-
1
-
-
84888349041
-
Hyperspectral remote sensing data analysis and future challenges
-
Jun.
-
J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, "Hyperspectral remote sensing data analysis and future challenges," IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6-36, Jun. 2013.
-
(2013)
IEEE Geosci. Remote Sens. Mag.
, vol.1
, Issue.2
, pp. 6-36
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
Camps-Valls, G.3
Scheunders, P.4
Nasrabadi, N.5
Chanussot, J.6
-
3
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
Jan.
-
G. H. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, Jan. 1968.
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, Issue.1
, pp. 55-63
-
-
Hughes, G.H.1
-
4
-
-
0024716579
-
Effects of sample size in classifier design
-
Aug.
-
K. Fukunaga and R. R. Hayes, "Effects of sample size in classifier design," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 8, pp. 873-885, Aug. 1989.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.11
, Issue.8
, pp. 873-885
-
-
Fukunaga, K.1
Hayes, R.R.2
-
6
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Aug.
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
7
-
-
84873118031
-
Customizing kernel functions for SVM-based hyperspectral image classification
-
B. Guo, S. Gunn, R. Damper, and J. Nelson, "Customizing kernel functions for SVM-based hyperspectral image classification," IEEE Trans. Image Process., vol. 44, pp. 2839-2846, 2008.
-
(2008)
IEEE Trans. Image Process.
, vol.44
, pp. 2839-2846
-
-
Guo, B.1
Gunn, S.2
Damper, R.3
Nelson, J.4
-
8
-
-
80052740627
-
Aspatial-spectral kernelbased approach for the classification of remote-sensing images
-
M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Aspatial-spectral kernelbased approach for the classification of remote-sensing images," Pattern Recognit., vol. 45, pp. 381-392, 2012.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 381-392
-
-
Fauvel, M.1
Chanussot, J.2
Benediktsson, J.A.3
-
9
-
-
84956689194
-
Kernel principal component analysis
-
B. Schölkopf, A. Smola, and K. R. Müller, "Kernel principal component analysis," in Proc. Int. Conf. Artificial Neural Networks (ICANN), vol. 1327, 1997, pp. 583-588.
-
(1997)
Proc. Int. Conf. Artificial Neural Networks (ICANN)
, vol.1327
, pp. 583-588
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.R.3
-
10
-
-
21844459752
-
Diffusion kernels on statistical manifolds
-
J. Lafferty and G. Lebanon, "Diffusion kernels on statistical manifolds," J. Mach. Learn. Res., vol. 6, pp. 129-163, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 129-163
-
-
Lafferty, J.1
Lebanon, G.2
-
11
-
-
0023854011
-
Transformation for ordering multispectral data in terms of image quality with implications for noise removal
-
DOI 10.1109/36.3001
-
A. Green, M. Berman, P. Switzer, and M. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988. (Pubitemid 18596008)
-
(1988)
IEEE Transactions on Geoscience and Remote Sensing
, vol.26
, Issue.1
, pp. 65-74
-
-
Green Andrew, A.1
Berman Mark2
Switzer Paul3
Craig Maurice, D.4
-
12
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. B. Tenenbaum, V. De Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
13
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
14
-
-
84880258880
-
A novel method for hyperspectral image classification based on laplacian eigenmap pixels distribution-flow
-
Jun.
-
B. Hou, X. Zhang, Q. Ye, and Y. Zheng, "A novel method for hyperspectral image classification based on laplacian eigenmap pixels distribution-flow," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1602-1618, Jun. 2013.
-
(2013)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.6
, Issue.3
, pp. 1602-1618
-
-
Hou, B.1
Zhang, X.2
Ye, Q.3
Zheng, Y.4
-
15
-
-
14644422171
-
Exploiting manifold geometry in hyperspectral imagery
-
DOI 10.1109/TGRS.2004.842292
-
C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, "Exploiting manifold geometry in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 441-454, Mar. 2005. (Pubitemid 40320267)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.3
, pp. 441-454
-
-
Bachmann, C.M.1
Ainsworth, T.L.2
Fusina, R.A.3
-
16
-
-
33745727401
-
Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE)
-
T. Han and D. G. Goodenough, "Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE)," in Proc. IEEE Int. Conf. Geosci. Remote Sens. Symp. (IGARSS), 2005, vol. 2, pp. 1237-1240.
-
(2005)
Proc. IEEE Int. Conf. Geosci. Remote Sens. Symp. (IGARSS)
, vol.2
, pp. 1237-1240
-
-
Han, T.1
Goodenough, D.G.2
-
17
-
-
78049256476
-
Adaptive classification for hyperspectral image data using manifold regularization kernel machines
-
Nov.
-
W. Kim and M. Crawford, "Adaptive classification for hyperspectral image data using manifold regularization kernel machines," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4110-4121, Nov. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.11
, pp. 4110-4121
-
-
Kim, W.1
Crawford, M.2
-
18
-
-
78049264379
-
Local manifold learning-based knearest-neighbor for hyperspectral image classification
-
Nov.
