메뉴 건너뛰기




Volumn 7, Issue 10, 2014, Pages 4276-4287

A novel semi-supervised method for obtaining finer resolution urban extents exploiting coarser resolution maps

Author keywords

GlobCover product; Landsat data; Markov random fields (MRFs); Multinomial logistic regression (MLR); Semi supervised learning; Urban area mapping

Indexed keywords

IMAGE RESOLUTION; IMAGE SEGMENTATION; LEARNING ALGORITHMS; MAPPING; MARKOV PROCESSES; REGRESSION ANALYSIS; SAMPLING; STATISTICAL TESTS; SUPERVISED LEARNING;

EID: 84920121030     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2355843     Document Type: Article
Times cited : (22)

References (54)
  • 1
    • 33746354942 scopus 로고    scopus 로고
    • A joint initiative for harmonization and validation of land cover datasets
    • Jul.
    • M. Herold et al., "A joint initiative for harmonization and validation of land cover datasets," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 7, pp. 1719-1727, Jul. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.7 , pp. 1719-1727
    • Herold, M.1
  • 2
    • 33746330734 scopus 로고    scopus 로고
    • Validation of the global land cover 2000 map
    • Jul.
    • P. Mayaux et al., "Validation of the global land cover 2000 map," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 7, pp. 1728-1739, Jul. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.7 , pp. 1728-1739
    • Mayaux, P.1
  • 3
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • G. M. Foody, "Status of land cover classification accuracy assessment," Remote Sens. Environ., vol. 80, no. 1, pp. 185-201, 2002.
    • (2002) Remote Sens. Environ. , vol.80 , Issue.1 , pp. 185-201
    • Foody, G.M.1
  • 5
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE , vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 6
    • 84874544146 scopus 로고    scopus 로고
    • Systematic study of the urban postconflict change classification performance using spectral and structural features in a support vector machine
    • Jun.
    • E. Pagot and M. Pesaresi, "Systematic study of the urban postconflict change classification performance using spectral and structural features in a support vector machine," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 1, no. 2, pp. 120-128, Jun. 2008.
    • (2008) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.1 , Issue.2 , pp. 120-128
    • Pagot, E.1    Pesaresi, M.2
  • 7
    • 0029504020 scopus 로고
    • Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data
    • D. K. Hall, G. A. Riggs, and V. V. Salomonson, "Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data," Remote Sens. Environ., vol. 54, no. 2, pp. 127-140, 1995.
    • (1995) Remote Sens. Environ. , vol.54 , Issue.2 , pp. 127-140
    • Hall, D.K.1    Riggs, G.A.2    Salomonson, V.V.3
  • 8
    • 18644370258 scopus 로고    scopus 로고
    • Global land cover mapping from MODIS: Algorithms and early results
    • M. Friedl et al., "Global land cover mapping from MODIS: Algorithms and early results," Remote Sens. Environ., vol. 83, no. 1, pp. 287-302, 2002.
    • (2002) Remote Sens. Environ. , vol.83 , Issue.1 , pp. 287-302
    • Friedl, M.1
  • 11
    • 67651183638 scopus 로고    scopus 로고
    • Active learning methods for remote sensing image classification
    • Jul.
    • D. Tuia, F. Ratle, F. Pacifici, M. Kanevski, and W. Emery, "Active learning methods for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2218-2232, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2218-2232
    • Tuia, D.1    Ratle, F.2    Pacifici, F.3    Kanevski, M.4    Emery, W.5
  • 12
    • 84869491853 scopus 로고    scopus 로고
    • SVM-based boosting of active learning strategies for efficient domain adaptation
    • Oct.
    • G. Matasci, D. Tuia, and M. Kanevski, "SVM-based boosting of active learning strategies for efficient domain adaptation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1335-1343, Oct. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.5 , pp. 1335-1343
    • Matasci, G.1    Tuia, D.2    Kanevski, M.3
  • 13
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar.
    • M. Crawford, D. Tuia, and H. Yang, "Active learning: Any value for classification of remotely sensed data?" Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.1    Tuia, D.2    Yang, H.3
  • 14
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar.
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remotesensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remotesensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 16
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 17
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: A review
    • G. Mountrakis, J. Im, and C. Ogole, "Support vector machines in remote sensing: A review," ISPRS J. Photogramm. Remote Sens., vol. 66, no. 3, pp. 247-259, 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , Issue.3 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 18
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • D. Böhning, "Multinomial logistic regression algorithm," Ann. Inst. Statist. Math., vol. 44, pp. 197-200, 1992.
