메뉴 건너뛰기




Volumn 50, Issue 5 PART 2, 2012, Pages 1942-1954

View generation for multiview maximum disagreement based active learning for hyperspectral image classification

Author keywords

Active learning (AL); classification; feature space bagging (FSB); hyperspectral data; multiview learning (MVL); view generation (VG)

Indexed keywords

ACTIVE LEARNING; FEATURE SPACE; HYPERSPECTRAL DATA; MULTI-VIEW LEARNING; VIEW GENERATION;

EID: 84860318734     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2168566     Document Type: Article
Times cited : (115)

References (48)
  • 4
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • Apr.
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 7
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • Jun.
    • W. Di and M. Crawford, "Active learning via multi-view and local proximity co-regularization for hyperspectral image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 618-628, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 618-628
    • Di, W.1    Crawford, M.2
  • 9
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • Stanford, CA, Jun. 20-Jul. 2
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. 17th Int. Conf. Mach. Learn., Stanford, CA, Jun. 20-Jul. 2 2000, pp. 839-846.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 10
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res. Arch., vol. 2, pp. 45-66, 2002.
    • (2002) J. Mach. Learn. Res. Arch. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 11
    • 68949137209 scopus 로고    scopus 로고
    • Univ. Wisconsin-Madison, Madison, WI, CS Tech. Rep. 1648
    • B. Settles, "Active learning literature survey," Univ. Wisconsin-Madison, Madison, WI, CS Tech. Rep. 1648, 2010.
    • (2010) Active Learning Literature Survey
    • Settles, B.1
  • 12
    • 78650869390 scopus 로고    scopus 로고
    • A literature survey of active machine learning in the context of natural language processing
    • Kista, Sweden, SICS Tech. Rep. T2009: 06
    • F. Olsson, "A literature survey of active machine learning in the context of natural language processing," Swedish Inst. Comput. Sci., Kista, Sweden, SICS Tech. Rep. T2009:06, 2009.
    • (2009) Swedish Inst. Comput. Sci.
    • Olsson, F.1
  • 13
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • V. R. de Sa, "Learning classification with unlabeled data," in Proc. Adv. Neural Inf. Process. Syst., 1994, vol. 6, pp. 112-119.
    • (1994) Proc. Adv. Neural Inf. Process. Syst. , vol.6 , pp. 112-119
    • De Sa, V.R.1
  • 14
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • Apr.
    • M. Ferecatu and N. Boujemaa, "Interactive remote-sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 15
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun.
    • D. Tuis, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuis, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 16
    • 67649763976 scopus 로고    scopus 로고
    • An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis
    • Boston, MA, Jul. 6-11
    • G. Jun and J. Ghosh, "An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Boston, MA, Jul. 6-11, 2008, pp. I-52-I-55.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp.
    • Jun, G.1    Ghosh, J.2
  • 17
    • 68949155363 scopus 로고    scopus 로고
    • A self-training approach to cost sensitive uncertainty sampling
    • Sep.
    • A. Liu, G. Jun, and J. Ghosh, "A self-training approach to cost sensitive uncertainty sampling," Mach. Learn. J., vol. 76, no. 2/3, pp. 257-270, Sep. 2009.
    • (2009) Mach. Learn. J. , vol.76 , Issue.2-3 , pp. 257-270
    • Liu, A.1    Jun, G.2    Ghosh, J.3
  • 18
    • 77950938874 scopus 로고    scopus 로고
    • Active learning of hyperspectral data with spatially dependent label acquisition costs
    • Cape Town, South Africa
    • A. Liu, G. Jun, and J. Ghosh, "Active learning of hyperspectral data with spatially dependent label acquisition costs," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Cape Town, South Africa, 2009, pp. V-256-V-259.
    • (2009) Proc. IEEE Int. Geosci. Remote Sens. Symp.
    • Liu, A.1    Jun, G.2    Ghosh, J.3
  • 19