-
M. Li, M. M. Crawford, and J. Tian, "Local manifold learning-based knearest-neighbor for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4099-4109, Nov. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.11
, pp. 4099-4109
-
-
Li, M.1
Crawford, M.M.2
Tian, J.3
-
19
-
-
1942418620
-
On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes
-
A. Y. Ng and M. I. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2001, pp. 841-848.
-
(2001)
Proc. Adv. Neural Inf. Process. Syst. (NIPS)
, pp. 841-848
-
-
Ng, A.Y.1
Jordan, M.I.2
-
20
-
-
84871822277
-
Finding rare classes: Active learning with generative and discriminative models
-
Feb.
-
T. Hospedales, S. Gong, and T. Xiang, "Finding rare classes: Active learning with generative and discriminative models," IEEE Trans. Knowl. Data Eng., vol. 25, no. 2, pp. 374-386, Feb. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.2
, pp. 374-386
-
-
Hospedales, T.1
Gong, S.2
Xiang, T.3
-
21
-
-
55849114874
-
Comment on 'On discriminative vs generative classifiers: A comparison of logistic regression and naive bayes'
-
J. H. Xue and D. M. Titterington, "Comment on 'On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes'," Neural Process. Lett., vol. 28, no. 3, pp. 1370-4621, 2008.
-
(2008)
Neural Process. Lett.
, vol.28
, Issue.3
, pp. 1370-4621
-
-
Xue, J.H.1
Titterington, D.M.2
-
22
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
DOI 10.1109/TGRS.2005.846154
-
G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
24
-
-
80052400558
-
PerTurbo: A new classification algorithm based on the spectrum perturbations of the Laplace-Beltrami operator
-
N. Courty, T. Burger, and L. Johann, "PerTurbo: A new classification algorithm based on the spectrum perturbations of the Laplace-Beltrami operator," in Proc. Euro. Conf. Mach. Learn. Practice Principles Practice Knowl. Discovery Databases (ECML/PKDD), 2011, vol. 1, pp. 359-374.
-
(2011)
Proc. Euro. Conf. Mach. Learn. Practice Principles Practice Knowl. Discovery Databases (ECML/PKDD)
, vol.1
, pp. 359-374
-
-
Courty, N.1
Burger, T.2
Johann, L.3
-
26
-
-
84873123345
-
Classwise hyperspectral image classification with PerTurbo method
-
L. Chapel, T. Burger, N. Courty, and S. Lefèvre, "Classwise hyperspectral image classification with PerTurbo method," in Proc. IEEE Int. Conf. Geosci. Remote Sens. Symp. (IGARSS), 2012, pp. 6883-6886.
-
(2012)
Proc. IEEE Int. Conf. Geosci. Remote Sens. Symp. (IGARSS)
, pp. 6883-6886
-
-
Chapel, L.1
Burger, T.2
Courty, N.3
Lefèvre, S.4
-
28
-
-
78650309274
-
Manifold based local classifiers: Linear and nonlinear approaches
-
H. Cevikalp, D. Larlus, M. Neamtu, B. Triggs, and F. Jurie, "Manifold based local classifiers: Linear and nonlinear approaches," J. Signal Process. Syst., vol. 61, no. 1, pp. 61-73, 2010.
-
(2010)
J. Signal Process. Syst.
, vol.61
, Issue.1
, pp. 61-73
-
-
Cevikalp, H.1
Larlus, D.2
Neamtu, M.3
Triggs, B.4
Jurie, F.5
-
29
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2001, vol. 14, pp. 585-591.
-
(2001)
Proc. Adv. Neural Inf. Process. Syst. (NIPS)
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
30
-
-
84897514685
-
Covariate shift in Hilbert space: A solution via surrogate kernels
-
K. Zhang, V. Zheng, Q. Wang, J. Kwok, Q. Yang, and I. Marsic, "Covariate shift in Hilbert space: A solution via surrogate kernels," in Proc. Int. Conf. Mach. Learn. (ICML), 2013, vol. 28, pp. 388-395.
-
(2013)
Proc. Int. Conf. Mach. Learn. (ICML)
, vol.28
, pp. 388-395
-
-
Zhang, K.1
Zheng, V.2
Wang, Q.3
Kwok, J.4
Yang, Q.5
Marsic, I.6
-
33
-
-
11244352554
-
Kernlab-An S4 package for kernel methods in R
-
A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, "Kernlab-An S4 package for kernel methods in R," J. Stat. Softw., vol. 11, no. 9, pp. 1-20, 2004.
-
(2004)
J. Stat. Softw.
, vol.11
, Issue.9
, pp. 1-20
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
Zeileis, A.4
-
34
-
-
3042661357
-
Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
-
G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, 2004. (Pubitemid 39081774)
-
(2004)
Photogrammetric Engineering and Remote Sensing
, vol.70
, Issue.5
, pp. 627-633
-
-
Foody, G.M.1
|