메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 2044-2055

Modified co-training with spectral and spatial views for semisupervised hyperspectral image classification

Author keywords

Co training; Gabor wavelet; hyperspectral image classification; sample selection; semisupervised learning

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; SPECTROSCOPY; SUPERVISED LEARNING;

EID: 84905913722     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2325741     Document Type: Article
Times cited : (77)

References (32)
  • 1
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 2
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 3
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images classification of hyperspectral Images
    • Oct.
    • Y. Tarabalka,M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images classification of hyperspectral Images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 5
    • 73249137938 scopus 로고    scopus 로고
    • Gaussian process approach to remote sensing image classification
    • Jan.
    • Y. Bazi and F. Melgani, "Gaussian process approach to remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 186-197, Jan. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.1 , pp. 186-197
    • Bazi, Y.1    Melgani, F.2
  • 6
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • DOI 10.1109/36.975001, PII S0196289201108776
    • Q. Jackson and D. Landgrebe, "An adaptive classifier design for high dimensional data analysis with a limited training dataset," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 7
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for the semi-supervised classification of remote-sensing images
    • Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for the semi-supervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 9
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. Bandos, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 10
    • 77951295198 scopus 로고    scopus 로고
    • Semi-supervised neural networks for efficient hyperspectral image classification
    • May
    • F. Ratle, G. Camps-Valls, and J. Weston, "Semi-supervised neural networks for efficient hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271-2282, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 11
    • 77950296222 scopus 로고    scopus 로고
    • Semi-supervised learning for tree-structured ensembles of RBF networks with co-training
    • May
    • M. F. A. Hady, F. Schwenker, and G. Palm, "Semi-supervised learning for tree-structured ensembles of RBF networks with co-training," Neural Netw., vol. 23, no. 4, pp. 497-509, May 2010.
    • (2010) Neural Netw , vol.23 , Issue.4 , pp. 497-509
    • Hady, M.F.A.1    Schwenker, F.2    Palm, G.3
  • 14
  • 16
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • DOI 10.1109/TKDE.2005.186
    • Z. Zhou and M. Li, "Tri-training: Exploiting unlabeled data using three classifiers," IEEE Trans. Knowl. Data Eng., vol. 17, no. 11, pp. 1529-1541, Nov. 2005. (Pubitemid 41704840)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 17
    • 84871847903 scopus 로고    scopus 로고
    • Hyperspectral data classification with spectral and texture features by co-training algorithm
    • J. Li, S. Jia, and Y. Peng, "Hyperspectral data classification with spectral and texture features by co-training algorithm," Opto Electron. Eng., vol. 39, no. 11, pp. 88-94, 2012.
    • (2012) Opto Electron. Eng. , vol.39 , Issue.11 , pp. 88-94
    • Li, J.1    Jia, S.2    Peng, Y.3
  • 18
    • 84874438598 scopus 로고    scopus 로고
    • Using tri-training to exploit spectral and spatial information for hyperspectral data classification
    • R. Huang and W. He, "Using tri-training to exploit spectral and spatial information for hyperspectral data classification," in Proc. Int. Conf. Comput. Vis. Remote Sens. (CVRS), 2012, pp. 30-33.
    • (2012) Proc. Int. Conf. Comput. Vis. Remote Sens. (CVRS) , pp. 30-33
    • Huang, R.1    He, W.2
  • 19
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral- spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans.Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987,Aug. 2009.
    • (2009) IEEE Trans.Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 20
    • 84864768761 scopus 로고    scopus 로고
    • Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction
    • Aug.
    • W. Liao, R. Bellens, A. Pižurica, W. Philips, and Y. Pi, "Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 4, pp. 1177-1190, Aug. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.4 , pp. 1177-1190
    • Liao, W.1    Bellens, R.2    Pižurica, A.3    Philips, W.4    Pi, Y.5
  • 21
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 22
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • DOI 10.1109/36.905239, PII S0196289201011597
    • M. Pesaresi and J. A. Benediktsson, "Anew approach for the morphological segmentation of high-resolution satellite imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309-320, Feb. 2001. (Pubitemid 32270994)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 23
    • 80052740627 scopus 로고    scopus 로고
    • Aspatial-spectral kernelbased approach for the classification of remote-sensing images
    • Jan.
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Aspatial-spectral kernelbased approach for the classification of remote-sensing images," Pattern Recognit., vol. 45, no. 1, pp. 381-392, Jan. 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 24
    • 0000293183 scopus 로고
    • Theory of communication. Part 1: The analysis of information
    • Nov.
    • D. Gabor, "Theory of communication. Part 1: The analysis of information," J. Inst. Elect. Eng. III Radio Commun. Eng., vol. 93, no. 26, pp. 429-441, Nov. 1946.
    • (1946) J. Inst. Elect. Eng. III Radio Commun. Eng. , vol.93 , Issue.26 , pp. 429-441
    • Gabor, D.1
  • 25
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervised hyperspectral band selection
    • Jan.
    • H. Yang, Q. Du, H. Su, and Y. Sheng, "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 138-142, Jan. 2011.
    • (2011) Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1    Du, Q.2    Su, H.3    Sheng, Y.4
  • 26
    • 84864768761 scopus 로고    scopus 로고
    • Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction
    • Aug.
    • W. Liao, R. Bellens, A. Pižurica, W. Philips, and Y. Pi, "Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 4, pp. 1177-1190, Aug. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.4 , pp. 1177-1190
    • Liao, W.1    Bellens, R.2    Pižurica, A.3    Philips, W.4    Pi, Y.5
  • 27
    • 84867091717 scopus 로고    scopus 로고
    • PSO-based automatic relevance determination and feature selection system for hyperspectral image classification
    • Sep.
    • X. Zhang, W. Wang, Y. Li, and L. Jiao, "PSO-based automatic relevance determination and feature selection system for hyperspectral image classification," Electron. Lett., vol. 48, pp. 1263-1265, Sep. 2012.
    • (2012) Electron. Lett. , vol.48 , pp. 1263-1265
    • Zhang, X.1    Wang, W.2    Li, Y.3    Jiao, L.4
  • 28
    • 84886588953 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction of hyperspectral images via local scaling cut criterion
    • Nov.
    • X. Zhang, Y. He, N. Zhou, and Y. Zheng, "Semisupervised dimensionality reduction of hyperspectral images via local scaling cut criterion," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 6, pp. 1547-1551, Nov. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.6 , pp. 1547-1551
    • Zhang, X.1    He, Y.2    Zhou, N.3    Zheng, Y.4
  • 29
    • 85136905861 scopus 로고    scopus 로고
    • Analyzing the effectiveness and applicability of co-training
    • K. Nigam and R. Ghani, "Analyzing the effectiveness and applicability of co-training," in Proc. 9th Int. Conf. Inf. Knowl. Manage., 2000, pp. 86-93.
    • (2000) Proc. 9th Int. Conf. Inf. Knowl. Manage. , pp. 86-93
    • Nigam, K.1    Ghani, R.2
  • 30
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • May
    • W. Di and M. M. Crawford, "View generation for multiview maximum disagreement based active learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no.5, pp.1942-1954,May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 31
    • 30344461377 scopus 로고    scopus 로고
    • MPLab Tutorials, Univ. California, San Diego, Tech. Rep. [Online]. Available:
    • J. Movellan, "Tutorial on Gabor filters," MPLab Tutorials, Univ. California, San Diego, Tech. Rep., 2005 [Online]. Available: http://mplab.ucsd.edu/tutorials/gabor.pdf
    • (2005) Tutorial on Gabor Filters
    • Movellan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.