.
    • (2007) Obes. Surg. , vol.17 , pp. 372-382
    • Bouchard, L.1
  • 46
    • 35548937875 scopus 로고    scopus 로고
    • Visceral adipose tissue zinc finger protein 36 mRNA levels are correlated with insulin, insulin resistance index, and adiponectinemia in women
    • Bouchard L., et al. Visceral adipose tissue zinc finger protein 36 mRNA levels are correlated with insulin, insulin resistance index, and adiponectinemia in women. Eur. J. Endocrinol. 2007, 157:451-457.
    • (2007) Eur. J. Endocrinol. , vol.157 , pp. 451-457
    • Bouchard, L.1
  • 47
    • 1442314640 scopus 로고    scopus 로고
    • Body iron stores in relation to risk of type 2 diabetes in apparently healthy women
    • Jiang R., et al. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 2004, 291:711-717.
    • (2004) JAMA , vol.291 , pp. 711-717
    • Jiang, R.1
  • 48
    • 0031033103 scopus 로고    scopus 로고
    • Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men
    • Tuomainen T.P., et al. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care 1997, 20:426-428.
    • (1997) Diabetes Care , vol.20 , pp. 426-428
    • Tuomainen, T.P.1
  • 49
    • 84864387841 scopus 로고    scopus 로고
    • Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis
    • Zhao Z., et al. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS ONE 2012, 7:e41641.
    • (2012) PLoS ONE , vol.7
    • Zhao, Z.1
  • 50
    • 77952616427 scopus 로고    scopus 로고
    • Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse
    • Cooksey R.C., et al. Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am. J. Physiol. Endocrinol. Metab. 2010, 298:E1236-E1243.
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.298
    • Cooksey, R.C.1
  • 51
    • 61949188604 scopus 로고    scopus 로고
    • Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications
    • Liu Q., et al. Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr. Med. Chem. 2009, 16:113-129.
    • (2009) Curr. Med. Chem. , vol.16 , pp. 113-129
    • Liu, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.