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 20
    • 78649286256 scopus 로고    scopus 로고
    • Locally consistent graph regularization based active learning for hyperspectral image classification
    • Reykjavik, Iceland, Jun. 14- 16
    • W. Di and M. Crawford, "Locally consistent graph regularization based active learning for hyperspectral image classification," in Proc. 2nd IEEE Workshop Hyperspectral Image Signal Process., Evol. Remote Sens., Reykjavik, Iceland, Jun. 14-16, 2010, pp. 1-4.
    • (2010) Proc. 2nd IEEE Workshop Hyperspectral Image Signal Process., Evol. Remote Sens. , pp. 1-4
    • Di, W.1    Crawford, M.2
  • 21
    • 78650907095 scopus 로고    scopus 로고
    • Multi-view adaptive disagreement based active learning for hyperspectral image classification
    • Honolulu, HI, Jul. 25-30
    • W. Di and M. Crawford, "Multi-view adaptive disagreement based active learning for hyperspectral image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Honolulu, HI, Jul. 25-30, 2010, pp. 1374-1377.
    • (2010) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 1374-1377
    • Di, W.1    Crawford, M.2
  • 22
    • 79955632976 scopus 로고    scopus 로고
    • A fast cluster-assumption based active learning technique for classification of remote sensing images
    • May
    • S. Patra and L. Bruzzone, "A fast cluster-assumption based active learning technique for classification of remote sensing images," IEEE Trans. Geosci. Remote Sen., vol. 49, no. 5, pp. 1617-1626, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sen. , vol.49 , Issue.5 , pp. 1617-1626
    • Patra, S.1    Bruzzone, L.2
  • 23
    • 79952041537 scopus 로고    scopus 로고
    • Batch mode active learning methods for the interactive classification of remote sensing images
    • Mar.
    • B. Demir, C. Persello, and L. Bruzzone, "Batch mode active learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 24
    • 9944254253 scopus 로고    scopus 로고
    • Detection of buried targets via active selection of labeled data: Application to sensing subsurface UXO
    • Nov.
    • Y. Zhang, X. Liao, and L. Carin, "Detection of buried targets via active selection of labeled data: Application to sensing subsurface UXO," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 11, pp. 2535-2543, Nov. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.11 , pp. 2535-2543
    • Zhang, Y.1    Liao, X.2    Carin, L.3
  • 25
    • 50549095916 scopus 로고    scopus 로고
    • Detection of unexploded ordnance via efficient semisupervised and active learning
    • Sep.
    • Q. Liu, X. Liao, and L. Carin, "Detection of unexploded ordnance via efficient semisupervised and active learning," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 9, pp. 2558-2567, Sep. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.9 , pp. 2558-2567
    • Liu, Q.1    Liao, X.2    Carin, L.3
  • 28
    • 0001025146 scopus 로고    scopus 로고
    • Query learning strategies using boosting and bagging
    • Madison, WI, Jul. 24-27
    • N. Abe and H. Mamitsuka, "Query learning strategies using boosting and bagging," in Proc. 15th Int. Conf. Mach. Learn.,Madison, WI, Jul. 24-27, 1998, pp. 1-9.
    • (1998) Proc. 15th Int. Conf. Mach. Learn. , pp. 1-9
    • Abe, N.1    Mamitsuka, H.2
  • 30
    • 14344251601 scopus 로고    scopus 로고
    • Diverse ensembles for active learning
    • Banff, AB, Canada, Jul. 4-8
    • P. Melville and R. Mooney, "Diverse ensembles for active learning," in Proc. Int. Conf. Mach. Learn., Banff, AB, Canada, Jul. 4-8, 2004, pp. 584-591.
    • (2004) Proc. Int. Conf. Mach. Learn. , pp. 584-591
    • Melville, P.1    Mooney, R.2
  • 31
    • 84880832861 scopus 로고    scopus 로고
    • Constructing diverse classifier ensembles using artificial training examples
    • Acapulco, Mexico, Aug. 9-15
    • P. Melville and R. Mooney, "Constructing diverse classifier ensembles using artificial training examples," in Proc. 18th Int. Joint Conf. Artif. Intell., Acapulco, Mexico, Aug. 9-15, 2003, pp. 505-510.
    • (2003) Proc. 18th Int. Joint Conf. Artif. Intell. , pp. 505-510
    • Melville, P.1    Mooney, R.2
  • 33
