메뉴 건너뛰기




Volumn 105, Issue , 2015, Pages 19-29

A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination

Author keywords

Classifier fusion; Hyperspectral images; K nearest neighbor (KNN); Multinomial logistic regression (MLR); Semi supervised classification; Spatial neighborhood information

Indexed keywords

CLASSIFICATION (OF INFORMATION); FACE RECOGNITION; INDEPENDENT COMPONENT ANALYSIS; LEARNING ALGORITHMS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; REGRESSION ANALYSIS; SPECTROSCOPY; SUPERVISED LEARNING;

EID: 84927624381     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2015.03.006     Document Type: Article
Times cited : (99)

References (45)
  • 1
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • Böhning D. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 1992, 44(1):197-200.
    • (1992) Ann. Inst. Stat. Math. , vol.44 , Issue.1 , pp. 197-200
    • Böhning, D.1
  • 2
    • 84894236621 scopus 로고    scopus 로고
    • Hyperspectral image classification based on iterative Support Vector Machine by integrating spatial-spectral information
    • Baassou B., He M., Farid M.I., Mei S. Hyperspectral image classification based on iterative Support Vector Machine by integrating spatial-spectral information. IGARSS 2013, 1023-1026.
    • (2013) IGARSS , pp. 1023-1026
    • Baassou, B.1    He, M.2    Farid, M.I.3    Mei, S.4
  • 3
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Benediktsson J.A., Palmason J.A., Sveinsson J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43(3):480-491.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 5
    • 0036821665 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
    • Bruce L.M., Koger C.H., Li J. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40(10):2331-2338.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2331-2338
    • Bruce, L.M.1    Koger, C.H.2    Li, J.3
  • 6
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls G., Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43(6):1351-1362.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 11
    • 84888295997 scopus 로고    scopus 로고
    • An effective strategy to reduce the labeling cost in the definition of training sets by active learning
    • Demir B., Minello L., Bruzzone L. An effective strategy to reduce the labeling cost in the definition of training sets by active learning. Geosci. Remote Sens. Lett. IEEE 2014, 11(1):79-83.
    • (2014) Geosci. Remote Sens. Lett. IEEE , vol.11 , Issue.1 , pp. 79-83
    • Demir, B.1    Minello, L.2    Bruzzone, L.3
  • 12
    • 78649286256 scopus 로고    scopus 로고
    • Locally consistent graph regularization based active learning for hyperspectral image classification
    • In: Second Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010. IEEE
    • Di, W., Crawford, M.M., 2010. Locally consistent graph regularization based active learning for hyperspectral image classification. In: Second Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010. IEEE, pp. 1-4.
    • (2010) , pp. 1-4
    • Di, W.1    Crawford, M.M.2
  • 13
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • Di W., Crawford M.M. Active learning via multi-view and local proximity co-regularization for hyperspectral image classification. IEEE J. Select. Topics Signal Process. 2011, 5(3):618-628.
    • (2011) IEEE J. Select. Topics Signal Process. , vol.5 , Issue.3 , pp. 618-628
    • Di, W.1    Crawford, M.M.2
  • 14
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • Di W., Crawford M.M. View generation for multiview maximum disagreement based active learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50(5):1942-1954.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 15
    • 84923058832 scopus 로고    scopus 로고
    • Band selection using independent component analysis for hyperspectral image processing
    • In: Applied Imagery Pattern Recognition Workshop, 2003. Proceedings. 32nd. IEEE
    • Du, H., Qi, H., Wang, X., Ramanath, R., Snyder, W.E., 2003. Band selection using independent component analysis for hyperspectral image processing, In: Applied Imagery Pattern Recognition Workshop, 2003. Proceedings. 32nd. IEEE, pp. 93-98.
    • (2003) , pp. 93-98
