메뉴 건너뛰기




Volumn 6, Issue 2, 2013, Pages 831-839

An improved FCM algorithm based on the svdd for unsupervised hyperspectral data classification

Author keywords

Clustering; FCM; hyperspectral data; kernel function; SVDD

Indexed keywords

CLUSTERING; FCM; HYPERSPECTRAL DATA; KERNEL FUNCTION; SVDD;

EID: 84877920337     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2244851     Document Type: Article
Times cited : (53)

References (41)
  • 1
    • 0021892045 scopus 로고
    • Imaging spectrometry for earth remote sensing
    • A. F. H. Goetz,G. Vane, J. E. Solomon, andB. N. Rock, "Imaging spectrometry for earth remote sensing," Science, vol. 228, pp. 1147-1153, 1985.
    • (1985) Science , vol.228 , pp. 1147-1153
    • Goetz, A.F.H.1    Vane, G.2    Solomon, J.E.3    Rock, A.N.4
  • 4
    • 12844275025 scopus 로고    scopus 로고
    • A semilabeled-sample-driven bagging technique for Ill-posed classification problems
    • DOI 10.1109/LGRS.2004.841478
    • C. Mingmin and L. Bruzzone, "A semilabeled-sample-driven bagging technique for ill-posed classification problems," IEEE Geosci. Remote Sens. Lett. , vol. 2, pp. 69-73, 2005. (Pubitemid 40162808)
    • (2005) IEEE Geoscience and Remote Sensing Letters , vol.2 , Issue.1 , pp. 69-73
    • Chi, M.1    Bruzzone, L.2
  • 5
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • L. Bruzzone, M. Chi, andM. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens. , vol. 44, pp. 3363-3373, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 6
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens. , vol. 43, pp. 492-501, 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 7
    • 70549090027 scopus 로고    scopus 로고
    • Clustering of hyperspectral images based on multiobjective particle swarm optimization
    • A. Paoli, F. Melgani, and E. Pasolli, "Clustering of hyperspectral images based on multiobjective particle swarm optimization," IEEE Trans. Geosci. Remote Sens. , vol. 47, pp. 4175-4188, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 4175-4188
    • Paoli, A.1    Melgani, F.2    Pasolli, E.3
  • 9
    • 48749117318 scopus 로고    scopus 로고
    • Remote sensing image classification based on improved fuzzy C-means
    • J. Yu, P. Guo, P. Chen, Z. Zhang, and W. Ruan, "Remote sensing image classification based on improved fuzzy C-means," Geo-Spatial Information Science, vol. 11, pp. 90-94, 2008.
    • (2008) Geo-Spatial Information Science , vol.11 , pp. 90-94
    • Yu, J.1    Guo, P.2    Chen, P.3    Zhang, Z.4    Ruan, W.5
  • 12
    • 0036401372 scopus 로고    scopus 로고
    • Non gaussian models for hyperspectral algorithm design and assessment
    • D. Manolakis and D. Marden, "Non gaussian models for hyperspectral algorithm design and assessment," in IGARSS, 2002, vol. 3, pp. 1664-1666.
    • IGARSS, 2002 , vol.3 , pp. 1664-1666
    • Manolakis, D.1    Marden, D.2
  • 13
    • 1242332729 scopus 로고    scopus 로고
    • Unsupervised classification of hyperspectral data: An ICA mixture model based approach
    • DOI 10.1080/01431160310001618040
    • C. A. Shah, M. K. Arora, and P. K. Varshney, "Unsupervised classification of hyperspectral data: An ICA mixture model based approach," Int. J. Remote Sens. , vol. 25, pp. 481-487, Jan. 1, 2004, 2004. (Pubitemid 38215771)
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.2 , pp. 481-487
    • Shah, C.A.1    Arora, M.K.2    Varshney, P.K.3
  • 14
    • 55649103940 scopus 로고    scopus 로고
    • Unsupervised classification of hyperspectral-image data using fuzzy approaches that spatially exploit membership relations
    • G. Bilgin, S. Erturk, and T. Yildirim, "Unsupervised classification of hyperspectral-image data using fuzzy approaches that spatially exploit membership relations," IEEE Geosci. Remote Sens. Lett. , vol. 5, pp. 673-677, 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , pp. 673-677
    • Bilgin, G.1    Erturk, S.2    Yildirim, T.3
  • 15
    • 66549097731 scopus 로고    scopus 로고
    • A novel fuzzy C-means method for hyperspectral image classification
    • B. C. Kuo, H. Y. Huang, H. Liu, and S. C. Tseng, "A novel fuzzy C-means method for hyperspectral image classification," in IGARSS, 2008, pp. 1002-1005.
    • IGARSS, 2008 , pp. 1002-1005
    • Kuo, B.C.1    Huang, H.Y.2    Liu, H.3    Tseng, S.C.4
  • 16
    • 15944426422 scopus 로고    scopus 로고
    • Hierarchical clustering approach for unsupervised image classification of hyperspectral data
    • S. Lee and M. M. Crawford, "Hierarchical clustering approach for unsupervised image classification of hyperspectral data," in IGARSS, 2004, pp. 941-944.
    • IGARSS, 2004 , pp. 941-944
    • Lee, S.1    Crawford, M.M.2
  • 17
    • 84877620035 scopus 로고    scopus 로고
    • Kent Mixture Model for Hyperspectral Clustering via Cosine Pixel Coordinates on Spherical Manifolds
    • D. Lunga and O. Ersoy, "Kent Mixture Model for Hyperspectral Clustering via Cosine Pixel Coordinates on Spherical Manifolds," Purdue Univ. , ECE Technical Reports, vol. 11, 2011.
    • (2011) Purdue Univ. , ECE Technical Reports , vol.11
