-
1
-
-
34249753618
-
Support-vector networks
-
Sep
-
C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, Sep. 1995.
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
2
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Aug
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
3
-
-
0003408420
-
-
Cambridge, MA, USA: MIT Press
-
B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
6
-
-
33750819329
-
A novel transductive svm for semisupervised classification of remote-sensing images
-
Nov
-
L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
-
(2006)
IEEE Trans. Geosci. Remote Sens
, vol.44
, Issue.11
, pp. 3363-3373
-
-
Bruzzone, L.1
Chi, M.2
Marconcini, M.3
-
7
-
-
47849095828
-
Semisupervised image classification with laplacian support vector machines
-
Jul
-
L. Gomez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe, "Semisupervised image classification with Laplacian support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 336-340, Jul. 2008.
-
(2008)
IEEE Geosci. Remote Sens. Lett
, vol.5
, Issue.3
, pp. 336-340
-
-
Gomez-Chova, L.1
Camps-Valls, G.2
Munoz-Mari, J.3
Calpe, J.4
-
8
-
-
2942558578
-
Segmentation of multispectral remote sensing images using active support vector machines
-
DOI 10.1016/j.patrec.2004.03.004, PII S0167865504000704
-
P. Mitra, B. U. Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recog. Lett., vol. 25, no. 9, pp. 1067-1074, Jul. 2004. (Pubitemid 38763570)
-
(2004)
Pattern Recognition Letters
, vol.25
, Issue.9
, pp. 1067-1074
-
-
Mitra, P.1
Uma Shankar, B.2
Pal, S.K.3
-
9
-
-
41549147912
-
An active learning approach to hyperspectral data classification
-
DOI 10.1109/TGRS.2007.910220, 4469868
-
S. Rajan, J. Ghosh, and M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
-
(2008)
IEEE Transactions on Geoscience and Remote Sensing
, vol.46
, Issue.4
, pp. 1231-1242
-
-
Rajan, S.1
Ghosh, J.2
Crawford, M.M.3
-
10
-
-
79952041537
-
Batch-mode active-learning methods for the interactive classification of remote sensing images
-
Mar
-
B. Demir, C. Persello, and L. Bruzzone, "Batch-mode active-learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.3
, pp. 1014-1031
-
-
Demir, B.1
Persello, C.2
Bruzzone, L.3
-
11
-
-
79955632976
-
A fast cluster-assumption based active-learning technique for classification of remote sensing images
-
May
-
S. Patra and L. Bruzzone, "A fast cluster-assumption based active-learning technique for classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1617-1626, May 2011.
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.5
, pp. 1617-1626
-
-
Patra, S.1
Bruzzone, L.2
-
12
-
-
0000125534
-
Sample selection bias as a specification error
-
Jan
-
J. J. Heckman, "Sample selection bias as a specification error," Econometrica, vol. 47, no. 1, pp. 153-161, Jan. 1979.
-
(1979)
Econometrica
, vol.47
, Issue.1
, pp. 153-161
-
-
Heckman, J.J.1
-
13
-
-
14344263218
-
Learning and evaluating classifiers under sample selection bias
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
B. Zadrozny, "Learning and evaluating classifiers under sample selection bias," in Proc. 21st Int. Conf. Mach. Learn., 2004, pp. 903-910. (Pubitemid 40290896)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 903-910
-
-
Zadrozny, B.1
-
15
-
-
33749252873
-
-
Cambridge, MA, USA: MIT Press
-
O. Chapelle, B. Schölkopf, and A. Zien, Semi-supervised Learning. Cambridge, MA, USA: MIT Press, 2006.
-
(2006)
Semi-supervised Learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
16
-
-
33745456231
-
-
Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep
-
X. Zhu, "Semi-supervised learning literature survey," Univ. Wisconsin-Madison, Madison, WI, USA, 2008, Tech. Rep.
-
(2008)
Semi-supervised Learning Literature Survey
-
-
Zhu, X.1
-
17
-
-
38049094034
-
Probability of error of some adaptive pattern-recognition machines
-
Jul
-
H. Scudder, III, "Probability of error of some adaptive pattern-recognition machines," IEEE Trans. Inf. Theory, vol. IT-11, no. 3, pp. 363-371, Jul. 1965.
-
(1965)
IEEE Trans. Inf. Theory
, vol.IT-11
, Issue.3
, pp. 363-371
-
-
Scudder III, H.1
-
18
-
-
48249112672
-
Learning to recognize patterns without a teacher
-
Jan
-
S. Fralick, "Learning to recognize patterns without a teacher," IEEE Trans. Inf. Theory, vol. IT-13, no. 1, pp. 57-64, Jan. 1967.