    • Du, H.1    Qi, H.2    Wang, X.3    Ramanath, R.4    Snyder, W.E.5
  • 16
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: a review
    • Du P., Xia J., Zhang W., Tan K., Liu Y., Liu S. Multiple classifier system for remote sensing image classification: a review. Sensors 2012, 12(4):4764-4792.
    • (2012) Sensors , vol.12 , Issue.4 , pp. 4764-4792
    • Du, P.1    Xia, J.2    Zhang, W.3    Tan, K.4    Liu, Y.5    Liu, S.6
  • 17
    • 49549087700 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Grandvalet, Y., Bengio, Y., 2005. Semi-supervised learning by entropy minimization.
    • (2005)
    • Grandvalet, Y.1    Bengio, Y.2
  • 19
    • 84867058657 scopus 로고    scopus 로고
    • Artificial DNA computing-based spectral encoding and matching algorithm for hyperspectral remote sensing data
    • Jiao H., Zhong Y., Zhang L. Artificial DNA computing-based spectral encoding and matching algorithm for hyperspectral remote sensing data. IEEE Trans. Geosci. Remote Sens. 2012, 50(10):4085-4104.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 4085-4104
    • Jiao, H.1    Zhong, Y.2    Zhang, L.3
  • 20
    • 84890492779 scopus 로고    scopus 로고
    • A generative semi-supervised model for multi-view learning when some views are label-free
    • In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013. IEEE
    • Jin, G., Raich, R., Miller, D.J., 2013. A generative semi-supervised model for multi-view learning when some views are label-free, In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013. IEEE, pp. 3302-3306.
    • (2013) , pp. 3302-3306
    • Jin, G.1    Raich, R.2    Miller, D.J.3
  • 21
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Joachims T. Transductive inference for text classification using support vector machines. ICML 1999, 200-209.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 22
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Li J., Bioucas-Dias J.M., Plaza A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48(11):4085-4098.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 23
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Li J., Bioucas-Dias J.M., Plaza A. Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 2011, 49(10):3947-3960.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 25
    • 33847336925 scopus 로고    scopus 로고
    • Extracting location names from Chinese texts based on SVM and KNN
    • In: Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering, 2005. IEEE NLP-KE'05. IEEE
    • Li, L., Mao, T., Huang, D., 2005. Extracting location names from Chinese texts based on SVM and KNN, In: Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering, 2005. IEEE NLP-KE'05. IEEE, pp. 371-375.
    • (2005) , pp. 371-375
    • Li, L.1    Mao, T.2    Huang, D.3
  • 26
    • 10044219654 scopus 로고    scopus 로고
    • Active learning to recognize multiple types of plankton
    • In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE
    • Luo, T., Kramer, K., Samson, S., Remsen, A., Goldgof, D., Hall, L., Hopkins, T., 2004. Active learning to recognize multiple types of plankton, In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, pp. 478-481.
    • (2004) , pp. 478-481
    • Luo, T.1    Kramer, K.2    Samson, S.3    Remsen, A.4    Goldgof, D.5    Hall, L.6    Hopkins, T.7
  • 28
    • 84927634822 scopus 로고    scopus 로고
    • Remote Sensing Digital Image Analysis, Springer.
    • Richards, J.A., Richards, J., 1999. Remote Sensing Digital Image Analysis, Springer.
    • (1999)
    • Richards, J.A.1    Richards, J.2
  • 29
    • 35348895580 scopus 로고    scopus 로고
    • Semi-Supervised Self-Training of Object Detection Models
    • In: Seventh IEEE Workshops on Application of Computer Vision, 2005. WACV/MOTIONS '05
    • Rosenberg, C., Hebert, M., Schneiderman, H., 2005. Semi-Supervised Self-Training of Object Detection Models. In: Seventh IEEE Workshops on Application of Computer Vision, 2005. WACV/MOTIONS '05, vol. 1, pp. 29-36.
    • (2005) , vol.1 , pp. 29-36
    • Rosenberg, C.1    Hebert, M.2    Schneiderman, H.3
  • 31
    • 0003408420 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press
    • Schölkopf, B., Smola, A.J., 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press.