    • 42649132098 scopus 로고    scopus 로고
    • The value of agreement: A new boosting algorithm
    • Jun.
    • B. Leskes and L. Torenvliet, "The value of agreement: A new boosting algorithm," J. Comput. Syst. Sci., vol. 74, no. 4, pp. 557-586, Jun. 2008.
    • (2008) J. Comput. Syst. Sci. , vol.74 , Issue.4 , pp. 557-586
    • Leskes, B.1    Torenvliet, L.2
  • 34
    • 0038808753 scopus 로고    scopus 로고
    • Input decimated ensembles
    • K. Tumer and C. N. Oza, "Input decimated ensembles," Pattern Anal. Appl., vol. 6, no. 1, pp. 65-77, 2003.
    • (2003) Pattern Anal. Appl. , vol.6 , Issue.1 , pp. 65-77
    • Tumer, K.1    Oza, C.N.2
  • 35
    • 33748005672 scopus 로고    scopus 로고
    • Decomposition in data mining: An industrial case study
    • Oct.
    • A. Kusiak, "Decomposition in data mining: An industrial case study," IEEE Trans. Electron. Packag. Manuf., vol. 23, no. 4, pp. 345-353, Oct. 2000.
    • (2000) IEEE Trans. Electron. Packag. Manuf. , vol.23 , Issue.4 , pp. 345-353
    • Kusiak, A.1
  • 36
    • 3242746592 scopus 로고    scopus 로고
    • Adaptive view validation: A first step towards automatic view detection
    • Sydney, Australia
    • I. Muslea, S. Minton, and C. A. Knoblock, "Adaptive view validation: A first step towards automatic view detection," in Proc. 19th Int. Conf. Mach. Learn., Sydney, Australia, 2002, pp. 443-450.
    • (2002) Proc. 19th Int. Conf. Mach. Learn. , pp. 443-450
    • Muslea, I.1    Minton, S.2    Knoblock, C.A.3
  • 37
    • 3242788638 scopus 로고    scopus 로고
    • Active + semi-supervised learning=robust multi-view learning
    • Sydney, Australia
    • I. Muslea, S. Minton, and C. Knoblock, "Active + semi-supervised learning=robust multi-view learning," in Proc. 19th Int. Conf. Mach. Learn., Sydney, Australia, 2002, pp. 435-442.
    • (2002) Proc. 19th Int. Conf. Mach. Learn. , pp. 435-442
    • Muslea, I.1    Minton, S.2    Knoblock, C.3
  • 39
    • 85136905861 scopus 로고    scopus 로고
    • Analyzing the effectiveness and applicability of co-training
    • McLean, VA, Nov. 6-11
    • K. Nigam and R. Ghani, "Analyzing the effectiveness and applicability of co-training," in Proc. Int. Conf. Inf. Knowl. Manage., McLean, VA, Nov. 6-11, 2000, pp. 86-93.
    • (2000) Proc. Int. Conf. Inf. Knowl. Manage. , pp. 86-93
    • Nigam, K.1    Ghani, R.2
  • 40
    • 84898930761 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • M. Balcan, A. Blum, and K. Yang, "Co-training and expansion: Towards bridging theory and practice," in Proc. Adv. Neural Inf. Process. Syst., 2005, vol. 17, pp. 89-96.
    • (2005) Proc. Adv. Neural Inf. Process. Syst. , vol.17 , pp. 89-96
    • Balcan, M.1    Blum, A.2    Yang, K.3
  • 41
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Sep.
    • Z. Zhou and M. Li, "Semi-supervised learning by disagreement," Knowl. Inf. Syst., vol. 24, no. 3, pp. 415-439, Sep. 2009.
    • (2009) Knowl. Inf. Syst. , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.1    Li, M.2
  • 42
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, no. 1, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.1 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 43
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, CA
    • J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math. Statist. Prob., Berkeley, CA, 1967, vol. 1, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math. Statist. Prob. , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 44
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • R. Bryll, R. Gutierrez-Osuna, and F. Quek, "Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets," Pattern Recognit., vol. 36, no. 6, pp. 1291-1302, 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 45
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug.
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 47
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Oct.
    • N. Japkowicz and S. Stephen, "The class imbalance problem: A systematic study," Intell. Data Anal. J., vol. 6, no. 5, pp. 429-450, Oct. 2002.
    • (2002) Intell. Data Anal. J. , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.