    • (1992) Ann. Inst. Statist. Math. , vol.44 , pp. 197-200
    • Böhning, D.1
  • 20
    • 0242463529 scopus 로고    scopus 로고
    • IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-atlantic region
    • S. J. Goetz, R. K. Wright, A. J. Smith, E. Zinecker, and E. Schaub, "IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-atlantic region," Remote Sens. Environ., vol. 88, no. 1-2, pp. 195-208, 2003.
    • (2003) Remote Sens. Environ. , vol.88 , Issue.1-2 , pp. 195-208
    • Goetz, S.J.1    Wright, R.K.2    Smith, A.J.3    Zinecker, E.4    Schaub, E.5
  • 21
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 22
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
    • G. M. Foody and A. Mathur, "The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM," Remote Sens. Environ., vol. 103, no. 2, pp. 179-189, 2006.
    • (2006) Remote Sens. Environ. , vol.103 , Issue.2 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 23
    • 84892437309 scopus 로고    scopus 로고
    • SVM active learning approach for image classification using spatial information
    • Apr.
    • E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. Emery, "SVM active learning approach for image classification using spatial information," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2217-2233, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2217-2233
    • Pasolli, E.1    Melgani, F.2    Tuia, D.3    Pacifici, F.4    Emery, W.5
  • 24
    • 0842327845 scopus 로고    scopus 로고
    • Land cover mapping of North and Central America global land cover 2000
    • R. Latifovic, Z.-L. Zhu, J. Cihlar, C. Giri, and I. Olthof, "Land cover mapping of North and Central America global land cover 2000," Remote Sens. Environ., vol. 89, no. 1, pp. 116-127, 2004.
    • (2004) Remote Sens. Environ. , vol.89 , Issue.1 , pp. 116-127
    • Latifovic, R.1    Zhu, Z.-L.2    Cihlar, J.3    Giri, C.4    Olthof, I.5
  • 25
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • Mar.
    • D. Tuia and G. Camps-Valls, "Urban image classification with semisupervised multiscale cluster kernels," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 1, pp. 65-74, Mar. 2011.
    • (2011) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 26
    • 84872088242 scopus 로고    scopus 로고
    • Impact of land-cover classification on groundwater recharge uncertainty
    • Dec.
    • E. Ampe et al., "Impact of land-cover classification on groundwater recharge uncertainty," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 6, pp. 1859-1867, Dec. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.6 , pp. 1859-1867
    • Ampe, E.1
  • 27
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • G. M. Foody, A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd, "Training set size requirements for the classification of a specific class," Remote Sens. Environ., vol. 104, no. 1, pp. 1-14, 2006.
    • (2006) Remote Sens. Environ. , vol.104 , Issue.1 , pp. 1-14
    • Foody, G.M.1    Mathur, A.2    Sanchez-Hernandez, C.3    Boyd, D.S.4
  • 28
    • 84947648737 scopus 로고    scopus 로고
    • Semi-supervised self-learning for hyperspectral image classification
    • Jul.
    • I. Dopido et al., "Semi-supervised self-learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4032-4044, Jul. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.7 , pp. 4032-4044
    • Dopido, I.1
  • 29
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. 110-122, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 110-122
    • Plaza, A.1
  • 31
    • 21444433029 scopus 로고    scopus 로고
    • Super-resolution land cover mapping using a Markov random field based approach
    • T. Kasetkasem, M. K. Arora, and P. K. Varshney, "Super-resolution land cover mapping using a Markov random field based approach," Remote Sens. Environ., vol. 96, no. 3, pp. 302-314, 2005.
    • (2005) Remote Sens. Environ. , vol.96 , Issue.3 , pp. 302-314
    • Kasetkasem, T.1    Arora, M.K.2    Varshney, P.K.3
  • 32
    • 77958017904 scopus 로고    scopus 로고
    • SVMand MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. Benediktsson, "SVMand MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.4
  • 33
    • 0034161563 scopus 로고    scopus 로고
    • Integrating contextual information with per-pixel classification for improved land cover classification
    • J. Stuckens, P. Coppin, and M. Bauer, "Integrating contextual information with per-pixel classification for improved land cover classification," Remote Sens. Environ., vol. 71, no. 3, pp. 282-296, 2000.
    • (2000) Remote Sens. Environ. , vol.71 , Issue.3 , pp. 282-296
    • Stuckens, J.1    Coppin, P.2    Bauer, M.3
  • 34
    • 0035141667 scopus 로고    scopus 로고
    • A comparison of parametric classification procedures of remotely sensed data applied on different landscape units
    • L. Hubert-Moy, A. Cotonnec, L. L. Du, A. Chardin, and P. Perez, "A comparison of parametric classification procedures of remotely sensed data applied on different landscape units," Remote Sens. Environ., vol. 75, no. 2, pp. 174-187, 2001.
