메뉴 건너뛰기




Volumn 51, Issue 7, 2013, Pages 4032-4044

Semisupervised self-learning for hyperspectral image classification

Author keywords

Hyperspectral image classification; multinomial logistic regression (MLR); probabilistic support vector machine (SVM); semisupervised self learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; FIGHTER AIRCRAFT; HYPERSPECTRAL IMAGING; IMAGE ANALYSIS; INDEPENDENT COMPONENT ANALYSIS; INFRARED IMAGING; LEARNING ALGORITHMS; LEARNING SYSTEMS; NASA; PIXELS; REGRESSION ANALYSIS; SAMPLING; SPECTROSCOPY; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; THERMOGRAPHY (IMAGING); TRAINING AIRCRAFT;

EID: 84947648737     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2012.2228275     Document Type: Article
Times cited : (205)

References (46)
  • 2
    • 78049290930 scopus 로고    scopus 로고
    • A novel technique for subpixel image classification based on support vector machine
    • Nov.
    • F. Bovolo, L. Bruzzone, and L. Carlin, "A novel technique for subpixel image classification based on support vector machine," IEEE Trans. Image Process., vol. 19, no. 11, pp. 2983-2999, Nov. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2983-2999
    • Bovolo, F.1    Bruzzone, L.2    Carlin, L.3
  • 3
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sep.
    • B. Shahshahani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.A.2
  • 4
    • 84898963451 scopus 로고    scopus 로고
    • Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
    • S. Baluja, "Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data," in Proc. NIPS, 1998, pp. 854-860.
    • (1998) Proc. NIPS , pp. 854-860
    • Baluja, S.1
  • 6
    • 0005320050 scopus 로고    scopus 로고
    • The role of unlabeled data in supervised learning
    • T. Mitchell, "The role of unlabeled data in supervised learning," in Proc. 6th Int. Colloq. Cognit. Sci., 1999, pp. 1-8.
    • (1999) Proc. 6th Int. Colloq. Cognit. Sci. , pp. 1-8
    • Mitchell, T.1
  • 7
    • 29344468051 scopus 로고    scopus 로고
    • A hybrid generative/discriminative approach to semi-supervised classifier design
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • A. Fujino, N. Ueda, and K. Saito, "A hybrid generative/ discriminative approach to semi-supervised classifier design," in Proc. 20th Nat. Conf. Artif. Intell., 2005, vol. 2, pp. 764-769. (Pubitemid 43006701)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 764-769
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 10
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • J. D. Cowan, G. Tesauro, and J. J. Alspector, Eds
    • V. R. de Sa, "Learning classification with unlabeled data," in Proc. NIPS, J. D. Cowan, G. Tesauro, and J. J. Alspector, Eds., 1993, pp. 112-119.
    • (1993) Proc. NIPS , pp. 112-119
    • De Sa, V.R.1
  • 13
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th ICML, 1999, pp. 200-209.
    • (1999) Proc. 16th ICML , pp. 200-209
    • Joachims, T.1
  • 14
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc. 18th ICML, 2001, pp. 19-26.
    • (2001) Proc. 18th ICML , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 15
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Madison, WI, Tech. Rep. 1530
    • X. Zhu, "Semi-supervised learning literature survey," Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530, 2005.
    • (2005) Comput. Sci., Univ. Wisconsin-Madison
    • Zhu, X.1
  • 17
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for the semisupervised classification of remote-sensing images
    • Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for the semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 18
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graphbased hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. B. Marsheva, and D. Zhou, "Semi-supervised graphbased hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Marsheva, T.B.2    Zhou, D.3
  • 19
    • 65049083029 scopus 로고    scopus 로고
    • Improving hyperspectral image classification using spatial preprocessing
    • Apr.
    • S. Velasco-Forero and V. Manian, "Improving hyperspectral image classification using spatial preprocessing," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 297-301, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 297-301
    • Velasco-Forero, S.1    Manian, V.2
  • 20
    • 65049084094 scopus 로고    scopus 로고
    • Semisupervised remote sensing image classification with cluster kernels
    • Apr.
    • D. Tuia and G. Camps-Valls, "Semisupervised remote sensing image classification with cluster kernels," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 224-228, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 224-228
    • Tuia, D.1    Camps-Valls, G.2
  • 22
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 23
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples
    • Jul.
    • L. Bruzzone and C. Persello, "A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2142-2154, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 24
    • 77954757586 scopus 로고    scopus 로고
    • Semisupervised one-class support vector machines for classification of remote sensing data
    • Aug.
    • J. Muñoz Marí, F. Bovolo, L. Gómez-Chova, L. Bruzzone, and G. Camp-Valls, "Semisupervised one-class support vector machines for classification of remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 8, pp. 3188-3197, Aug. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.8 , pp. 3188-3197
    • Muñoz Marí, J.1    Bovolo, F.2    Gómez-Chova, L.3    Bruzzone, L.4    Camp-Valls, G.5
  • 26
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • Mar.
    • D. Tuia and G. Camps-Valls, "Urban image classification with semisupervised multiscale cluster kernels," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 1, pp. 65-74, Mar. 2011.
    • (2011) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 27
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • May
    • F. Ratle, G. Camps-Valls, and J. Weston, "Semisupervised neural networks for efficient hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271-2282, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 28
    • 84867060971 scopus 로고    scopus 로고
    • Semisupervised classification of remote sensing images with active queries
    • Oct.
    • M. Munoz-Marí, D. Tuia, and G. Camps-Valls, "Semisupervised classification of remote sensing images with active queries," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3751-3763, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 3751-3763
    • Munoz-Marí, M.1    Tuia, D.2    Camps-Valls, G.3
  • 29
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 31
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun.
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 32
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • Jun.
    • W. Di and M. M. Crawford, "Active learning via multi-view and local proximity co-regularization for hyperspectral image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 618-628, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 618-628
    • Di, W.1    Crawford, M.M.2
  • 33
    • 84858080696 scopus 로고    scopus 로고
    • A batch-mode active learning technique based on multiple uncertainty for SVM classifier
    • May
    • S. Patra and L. Bruzzone, "A batch-mode active learning technique based on multiple uncertainty for SVM classifier," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 497-501, May 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 497-501
    • Patra, S.1    Bruzzone, L.2
  • 35
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • DOI 10.1109/TGRS.2004.842478
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 480-491, Mar. 2005. (Pubitemid 40320270)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 36
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • Mar.
    • D. Böhning, "Multinomial logistic regression algorithm," Ann. Inst. Statist. Math., vol. 44, no. 1, pp. 197-200, Mar. 1992.
    • (1992) Ann. Inst. Statist. Math. , vol.44 , Issue.1 , pp. 197-200
    • Böhning, D.1
  • 37
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 39
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 40
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 42
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for support vector machines
    • Cambridge, MA: MIT Press
    • J. Platt, "Probabilities for support vector machines," in Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 2000, pp. 61-74.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 43
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multiclass classification by pairwise coupling
    • Dec.
    • T.-F. Wu, C.-J. Lin, and R. C. Weng, "Probability estimates for multiclass classification by pairwise coupling," J. Mach. Learn. Res., vol. 5, pp. 975-1005, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 44
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.