-
(1967)
IEEE Trans. Inf. Theory
, vol.IT-13
, Issue.1
, pp. 57-64
-
-
Fralick, S.1
-
19
-
-
0014813253
-
Learning with a probabilistic teacher
-
Jul
-
A. Agrawala, "Learning with a probabilistic teacher," IEEE Trans. Information Theory, vol. IT-16, no. 4, pp. 373-379, Jul. 1970.
-
(1970)
IEEE Trans. Information Theory
, vol.IT-16
, Issue.4
, pp. 373-379
-
-
Agrawala, A.1
-
20
-
-
84947648737
-
Semisupervised self-learning for hyperspectral image classification
-
Jul
-
I. Dopido, J. Li, P. R. Marpu, A. Plaza, J. B. Dias, and J. A. Benediktsson, "Semisupervised self-learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4032-4044, Jul. 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sens
, vol.51
, Issue.7
, pp. 4032-4044
-
-
Dopido, I.1
Li, J.2
Marpu, P.R.3
Plaza, A.4
Dias, J.B.5
Benediktsson, J.A.6
-
22
-
-
0005986550
-
Learning classification with unlabeled data
-
V. R. de Sa, "Learning classification with unlabeled data," Adv. Neural Inf. Process. Syst., vol. 6, no. 112-119, 1994.
-
(1994)
Adv. Neural Inf. Process. Syst
, vol.6
, Issue.112-119
-
-
De Sa, V.R.1
-
23
-
-
0036564114
-
An adaptive method for combined covariance estimation and classification
-
DOI 10.1109/TGRS.2002.1010895, PII S0196289202052786
-
Q. Jackson and D. Landgrebe, "An adaptive method for combined covariance estimation and classification," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1082-1087, May 2002. (Pubitemid 34798917)
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, Issue.5
, pp. 1082-1087
-
-
Jackson, Q.1
Landgrebe, D.A.2
-
24
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
-
Sep
-
B. Shahshahani and D. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
-
(1994)
IEEE Trans. Geosci. Remote Sens
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshahani, B.1
Landgrebe, D.2
-
25
-
-
0033886917
-
Robust parameter estimation for mixture model
-
DOI 10.1109/36.823939
-
S. Tadjudin and D. Landgrebe, "Robust parameter estimation for mixture model," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 439-445, Jan. 2000. (Pubitemid 30556206)
-
(2000)
IEEE Transactions on Geoscience and Remote Sensing
, vol.38
, Issue.1
, pp. 439-445
-
-
Tadjudin, S.1
Landgrebe, D.A.2
-
26
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th ICML, 1999, pp. 200-209.
-
(1999)
Proc. 16th ICML
, pp. 200-209
-
-
Joachims, T.1
-
27
-
-
53449086560
-
-
C.-I. Chang, Ed. Hoboken, NJ, USA: Wiley
-
L. Bruzzone, M. Chi, and M. Marconcini, Semisupervised Support Vector Machines for Classification of Hyperspectral Remote Sensing Images, Hyperspectral Data Exploitation: Theory and Applications, C.-I. Chang, Ed. Hoboken, NJ, USA: Wiley, 2007.
-
(2007)
Semisupervised Support Vector Machines for Classification of Hyperspectral Remote Sensing Images, Hyperspectral Data Exploitation: Theory and Applications
-
-
Bruzzone, L.1
Chi, M.2
Marconcini, M.3
-
28
-
-
34249810956
-
Semisupervised classification of hyperspectral images by SVMs optimized in the primal
-
DOI 10.1109/TGRS.2007.894550
-
M. Chi and L. Bruzzone, "Semisupervised classification of hyperspectral images by SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870-1880, Jun. 2007. (Pubitemid 46853295)
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.6
, pp. 1870-1880
-
-
Chi, M.1
Bruzzone, L.2
-
29
-
-
3142725535
-
Semi-supervised learning on riemannian manifolds
-
Jun
-
M. Belkin and P. Niyogi, "Semi-supervised learning on Riemannian manifolds," Mach. Learn., vol. 56, no. 1-3, pp. 209-239, Jun. 2004.
-
(2004)
Mach. Learn
, vol.56
, Issue.1-3
, pp. 209-239
-
-
Belkin, M.1
Niyogi, P.2
-
30
-
-
67651183638
-
Active learning methods for remote sensing image classification
-
Jul
-
D. Tuia, F. Ratle, F. Pacifici, M. Kanevski, and W. Emery, "Active learning methods for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2218-2232, Jul. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens
, vol.47
, Issue.7
, pp. 2218-2232
-
-
Tuia, D.1
Ratle, F.2
Pacifici, F.3
Kanevski, M.4
Emery, W.5
-
31
-
-
33748126301
-
Confidence-based active learning
-
DOI 10.1109/TPAMI.2006.156
-
M. Li and I. Sethi, "Confidence-based active learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1251-1261, Aug. 2006. (Pubitemid 46405023)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.8
, pp. 1251-1261
-
-
Li, M.1
Sethi, I.K.2
-
33
-
-
0007696417
-
Less is more: Active learning with support vector machines
-
G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Int. Conf. Mach. Learn., 2000, pp. 839-846.