    • (2001) Remote Sens. Environ. , vol.75 , Issue.2 , pp. 174-187
    • Hubert-Moy, L.1    Cotonnec, A.2    Du, L.L.3    Chardin, A.4    Perez, P.5
  • 35
    • 70450253287 scopus 로고    scopus 로고
    • A new map of global urban extent from MODIS satellite data
    • A. Schneider, M. A. Friedl, and D. Potere, "A new map of global urban extent from MODIS satellite data," Environ. Res. Lett., vol. 4, no. 4, pp. 1-11, 2009.
    • (2009) Environ. Res. Lett. , vol.4 , Issue.4 , pp. 1-11
    • Schneider, A.1    Friedl, M.A.2    Potere, D.3
  • 36
    • 77955326628 scopus 로고    scopus 로고
    • Mapping global urban areas using MODIS 500-m data: New methods and datasets based on urban ecoregions
    • A. Schneider, M. A. Friedl, and D. Potere, "Mapping global urban areas using MODIS 500-m data: New methods and datasets based on urban ecoregions," Remote Sens. Environ., vol. 114, no. 8, pp. 1733-1746, 2010.
    • (2010) Remote Sens. Environ. , vol.114 , Issue.8 , pp. 1733-1746
    • Schneider, A.1    Friedl, M.A.2    Potere, D.3
  • 37
    • 70350041108 scopus 로고    scopus 로고
    • Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets
    • M. A. Friedl et al., "Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets," Remote Sens. Environ., vol. 114, pp. 168-182, 2010.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 168-182
    • Friedl, M.A.1
  • 39
    • 84884815527 scopus 로고    scopus 로고
    • Fast and efficient urban extent extraction using ASAR wide swath mode data
    • Oct.
    • P. Gamba and G. Lisini, "Fast and efficient urban extent extraction using ASAR wide swath mode data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 5, pp. 2184-2195, Oct. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.5 , pp. 2184-2195
    • Gamba, P.1    Lisini, G.2
  • 40
    • 79953080040 scopus 로고    scopus 로고
    • Improved textural built-up presence index for automatic recognition of human settlements in arid regions with scattered vegetation
    • Mar.
    • M. Pesaresi and A. Gerhardinger, "Improved textural built-up presence index for automatic recognition of human settlements in arid regions with scattered vegetation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 1, pp. 16-26, Mar. 2011.
    • (2011) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.4 , Issue.1 , pp. 16-26
    • Pesaresi, M.1    Gerhardinger, A.2
  • 41
    • 70350182935 scopus 로고    scopus 로고
    • A robust built-up area presence index by anisotropic rotation-invariant textural measure
    • Sep.
    • M. Pesaresi, A. Gerhardinger, and F. Kayitakire, "A robust built-up area presence index by anisotropic rotation-invariant textural measure," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 1, no. 3, pp. 180-192, Sep. 2008.
    • (2008) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.1 , Issue.3 , pp. 180-192
    • Pesaresi, M.1    Gerhardinger, A.2    Kayitakire, F.3
  • 42
    • 0036564143 scopus 로고    scopus 로고
    • A MRF model-based segmentation approach to classification for multispectral imagery
    • May
    • A. Sarkar et al., "A MRF model-based segmentation approach to classification for multispectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1102-1113, May 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.5 , pp. 1102-1113
    • Sarkar, A.1
  • 43
    • 77958017904 scopus 로고    scopus 로고
    • SVM and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 44
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 45
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • Feb.
    • M. Pesaresi and J. A. Benediktsson, "A new approach for the morphological segmentation of high-resolution satellite imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309-320, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 46
    • 79957639950 scopus 로고    scopus 로고
    • Bayesian hyperspectral image segmentation with discriminative class learning
    • Jun.
    • J. Borges, J. M. Bioucas-Dias, and A. Marc¸al, "Bayesian hyperspectral image segmentation with discriminative class learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2151-2164, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2151-2164
    • Borges, J.1    Bioucas-Dias, J.M.2    Marc¸al, A.3
  • 48
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 49
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • D. Tuia, E. Pasolli, and W. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., vol. 115, no. 9, pp. 2232-2242, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.3
  • 50
  • 51
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 52
    • 0036846973 scopus 로고    scopus 로고
    • Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing
    • J. R. Townshend and C. O. Justice, "Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing," Remote Sens. Environ., vol. 83, no. 1-2, pp. 351-359, 2002.
    • (2002) Remote Sens. Environ. , vol.83 , Issue.1-2 , pp. 351-359
    • Townshend, J.R.1    Justice, C.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.