    • Lunga, D.1    Ersoy, O.2
  • 18
    • 79960900589 scopus 로고    scopus 로고
    • Segmentation of hyperspectral images via subtractive clustering and cluster validation using one-class support vector machines
    • G. Bilgin, S. Erturk, and T. Yildirim, "Segmentation of hyperspectral images via subtractive clustering and cluster validation using one-class support vector machines," IEEE Trans. Geosci. Remote Sens. , vol. 49, pp. 2936-2944, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 2936-2944
    • Bilgin, G.1    Erturk, S.2    Yildirim, T.3
  • 20
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens. , vol. 43, pp. 1351-1362, 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 21
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens. , vol. 42, pp. 1778-1790, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 22
    • 34547399927 scopus 로고    scopus 로고
    • A support vector domain description approach to supervised classification of remote sensing images
    • DOI 10.1109/TGRS.2007.897425
    • J. Muñoz-Marí, L. Bruzzone, and G. Camps-Vails, "A support vector domain description approach to supervised classification of remote sensing images," IEEE Trans. Geosci. Remote Sens. , vol. 45, pp. 2683-2692, 2007. (Pubitemid 47171196)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.8 , pp. 2683-2692
    • Munoz-Mari, J.1    Bruzzone, L.2    Camps-Valls, G.3
  • 25
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu and D. Wunsch, "Survey of clustering algorithms," IEEE Trans. Neural Netw. , vol. 16, pp. 645-678, 2005. (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 27
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • D. M. J. Tax and R. P. W. Duin, "Support vector domain description," Pattern Recognit. Lett. , vol. 20, pp. 1191-1199, 1999. (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 28
    • 0001986205 scopus 로고    scopus 로고
    • Data domain description by support vectors
    • M. Verleysen, Ed. , , Brussels: D. Facto Press
    • D. Tax and R. Duin, "Data domain description by support vectors," in Proc. ESANN, M. Verleysen, Ed. , 1999, pp. 251-256, Brussels: D. Facto Press.
    • (1999) Proc. ESANN , pp. 251-256
    • Tax, D.1    Duin, R.2
  • 30
    • 84877925516 scopus 로고    scopus 로고
    • Kernel Classiers from aMachine Learning Perspective
    • T. G. Dietterich, Ed. Boston, MA, USA: MIT Press, 2002
    • R. Herbrich, "Kernel Classiers from aMachine Learning Perspective," in Learning Kernel Classiers: Theory and Algorithms, T. G. Dietterich, Ed. Boston, MA, USA: MIT Press, 2002, pp. 17-68.
    • Learning Kernel Classiers: Theory and Algorithms , pp. 17-68
    • Herbrich, R.1
  • 31
    • 84877923379 scopus 로고
    • AVIRIS Image Indian Pine Test Site
    • AVIRIS Image Indian Pine Test Site. 1992 [Online] . Available: http://cobweb. ecn. purdue. edu/~biehl/MultiSpec/hyperspectral. html
    • (1992)
  • 34
    • 1942528752 scopus 로고    scopus 로고
    • Results of the EO-1 experiment-use of earth observing-1 advanced land imager (ALI) data to assess the vegetational response to flooding in the Okavango Delta, Botswana
    • A. Neuenschwander, M. Crawford, and S. Ringrose, "Results of the EO-1 experiment-use of earth observing-1 advanced land imager (ALI) data to assess the vegetational response to flooding in the Okavango Delta, Botswana," Int. J. Remote Sens. , 2005.
    • (2005) Int. J. Remote Sens
    • Neuenschwander, A.1    Crawford, M.2    Ringrose, S.3
  • 37
    • 79956106285 scopus 로고    scopus 로고
    • Learning low-rank kernel matrices for constrained clustering
    • M. S. Baghshah and S. B. Shouraki, "Learning low-rank kernel matrices for constrained clustering," Neurocomputing, vol. 74, pp. 2201-2211, 2011.
    • (2011) Neurocomputing , vol.74 , pp. 2201-2211
    • Baghshah, M.S.1    Shouraki, S.B.2
  • 38
    • 41549129009 scopus 로고    scopus 로고
    • Multiscale unsupervised segmentation of SAR imagery using the genetic algorithm
    • X. B. Wen, H. Zhang, and Z. T. Jiang, "Multiscale unsupervised segmentation of SAR imagery using the genetic algorithm," Sensors, vol. 8, pp. 1704-1711, 2008.
    • (2008) Sensors , vol.8 , pp. 1704-1711
    • Wen, X.B.1    Zhang, H.2    Jiang, Z.T.3
  • 40
    • 0030214781 scopus 로고    scopus 로고
    • The possibilistic C-means algorithm: Insights and recommendations
    • PII S1063670696056238
    • R. Krishnapuram and J. M. Keller, "The possibilistic C-means algorithm: Insights and recommendations," IEEE Trans. Fuzzy Syst. , vol. 4, pp. 385-393, 1996. (Pubitemid 126777754)
    • (1996) IEEE Transactions on Fuzzy Systems , vol.4 , Issue.3 , pp. 385-393
    • Krishnapuram, R.1    Keller, J.M.2
  • 41
    • 0842300534 scopus 로고    scopus 로고
    • Clustering incomplete data using kernelbased fuzzy C-means algorithm
    • D. Q. Zhang and S. C. Chen, "Clustering incomplete data using kernelbased fuzzy C-means algorithm," Neural Process. Lett. , vol. 18, pp. 155-162, 2003.
    • (2003) Neural Process. Lett , vol.18 , pp. 155-162
    • Zhang, D.Q.1    Chen, S.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.