-
(2000)
Int. Conf. Mach. Learn
, pp. 839-846
-
-
Schohn, G.1
Cohn, D.2
-
34
-
-
0038399423
-
Query learning with large margin classifiers
-
C. Campbell, N. Cristianini, and A. Smola, "Query learning with large margin classifiers," in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 111-118.
-
(2000)
Proc. 17th Int. Conf. Mach. Learn
, pp. 111-118
-
-
Campbell, C.1
Cristianini, N.2
Smola, A.3
-
35
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Mar
-
S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res., vol. 2, pp. 45-66, Mar. 2002.
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
36
-
-
0026981853
-
Query by committee
-
H. S. Seung, M. Opper, and H. Sompolinsky, "Query by committee," in Proc. 5th Annu. Workshop COLT, 1992, pp. 287-294. (Pubitemid 23615454)
-
(1992)
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
37
-
-
85152628923
-
Committee-based sampling for training probabilistic classifiers
-
I. Dagan and S. P. Engelson, "Committee-based sampling for training probabilistic classifiers," in Proc. Int. Conf. Mach. Learn., 1995, pp. 150-157.
-
(1995)
Proc. Int. Conf. Mach. Learn
, pp. 150-157
-
-
Dagan, I.1
Engelson, S.P.2
-
38
-
-
0001025146
-
Query learning strategies using boosting and bagging
-
N. Abe and H. Mamitsuka, "Query learning strategies using boosting and bagging," in Proc. 15th ICML, 1998, pp. 1-9.
-
(1998)
Proc. 15th ICML
, pp. 1-9
-
-
Abe, N.1
Mamitsuka, H.2
-
39
-
-
21844432939
-
Active learning to recognize multiple types of plankton
-
T. Luo, K. Kramer, D. B. Goldgof, S. Samson, A. Remsen, T. Hopkins, and D. Cohn, "Active learning to recognize multiple types of plankton," J. Mach. Learn. Res., vol. 6, pp. 589-613, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 589-613
-
-
Luo, T.1
Kramer, K.2
Goldgof, D.B.3
Samson, S.4
Remsen, A.5
Hopkins, T.6
Cohn, D.7
-
40
-
-
68949137209
-
-
Univ. Wisconsin-Madison, Madison, WI, USA, Computer Sciences Tech. Rep.1648
-
B. Settles, "Active Learning Literature Survey," Univ. Wisconsin-Madison, Madison, WI, USA, Computer Sciences Tech. Rep.1648, 2009.
-
(2009)
Active Learning Literature Survey
-
-
Settles, B.1
-
41
-
-
1942517333
-
Incorporating diversity in active learning with support vector machines
-
K. Brinker, "Incorporating diversity in active learning with support vector machines," in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 59-66.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn
, pp. 59-66
-
-
Brinker, K.1
-
42
-
-
35248825961
-
Representative sampling for text classification using support vector machines
-
Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, "Representative sampling for text classification using support vector machines," in Proc. 25th ECIR, 2003, pp. 393-407.
-
(2003)
Proc. 25th ECIR
, pp. 393-407
-
-
Xu, Z.1
Yu, K.2
Tresp, V.3
Xu, X.4
Wang, J.5
-
43
-
-
15344349101
-
Active learning using pre-clustering
-
H. T. Nguyen and A. Smeulders, "Active learning using pre-clustering," in Proc. 21st ICML, 2004, p. 79.
-
(2004)
Proc. 21st ICML
, pp. 79
-
-
Nguyen, H.T.1
Smeulders, A.2
-
44
-
-
33749263388
-
Batch mode active learning and its application to medical image classification
-
S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu, "Batch mode active learning and its application to medical image classification," in Int. Conf. Mach. Learn., 2006, pp. 417-424.
-
(2006)
Int. Conf. Mach. Learn
, pp. 417-424
-
-
Hoi, S.C.H.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
46
-
-
84867125784
-
Batch active learning via coordinated matching
-
J. Azimi, A. Fern, X. Z. Fern, G. Borradaile, and B. Heeringa, "Batch active learning via coordinated matching," in Proc. Int. Conf. Mach. Learn., 2012, pp. 1-8.
-
(2012)
Proc. Int. Conf. Mach. Learn
, pp. 1-8
-
-
Azimi, J.1
Fern, A.2
Fern, X.Z.3
Borradaile, G.4
Heeringa, B.5
-
47
-
-
84860318734
-
View generation for multiview maximum disagreement based active learning for hyperspectral image classification
-
May
-
W. Di and M. M. Crawford, "View generation for multiview maximum disagreement based active learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1942-1954, May 2012.
