메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 2161-2173

Improving the dynamic clustering of hyperspectral data based on the integration of swarm optimization and decision analysis

Author keywords

Clustering; decision analysis; hyperspectral data; multi objective optimization (MOO)

Indexed keywords

CLUSTER ANALYSIS; DECISION MAKING; DECISION THEORY; MULTIOBJECTIVE OPTIMIZATION;

EID: 84905924390     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2307579     Document Type: Article
Times cited : (18)

References (56)
  • 1
    • 34249810956 scopus 로고    scopus 로고
    • Semisupervised classification of hyperspectral images by SVMs optimized in the primal
    • DOI 10.1109/TGRS.2007.894550
    • M. Chi and L. Bruzzone, "Semisupervised classification of hyperspectral images by SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870-1880, Jun. 2007. (Pubitemid 46853295)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.6 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 3
    • 12844275025 scopus 로고    scopus 로고
    • A semilabeled-sample-driven bagging technique for Ill-posed classification problems
    • DOI 10.1109/LGRS.2004.841478
    • M. Chi and L. Bruzzone, "A semilabeled-sample-driven bagging technique for ill-posed classification problems," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp. 69-73, Jan. 2005. (Pubitemid 40162808)
    • (2005) IEEE Geoscience and Remote Sensing Letters , vol.2 , Issue.1 , pp. 69-73
    • Chi, M.1    Bruzzone, L.2
  • 4
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 5
    • 70549090027 scopus 로고    scopus 로고
    • Clustering of hyperspectral images based on multiobjective particle swarm optimization
    • Dec.
    • A. Paoli, F. Melgani, and E. Pasolli, "Clustering of hyperspectral images based on multiobjective particle swarm optimization," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 4175-4188, Dec. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.12 , pp. 4175-4188
    • Paoli, A.1    Melgani, F.2    Pasolli, E.3
  • 6
    • 0032650370 scopus 로고    scopus 로고
    • A robust competitive clustering algorithm with applications in computer vision
    • May
    • H. Frigui and R. Krishnapuram, "A robust competitive clustering algorithm with applications in computer vision," IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 5, pp. 450-465, May 1999.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.5 , pp. 450-465
    • Frigui, H.1    Krishnapuram, R.2
  • 7
    • 38149136046 scopus 로고    scopus 로고
    • Dynamic clustering using particle swarm optimization with application in unsupervised image classification
    • Prague, Czech Republic
    • M. Omran, A. Salman, and A. Engelbrecht, "Dynamic clustering using particle swarm optimization with application in unsupervised image classification," in Proc. 5th World Enformatika Conf. (ICCI'05), Prague, Czech Republic, 2005, pp. 199-204.
    • (2005) Proc. 5th World Enformatika Conf. (ICCI'05) , pp. 199-204
    • Omran, M.1    Salman, A.2    Engelbrecht, A.3
  • 11
    • 14644431755 scopus 로고    scopus 로고
    • Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering
    • DOI 10.1109/TGRS.2004.842108
    • P. R. Kersten, J.-S. Lee, and T. L. Ainsworth, "Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 519-527, Mar. 2005. (Pubitemid 40320273)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 519-527
    • Kersten, P.R.1    Lee, J.-S.2    Ainsworth, T.L.3
  • 12
    • 77952585823 scopus 로고    scopus 로고
    • Remote sensing image classification based on dot density function weighted FCM clustering algorithm
    • X. Liu, X. Li, Y. Zhang, C. Yang, W. Xu, M. Li, and H. Luo, "Remote sensing image classification based on dot density function weighted FCM clustering algorithm," in IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2007, pp. 2010-2013.