    • (2002)
    • Schölkopf, B.1    Smola, A.J.2
  • 32
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani B.M., Landgrebe D.A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 1994, 32(5):1087-1095.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 33
    • 43849083251 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on support vector machine
    • Tan K., Du P.J. Hyperspectral remote sensing image classification based on support vector machine. J. Infrared Millimeter Waves 2008, 27(2):123-128.
    • (2008) J. Infrared Millimeter Waves , vol.27 , Issue.2 , pp. 123-128
    • Tan, K.1    Du, P.J.2
  • 34
    • 84907184537 scopus 로고    scopus 로고
    • An efficient semi-supervised classification approach for hyperspectral imagery
    • Tan K., Li E., Du Q., Du P. An efficient semi-supervised classification approach for hyperspectral imagery. ISPRS J. Photogram. Remote Sens. 2014, 97(11):36-45.
    • (2014) ISPRS J. Photogram. Remote Sens. , vol.97 , Issue.11 , pp. 36-45
    • Tan, K.1    Li, E.2    Du, Q.3    Du, P.4
  • 35
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Tarabalka Y., Chanussot J., Benediktsson J.A. Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Trans. Syst. Man, Cybernet., Part B: Cybernet. 2010, 40(5):1267-1279.
    • (2010) IEEE Trans. Syst. Man, Cybernet., Part B: Cybernet. , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 36
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S., Koller D. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2002, 2(1):45-66.
    • (2002) J. Mach. Learn. Res. , vol.2 , Issue.1 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 38
  • 39
    • 0031628056 scopus 로고    scopus 로고
    • Hyperspectral remote sensing technology (HRST) program
    • IEEE
    • Wilson T., Felt R. Hyperspectral remote sensing technology (HRST) program. Aerospace Conference, 1998 IEEE 1998, 193-200. IEEE.
    • (1998) Aerospace Conference, 1998 IEEE , pp. 193-200
    • Wilson, T.1    Felt, R.2
  • 40
    • 84978412354 scopus 로고    scopus 로고
    • The Application research of hyperspectral remote sensing technology in tailing mine environment pollution supervise management
    • In: Second International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), IEEE, 2012
    • Yao-hua, L., Zhong-ping, T., Ke, G., Mao-zhi, W., 2012. The Application research of hyperspectral remote sensing technology in tailing mine environment pollution supervise management. In: Second International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), IEEE, 2012. pp. 1-4.
    • (2012) , pp. 1-4
    • Yao-hua, L.1    Zhong-ping, T.2    Ke, G.3    Mao-zhi, W.4
  • 41
    • 52149112489 scopus 로고    scopus 로고
    • MSVM-kNN: Combining SVM and k-NN for multi-class text classification
    • In: IEEE International Workshop on Semantic Computing and Systems, 2008. WSCS'08. IEEE
    • Yuan, P., Chen, Y., Jin, H., Huang, L., 2008. MSVM-kNN: Combining SVM and k-NN for multi-class text classification. In: IEEE International Workshop on Semantic Computing and Systems, 2008. WSCS'08. IEEE, pp. 133-140.
    • (2008) , pp. 133-140
    • Yuan, P.1    Chen, Y.2    Jin, H.3    Huang, L.4
  • 43
    • 84876468871 scopus 로고    scopus 로고
    • An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
    • Zhong Y., Zhang L. An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50(3):894-909.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 894-909
    • Zhong, Y.1    Zhang, L.2
  • 44
    • 31444446724 scopus 로고    scopus 로고
    • An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery
    • Zhong Y., Zhang L., Huang B., Li P. An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44(2):420-431.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.2 , pp. 420-431
    • Zhong, Y.1    Zhang, L.2    Huang, B.3    Li, P.4
  • 45
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • In: Proceedings of the 22nd International Conference on Machine learning, ACM
    • Zhu, X., Lafferty, J., 2005. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning, In: Proceedings of the 22nd International Conference on Machine learning, ACM, pp. 1052-1059.
    • (2005) , pp. 1052-1059
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.