메뉴 건너뛰기




Volumn 11, Issue 3, 2013, Pages 651-655

Semi-supervised hyperspectral image classification using spatio-spectral laplacian support vector machine

Author keywords

Hyperspectral image classification (HIC); Semi supervised classification; Spatial constraint; Spatio spectral Laplacian support vector machine (SS LapSVM)

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; LAPLACE TRANSFORMS; SPECTROSCOPY; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84883080198     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2013.2273792     Document Type: Article
Times cited : (117)

References (18)
  • 1
    • 79957510526 scopus 로고    scopus 로고
    • A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification
    • Jun.
    • C. C. Hung, S. Kulkarni, and B. C. Kuo, "A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 543-553, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 543-553
    • Hung, C.C.1    Kulkarni, S.2    Kuo, B.C.3
  • 2
    • 82155191285 scopus 로고    scopus 로고
    • Hyperspectral image classification with independent component discriminant analysis
    • Dec.
    • A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, "Hyperspectral image classification with independent component discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4865-4876, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 4865-4876
    • Villa, A.1    Benediktsson, J.A.2    Chanussot, J.3    Jutten, C.4
  • 3
    • 79957643015 scopus 로고    scopus 로고
    • Robust hyperspectral classification using relevance vector machine
    • Jun.
    • F. A. Mianji and Y. Zhang, "Robust hyperspectral classification using relevance vector machine," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2100-2112, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2100-2112
    • Mianji, F.A.1    Zhang, Y.2
  • 5
    • 84869489944 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression
    • Mar.
    • J. Li, J. M. B. Dias, and A. Plaza, "Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 318-322, Mar. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.2 , pp. 318-322
    • Li, J.1    Dias, J.M.B.2    Plaza, A.3
  • 6
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote sensing images
    • Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 7
    • 84873196937 scopus 로고    scopus 로고
    • L1-graph semisupervised learning for hyperspectral image classification
    • Munich, Germany
    • Y. F. Gu and K. Feng, "L1-graph semisupervised learning for hyperspectral image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Munich, Germany, 2012, pp. 1401-1404.
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 1401-1404
    • Gu, Y.F.1    Feng, K.2
  • 8
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Dec.
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Dec. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 9
    • 47849095828 scopus 로고    scopus 로고
    • Semisupervised image classification with Laplacian support vector machines
    • Jul.
    • L. Gomez-Chova, G. Camps-Valls, J. Muñoz-Mari, and J. Calpe, "Semisupervised image classification with Laplacian support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 336-340, Jul. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.3 , pp. 336-340
    • Gomez-Chova, L.1    Camps-Valls, G.2    Muñoz-Mari, J.3    Calpe, J.4
  • 10
    • 78049256476 scopus 로고    scopus 로고
    • Adaptive classification for hyperspectral image data using manifold regularization kernel machines
    • Nov.
    • W. Kim and M. M. Crawford, "Adaptive classification for hyperspectral image data using manifold regularization kernel machines," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4110-4121, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4110-4121
    • Kim, W.1    Crawford, M.M.2
  • 11
    • 84896059238 scopus 로고    scopus 로고
    • Spectral-spatial pixel characterization using Gabor filters for hyperspectral image classification
    • Jul.
    • O. Rajadell, P. García-Sevilla, and F. Pla, "Spectral-spatial pixel characterization using Gabor filters for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 860-864, Jul. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 860-864
    • Rajadell, O.1    García-Sevilla, P.2    Pla, F.3
  • 12
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 13
    • 0001300995 scopus 로고
    • Regularization of incorrectly posed problems
    • A. N. Tikhonov, "Regularization of incorrectly posed problems," Numer. Funct. Anal. Optim., vol. 21, no. 4, pp. 1624-1627, 1963.
    • (1963) Numer. Funct. Anal. Optim. , vol.21 , Issue.4 , pp. 1624-1627
    • Tikhonov, A.N.1
  • 15
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • Feb.
    • S. Melacci and M. Belkin, "Laplacian support vector machines trained in the primal," J. Mach. Learn. Res., vol. 12, no. 3, pp. 1149-1184, Feb. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , Issue.3 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 16
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Dec.
    • S. S. Keerthi, O. Chapelle, and D. De Coste, "Building support vector machines with reduced classifier complexity," J. Mach. Learn. Res., vol. 7, pp. 1493-1515, Dec. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1    Chapelle, O.2    De Coste, D.3
  • 17
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Washington, DC, USA
    • J. A. Gualtieri and R. F. Cromp, "Support vector machines for hyperspectral remote sensing classification," in Proc. SPIE 3584, 27th AIPR Workshop, Washington, DC, USA, 1998, pp. 221-232.
    • (1998) Proc. SPIE 3584, 27th AIPR Workshop , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.