메뉴 건너뛰기




Volumn 52, Issue 11, 2014, Pages 7008-7022

A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery

Author keywords

Dimensionality reduction (DR); hyperspectral image classification; image patch distance (IPD); manifold learning methods; spatial neighbor

Indexed keywords

CLASSIFICATION (OF INFORMATION); INDEPENDENT COMPONENT ANALYSIS; PIXELS; SPECTROSCOPY;

EID: 84902072726     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2014.2306687     Document Type: Article
Times cited : (110)

References (48)
  • 2
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 3
    • 84861725237 scopus 로고    scopus 로고
    • A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification
    • Apr
    • I. Dópido, A. Villa, A. Plaza, and P. Gamba, "A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 421-435, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.2 , pp. 421-435
    • Dópido, I.1    Villa, A.2    Plaza, A.3    Gamba, P.4
  • 5
    • 42549151882 scopus 로고    scopus 로고
    • Relevance-based feature extraction for hyperspectral images
    • DOI 10.1109/TNN.2007.914156
    • M. J. Mendenhall and E. Merényi, "Relevance-based feature extraction for hyperspectral images," IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 658-672, Apr. 2008. (Pubitemid 351583581)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.4 , pp. 658-672
    • Mendenhall, M.J.1    Merenyi, E.2
  • 7
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 9
    • 1942424158 scopus 로고    scopus 로고
    • Principal component analysis for hyperspectral image classification
    • C. Rodarmel and J. Shan, "Principal component analysis for hyperspectral image classification," Surv. Land Inf. Syst., vol. 62, no. 2, pp. 115-122, 2002. (Pubitemid 38522441)
    • (2002) Surveying and Land Information Science , vol.62 , Issue.2 , pp. 115-122
    • Rodarmel, C.1    Shan, J.2
  • 11
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • Apr
    • P. Comon, "Independent component analysis: A new concept?" Signal Process., vol. 36, no. 3, pp. 287-314, Apr. 1994.
    • (1994) Signal Process , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 12
    • 84872911794 scopus 로고    scopus 로고
    • Spherical stochastic neighbor embedding of hyperspectral data
    • Feb
    • D. Lunga and O. Ersoy, "Spherical stochastic neighbor embedding of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 857-871, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.2 , pp. 857-871
    • Lunga, D.1    Ersoy, O.2
  • 13
    • 14644422171 scopus 로고    scopus 로고
    • Exploitingmanifold geometry in hyperspectral imagery
    • Mar
    • C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, " Exploitingmanifold geometry in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 441-454, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 441-454
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 14
    • 84860119060 scopus 로고    scopus 로고
    • Exploring nonlinear manifold learning for classification of hyperspectral data
    • M. M. Crawford, W. Kim, and M. Li, "Exploring nonlinear manifold learning for classification of hyperspectral data," in Proc. Opt. Remote Sens., 2011, vol. 3, pp. 207-234.
    • (2011) Proc. Opt. Remote Sens , vol.3 , pp. 207-234
    • Crawford, M.M.1    Kim, W.2    Li, M.3
  • 16
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 18
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, Mar. 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 19
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • Oct
    • C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, "Improved manifold coordinate representations of large-scale hyperspectral scenes," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 20
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 21
    • 16444366244 scopus 로고    scopus 로고
    • Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data
    • DOI 10.1109/TGRS.2004.843193
    • L. O. Jimenez, J. L. Rivera-Median, and E. Rodirguez-Diaz, "Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 844-851, Apr. 2005. (Pubitemid 40476028)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 844-851
    • Jimenez, L.O.1    Rivera-Medina, J.L.2    Rodriguez-Diaz, E.3    Arzuaga-Cruz, E.4    Ramirez-Velez, M.5
  • 22
    • 65049083029 scopus 로고    scopus 로고
    • Improving hyperspectral image classification using spatial preprocessing
    • Apr
    • S. Velasco-Forero and V. Manian, "Improving hyperspectral image classification using spatial preprocessing," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 297-301, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , Issue.2 , pp. 297-301
    • Velasco-Forero, S.1    Manian, V.2
  • 23
    • 34247530976 scopus 로고    scopus 로고
    • Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features
    • DOI 10.1109/TGRS.2007.892602
    • Y. Zhao, L. Zhang, P. Li, and B. Huang, "Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1458-1468, May 2007. (Pubitemid 46652344)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.5 , pp. 1458-1468
    • Zhao, Y.1    Zhang, L.2    Li, P.3    Huang, B.4
  • 24
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
    • Mar
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 25
    • 34247356156 scopus 로고    scopus 로고
    • Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images
    • DOI 10.1109/LGRS.2006.888105
    • A. Mohan, G. Sapiro, and E. Bosch, "Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 206-210, Apr. 2007. (Pubitemid 46645133)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.2 , pp. 206-210
    • Mohan, A.1    Sapiro, G.2    Bosch, E.3
  • 28
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Jul
    • Y. Tarabalka, J. Chanussot, and J. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, Jul. 2010.
    • (2010) Pattern Recognit , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3
  • 29
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 30
    • 34147120474 scopus 로고
    • A note on two problems in connection with graphs
    • Dec
    • E. W. Dijkstra, "A note on two problems in connection with graphs," Numer. Math., vol. 1, no. 1, pp. 269-271, Dec. 1959.
    • (1959) Numer. Math , vol.1 , Issue.1 , pp. 269-271
    • Dijkstra, E.W.1
  • 32
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Jan
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification via kernel sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 217-231, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.1 , pp. 217-231
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 36
    • 0033309449 scopus 로고    scopus 로고
    • Spectral information divergence for hyperspectral image analysis
    • C. I. Chang, "Spectral information divergence for hyperspectral image analysis," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 1999, pp. 509-511.
    • (1999) Proc. IEEE Int. Geosci. Remote Sens. Symp , pp. 509-511
    • Chang, C.I.1
  • 38
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vectormachines for pattern recognition," Data Mining Knowl. Discov., vol. 2, no. 2, pp. 121-167, Jun. 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 39
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Jan
    • T. Cover and P. Hart, "Nearest neighbor pattern classification, " IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 43
    • 0346390360 scopus 로고    scopus 로고
    • Estimating the intrinsic dimensionality of hyperspectral images
    • J. Bruske and E. Merényi, "Estimating the intrinsic dimensionality of hyperspectral images," in Proc. ESANN, 1999, vol. 1, pp. 105-110.
    • (1999) Proc. ESANN , vol.1 , pp. 105-110
    • Bruske, J.1    Merényi, E.2
  • 44
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.864389
    • C. I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006. (Pubitemid 43824504)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 45
    • 84863455923 scopus 로고    scopus 로고
    • Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using k-nn classifier
    • Nov
    • M. Hasanlou and F. Samadzadegan, "Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using k-NN classifier," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 6, pp. 1046-1050, Nov. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett , vol.9 , Issue.6 , pp. 1046-1050
    • Hasanlou, M.1    Samadzadegan, F.2
  • 46
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • Oct
    • P. Grassberger and I. Procaccia, "Measuring the strangeness of strange attractors," Nonlin. Phenom., vol. 9, no. 12, pp. 189-208, Oct. 1983.
    • (1983) Nonlin. Phenom , vol.9 , Issue.12 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 47
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • Aug
    • J. A. Costa and A. O. Hero, "Geodesic entropic graphs for dimension and entropy estimation in manifold learning," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2210-2221, Aug. 2004.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.A.1    Hero, A.O.2
  • 48
    • 84877887520 scopus 로고    scopus 로고
    • Hyperspectral intrinsic dimensionality estimation with nearest-neighbor distance ratios
    • Apr
    • R. Heylen and P. Scheunders, "Hyperspectral intrinsic dimensionality estimation with nearest-neighbor distance ratios," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 570-579, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.6 , Issue.2 , pp. 570-579
    • Heylen, R.1    Scheunders, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.