    • (2007) IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 2010-2013
    • Liu, X.1    Li, X.2    Zhang, Y.3    Yang, C.4    Xu, W.5    Li, M.6    Luo, H.7
  • 14
    • 84857042237 scopus 로고    scopus 로고
    • Determining the number of clusters using information entropy for mixed data
    • J. Liang, X. Zhao, D. Li, F. Cao, and C. Dang, "Determining the number of clusters using information entropy for mixed data," Pattern Recognit., vol. 45, pp. 2251-2265, 2012.
    • (2012) Pattern Recognit , vol.45 , pp. 2251-2265
    • Liang, J.1    Zhao, X.2    Li, D.3    Cao, F.4    Dang, C.5
  • 15
    • 84862791682 scopus 로고    scopus 로고
    • Integration of particle swarm optimization and genetic algorithm for dynamic clustering
    • R. Kuo, Y. Syu, Z.-Y. Chen, and F. Tien, "Integration of particle swarm optimization and genetic algorithm for dynamic clustering," Inf. Sci., vol. 195, pp. 124-140, 2012.
    • (2012) Inf. Sci. , vol.195 , pp. 124-140
    • Kuo, R.1    Syu, Y.2    Chen, Z.-Y.3    Tien, F.4
  • 16
    • 77957901422 scopus 로고    scopus 로고
    • A novel clustering approach: Artificial Bee Colony (ABC) algorithm
    • D. Karaboga and C. Ozturk, "A novel clustering approach: Artificial Bee Colony (ABC) algorithm," Appl. Soft Comput., vol. 11, pp. 652-657, 2011.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 652-657
    • Karaboga, D.1    Ozturk, C.2
  • 17
    • 84889972055 scopus 로고    scopus 로고
    • Swarm intelligence algorithms for data clustering
    • M. Oded and R. Lior, Eds., New York, NY, USA: Springer
    • A. Abraham, S. Das, and S. Roy, "Swarm intelligence algorithms for data clustering," in Soft Computing for Knowledge Discovery and Data Mining. M. Oded and R. Lior, Eds., New York, NY, USA: Springer, 2008, pp. 279-313.
    • (2008) Soft Computing for Knowledge Discovery and Data Mining , pp. 279-313
    • Abraham, A.1    Das, S.2    Roy, S.3
  • 18
    • 84905899027 scopus 로고    scopus 로고
    • Evaluating the potential of particle swarm optimization for hyperspectral image clustering in minimum noise fraction feature space
    • M. Ana, R. Cecilia, and M. Viriato, Eds., New York, NY, USA:Springer
    • S. R. Namin, A. A. Naeini, and F. Samadzadegan, "Evaluating the potential of particle swarm optimization for hyperspectral image clustering in minimum noise fraction feature space," in Computational Intelligence and Decision Making, M. Ana, R. Cecilia, and M. Viriato, Eds., New York, NY, USA: Springer, 2013, pp. 69-79.
    • (2013) Computational Intelligence and Decision Making , pp. 69-79
    • Namin, S.R.1    Naeini, A.A.2    Samadzadegan, F.3
  • 19
    • 84905914077 scopus 로고    scopus 로고
    • A comparison study between two hyperspectral clustering methods: KFCM and PSO-FCM
    • M. Ana, R. Cecilia, and M. Viriato, Eds.Springer
    • A. A. Naeini, S. Niazmardi, S. R. Namin, F. Samadzadegan, and S. Homayouni, "A comparison study between two hyperspectral clustering methods: KFCM and PSO-FCM," in Computational Intelligence and Decision Making. M. Ana, R. Cecilia, and M. Viriato, Eds., Springer, 2013, pp. 23-33.
    • (2013) Computational Intelligence and Decision Making , pp. 23-33
    • Naeini, A.A.1    Niazmardi, S.2    Namin, S.R.3    Samadzadegan, F.4    Homayouni, S.5
  • 20
    • 84889861717 scopus 로고    scopus 로고
    • Particle swarm optimization of kernel-based fuzzy c-means for hyperspectral data clustering
    • S. Niazmardi, A. A. Naeini, S. Homayouni, A. Safari, and F. Samadzadegan, "Particle swarm optimization of kernel-based fuzzy c-means for hyperspectral data clustering," J. Appl. Remote Sens., vol. 6, pp. 063601-063601, 2012.