-
(2012)
IEEE Trans. Geosci. Remote Sens
, vol.50
, Issue.5
, pp. 1942-1954
-
-
Di, W.1
Crawford, M.M.2
-
48
-
-
79957458331
-
Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
-
Jun
-
W. Di and M. M. Crawford, "Active learning via multi-view and local proximity co-regularization for hyperspectral image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 618-628, Jun. 2011.
-
(2011)
IEEE J. Sel. Topics Signal Process
, vol.5
, Issue.3
, pp. 618-628
-
-
Di, W.1
Crawford, M.M.2
-
49
-
-
0002332781
-
Employing em and pool-based active learning for text classification
-
A. K. McCallum and K. Nigam, "Employing EM and pool-based active learning for text classification," in Proc. Int. Conf. Mach. Learn., 1998, pp. 350-358.
-
(1998)
Proc. Int. Conf. Mach. Learn
, pp. 350-358
-
-
McCallum, A.K.1
Nigam, K.2
-
50
-
-
3242788638
-
Active + semi-supervised learning = robust multi-view learning
-
U. Muslea, S. Minton, and C. Knoblock, "Active + semi-supervised learning = robust multi-view learning," in Proc. 19th Int. Conf. Mach. Learn., 2002, pp. 435-442.
-
(2002)
Proc. 19th Int. Conf. Mach. Learn
, pp. 435-442
-
-
Muslea, U.1
Minton, S.2
Knoblock, C.3
-
51
-
-
13544261390
-
Combining active and semi-supervised learning for spoken language understanding
-
DOI 10.1016/j.specom.2004.08.002, PII S0167639304000962
-
G. Tur, D. Hakkani-Tür, and R. E. Schapire, "Combining active and semi-supervised learning for spoken language understanding," Speech Commun., vol. 45, no. 2, pp. 171-186, Feb. 2005. (Pubitemid 40220192)
-
(2005)
Speech Communication
, vol.45
, Issue.2
, pp. 171-186
-
-
Tur, G.1
Hakkani-Tur, D.2
Schapire, R.E.3
-
52
-
-
84885613809
-
Combining semi-supervised and active learning for hyperspectral image classification
-
M. Li, R. Wang, and K. Tang, "Combining semi-supervised and active learning for hyperspectral image classification," in Proc. IEEE Symp. Comput. Intell. Data Mining, 2013, pp. 89-94.
-
(2013)
Proc. IEEE Symp. Comput. Intell. Data Mining
, pp. 89-94
-
-
Li, M.1
Wang, R.2
Tang, K.3
-
53
-
-
0025952277
-
Divergence measures based on the shannon entropy
-
Jan
-
J. Lin, "Divergence measures based on the Shannon entropy," IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 145-151, Jan. 1991.
-
(1991)
IEEE Trans. Inf. Theory
, vol.37
, Issue.1
, pp. 145-151
-
-
Lin, J.1
-
54
-
-
34948870440
-
Enhanced gram-schmidt spectral sharpening based on multivariate regression of MS and pan data
-
DOI 10.1109/IGARSS.2006.975, 4242123, 2006 IEEE International Geoscience and Remote Sensing Symposium, IGARSS
-
B. Aiazzi, S. Baronti, M. Selva, and L. Alparone, "Enhanced Gram-Schmidt spectral sharpening based on multivariate regression of MS and PAN data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2006, pp. 3806-3809. (Pubitemid 47516397)
-
(2006)
International Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 3806-3809
-
-
Aiazzi, B.1
Baronti, S.2
Selva, M.3
Alparone, L.4
-
55
-
-
84870901798
-
Interactive domain adaptation for the classification of remote sensing images using active learning
-
Jul
-
C. Persello, "Interactive domain adaptation for the classification of remote sensing images using active learning," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 736-740, Jul. 2013.
-
(2013)
IEEE Geosci. Remote Sens. Lett
, vol.10
, Issue.4
, pp. 736-740
-
-
Persello, C.1
-
56
-
-
77949852900
-
Domain adaptation problems: A dasvm classification technique and a circular validation strategy
-
May
-
L. Bruzzone and M. Marconcini, "Domain adaptation problems: A DASVM classification technique and a circular validation strategy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 770-787, May 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.5
, pp. 770-787
-
-
Bruzzone, L.1
Marconcini, M.2
-
57
-
-
63149099144
-
Toward an automatic updating of land-cover maps by a domain adaptation svm classifier and a circular validation strategy
-
Apr
-
L. Bruzzone and M. Marconcini, "Toward an automatic updating of land-cover maps by a domain adaptation SVM classifier and a circular validation strategy," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1108-1122, Apr. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens
, vol.47
, Issue.4
, pp. 1108-1122
-
-
Bruzzone, L.1
Marconcini, M.2
|