    • (2012) J. Appl. Remote Sens. , vol.6 , pp. 063601-063601
    • Niazmardi, S.1    Naeini, A.A.2    Homayouni, S.3    Safari, A.4    Samadzadegan, F.5
  • 21
    • 77949574485 scopus 로고    scopus 로고
    • Combining K-means and particle swarm optimization for dynamic data clustering problems
    • Y. Kao and S.-Y. Lee, "Combining K-means and particle swarm optimization for dynamic data clustering problems," in Proc. IEEE Int. Conf. Intell. Comput. Intell. Syst. (ICIS), 2009, pp. 757-761.
    • (2009) Proc. IEEE Int. Conf. Intell. Comput. Intell. Syst. (ICIS) , pp. 757-761
    • Kao, Y.1    Lee, S.-Y.2
  • 24
    • 79960900589 scopus 로고    scopus 로고
    • Segmentation of hyperspectral images via subtractive clustering and cluster validation using one-class support vector machines
    • Aug.
    • G. Bilgin, S. Erturk, and T. Yildirim, "Segmentation of hyperspectral images via subtractive clustering and cluster validation using one-class support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8, pp. 2936-2944, Aug. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.8 , pp. 2936-2944
    • Bilgin, G.1    Erturk, S.2    Yildirim, T.3
  • 25
    • 84856947662 scopus 로고    scopus 로고
    • An unsupervised evaluation method for remotely sensed imagery segmentation
    • Mar.
    • X. Zhang, P. Xiao, and X. Feng, "An unsupervised evaluation method for remotely sensed imagery segmentation," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 2, pp. 156-160, Mar. 2012.
    • (2012) Geosci. Remote Sens. Lett. , vol.9 , Issue.2 , pp. 156-160
    • Zhang, X.1    Xiao, P.2    Feng, X.3
  • 30
    • 0027338791 scopus 로고
    • The spectral image processing system (SIPS) - interactive visualization and analysis of imaging spectrometer data
    • F. Kruse, A. Lefkoff, J. Boardman, K. Heidebrecht, A. Shapiro, P. Barloon, and A. Goetz, "The spectral image processing system (SIPS)-Interactive visualization and analysis of imaging spectrometer data," Remote Sens. Environ., vol. 44, pp. 145-163, 1993. (Pubitemid 23383101)
    • (1993) Remote Sensing of Environment , vol.44 , Issue.2-3 , pp. 145-163
    • Kruse, F.A.1
  • 31
    • 84863455923 scopus 로고    scopus 로고
    • Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier
    • M. Hasanlou and F. Samadzadegan, "Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier," IEEE Geosci. Remote Sens. Lett., vol. 9, pp. 1046-1050, 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , pp. 1046-1050
    • Hasanlou, M.1    Samadzadegan, F.2
  • 33
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A. K. Jain, "Data clustering: 50 years beyond K-means," Pattern Recognit. Lett., vol. 31, pp. 651-666, 2010.
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 35
    • 35248851524 scopus 로고    scopus 로고
    • A non-dominated sorting particle swarm optimizer for multiobjective optimization
    • X. Li, "A non-dominated sorting particle swarm optimizer for multiobjective optimization," in Proc. Genetic Evol. Comput. (GECCO'03), 2003, pp. 37-48.
    • (2003) Proc. Genetic Evol. Comput. (GECCO'03) , pp. 37-48
    • Li, X.1
  • 36
    • 24344480582 scopus 로고    scopus 로고
    • Improving PSO-based Multi-Objective optimization using crowding, mutation and ε-dominance
    • Evolutionary Multi-Criterion Optimization - Third International Conference, EMO 2005
    • M. R. Sierra and C. A. C. Coello, "Improving PSO-Based multi-objective optimization using crowding, mutation and-dominance," in Proc. Evol. Multi-Criterion Optimization, 2005, pp. 505-519. (Pubitemid 41251786)
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 505-519
    • Sierra, M.R.1    Coello Coello, C.A.2
  • 40
    • 1442283191 scopus 로고    scopus 로고
    • Compromise solution byMCDMmethods: A comparative analysis of VIKOR and TOPSIS
    • S. Opricovic and G.-H. Tzeng, "Compromise solution byMCDMmethods: A comparative analysis of VIKOR and TOPSIS," Eur. J. Oper. Res., vol. 156, pp. 445-455, 2004.
    • (2004) Eur. J. Oper. Res. , vol.156 , pp. 445-455
    • Opricovic, S.1    Tzeng, G.-H.2
  • 44
    • 84862998205 scopus 로고    scopus 로고
    • A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data
    • Jul.
    • E. M. Hendrix, I. García, J. Plaza, G. Martín, and A. Plaza, "A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2744-2757, Jul. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.7 , pp. 2744-2757
    • Hendrix, E.M.1    García, I.2    Plaza, J.3    Martín, G.4    Plaza, A.5
  • 45
    • 79151484627 scopus 로고    scopus 로고
    • Second moment linear dimensionality as an alternative to virtual dimensionality
    • Feb.
    • P. Bajorski, "Second moment linear dimensionality as an alternative to virtual dimensionality," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 672-678, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 672-678
    • Bajorski, P.1
  • 46
    • 14944363079 scopus 로고    scopus 로고
    • Comparison of weights in TOPSIS models
    • DOI 10.1016/j.mcm.2004.10.003, PII S089571770400264X
    • D. Olson, "Comparison of weights in TOPSIS models," Math. Comput. Model., vol. 40, pp. 721-727, 2004. (Pubitemid 40359304)
    • (2004) Mathematical and Computer Modelling , vol.40 , Issue.7-8 , pp. 721-727
    • Olson, D.L.1
  • 47
    • 60849108620 scopus 로고    scopus 로고
    • Developing a fuzzy TOPSIS approach based on subjective weights and objective weights
    • T.-C. Wang and H.-D. Lee, "Developing a fuzzy TOPSIS approach based on subjective weights and objective weights," Expert Syst. Appl., vol. 36, pp. 8980-8985, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 8980-8985
    • Wang, T.-C.1    Lee, H.-D.2
  • 48
    • 84887436706 scopus 로고    scopus 로고
    • Fuzzy similarity in multicriteria decision-making problem applied to supplier evaluation and selection in supply chain management
    • P. Luukka, "Fuzzy similarity in multicriteria decision-making problem applied to supplier evaluation and selection in supply chain management," Adv. Artif. Intell., vol. 2011, p. 6, 2011.
    • (2011) Adv. Artif. Intell. , vol.2011 , pp. 6
    • Luukka, P.1
  • 49
    • 84864400807 scopus 로고    scopus 로고
    • A multicriteria decision making approach for estimating the number of clusters in a data set
    • Y. Peng, Y. Zhang, G. Kou, and Y. Shi, "A multicriteria decision making approach for estimating the number of clusters in a data set," PloS One, vol. 7, p. e41713, 2012.
    • (2012) PloS One , vol.7
    • Peng, Y.1    Zhang, Y.2    Kou, G.3    Shi, Y.4
  • 51
    • 41949100170 scopus 로고    scopus 로고
    • Image segmentation evaluation: A survey of unsupervised methods
    • DOI 10.1016/j.cviu.2007.08.003, PII S1077314207001294
    • H. Zhang, J. E. Fritts, and S. A. Goldman, "Image segmentation evaluation: Asurvey of unsupervised methods," Comput. Vision Image Understanding, vol. 110, pp. 260-280, 2008. (Pubitemid 351509773)
    • (2008) Computer Vision and Image Understanding , vol.110 , Issue.2 , pp. 260-280
    • Zhang, H.1    Fritts, J.E.2    Goldman, S.A.3
  • 52
    • 84905906728 scopus 로고    scopus 로고
    • Computational Intelligence Group Basque University [Online]. Available
    • Computational Intelligence Group, Basque University, (2010). Hyperspectral Imagery Synthesis toolbox for MATLAB [Online]. Available: http://www.ehu.es/ccwintco/index.php/ HyperspectralImagerySynthesistoolsforMATLAB.
    • (2010) Hyperspectral Imagery Synthesis Toolbox for MATLAB


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.