메뉴 건너뛰기




Volumn 97, Issue , 2014, Pages 123-137

Semi-supervised classification for hyperspectral imagery based on spatial-spectral Label Propagation

Author keywords

Adaptive method; Gabor filter; Hyperspectral imagery; Label Propagation; Semi supervised classification; Spatial spectral graph

Indexed keywords

ALGORITHMS; GABOR FILTERS; GRAPHIC METHODS; REMOTE SENSING; SPECTROSCOPY; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84907507036     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2014.08.016     Document Type: Article
Times cited : (110)

References (50)
  • 1
    • 77956058584 scopus 로고    scopus 로고
    • Hyperspectral region classification using a three-dimensional Gabor filer bank
    • Bau T.C., Sarkar S., Healey G. Hyperspectral region classification using a three-dimensional Gabor filer bank. IEEE Trans. Geosci. Remote Sens. 2010, 48(9):3457-3464.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3457-3464
    • Bau, T.C.1    Sarkar, S.2    Healey, G.3
  • 2
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on manifolds
    • Belkin M., Niyogi P. Semi-supervised learning on manifolds. Machine Learning J. 2005, 56:209-239.
    • (2005) Machine Learning J. , vol.56 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Machine Learn. Res. 2006, 7:2399-2434.
    • (2006) J. Machine Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 4
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Benediktsson J.A., Palmason J.A., Sveinsson J. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43(3):480-491.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.3
  • 6
    • 78049290930 scopus 로고    scopus 로고
    • A novel technique for subpixel image classification based on support vection machine
    • Bovolo F., Bruzzone L., Carline L. A novel technique for subpixel image classification based on support vection machine. IEEE Trans. Image Process. 2010, 19(11):2983-2999.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2983-2999
    • Bovolo, F.1    Bruzzone, L.2    Carline, L.3
  • 7
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples
    • Bruzzone L., Persello C. A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples. IEEE Trans. Geosci. Remote Sens. 2009, 47(7):2142-2154.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 8
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote sensing images
    • Bruzzone L., Chi M., Marconcini M. A novel transductive SVM for semisupervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44(11):3363-3373.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 11
    • 77953177416 scopus 로고    scopus 로고
    • Sparsity Induced Similarity Measure for Label Propagation
    • Kyoto, Japan, 29 September-2 October
    • Cheng, H., Liu, Z.C., Yang, J., 2009. Sparsity Induced Similarity Measure for Label Propagation. In: IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September-2 October, pp. 317-324.
    • (2009) IEEE 12th International Conference on Computer Vision , pp. 317-324
    • Cheng, H.1    Liu, Z.C.2    Yang, J.3
  • 12
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37(1):35-46.
    • (1991) Remote Sens. Environ. , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Machine Learn. Res. 2006, 7:1-30.
    • (2006) J. Machine Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 14
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998, 10(7):1895-1923.
    • (1998) Neural Comput. , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.1
  • 17
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • Garcia S., Herrera F. An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Machine Learn. Res. 2008, 9:2677-2694.
    • (2008) J. Machine Learn. Res. , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 18
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman S., Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6 1984, 6:721-741.
    • (1984) IEEE Trans. Pattern Anal. Machine Intell. PAMI-6 , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 20
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inform. Theory IT-14 1968, 1:55-63.
    • (1968) IEEE Trans. Inform. Theory IT-14 , vol.1 , pp. 55-63
    • Hughes, G.F.1
  • 21
    • 0001938951 scopus 로고    scopus 로고
    • Transductive Inference for Text Classification Using Support Vector Machines
    • San Francisco, CA, USA
    • Joachims, T., 1999. Transductive Inference for Text Classification Using Support Vector Machines. In: Proceedings of the Sixteenth International Conference on Machine Learning, San Francisco, CA, USA, pp. 200-209.
    • (1999) Proceedings of the Sixteenth International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 22
    • 34547982360 scopus 로고    scopus 로고
    • Two-View Feature Generation Model for Semi-Supervised Learning
    • Corvallis, Oregon, USA, 20-24 June
    • Johnson, R., Zhang, T., 2007. Two-View Feature Generation Model for Semi-Supervised Learning. In: The 24th International Conference on Machine Learning, Corvallis, Oregon, USA, 20-24 June, pp. 25-32.
    • (2007) The 24th International Conference on Machine Learning , pp. 25-32
    • Johnson, R.1    Zhang, T.2
  • 24
    • 78049256476 scopus 로고    scopus 로고
    • Adaptive classification for hyperspectral image data using manifold regularization kernel machines
    • Kim W., Crawford M.M. Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans. Geosci. Remote Sens. 2010, 48(11):4110-4121.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4110-4121
    • Kim, W.1    Crawford, M.M.2
  • 26
    • 78650918992 scopus 로고    scopus 로고
    • Spatial information based support vector machine for hyperspectral image classification
    • Honolulu, HI, 25-30 July
    • Kuo, B.C., Huang, C.S., Hung, C.C., Liu, Y.L., Chen, I.L., 2010. Spatial information based support vector machine for hyperspectral image classification. Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, 25-30 July, pp. 832-835.
    • (2010) Geoscience and Remote Sensing Symposium (IGARSS) , pp. 832-835
    • Kuo, B.C.1    Huang, C.S.2    Hung, C.C.3    Liu, Y.L.4    Chen, I.L.5
  • 28
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Li J., Bioucas Dias J.M., Plaza A. Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50(3):809-823.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas Dias, J.M.2    Plaza, A.3
  • 29
    • 84869489944 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression
    • Li J., Bioucas Dias J.M., Plaza A. Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 2013, 10(2):318-322.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.2 , pp. 318-322
    • Li, J.1    Bioucas Dias, J.M.2    Plaza, A.3
  • 30
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Li J., Bioucas Dias J.M., Plaza A. Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 2013, 5(2):844-856.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.5 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas Dias, J.M.2    Plaza, A.3
  • 31
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • Melacci S., Belkin M. Laplacian support vector machines trained in the primal. J. Machine Learn. Res. 2011, 12(3):1149-1184.
    • (2011) J. Machine Learn. Res. , vol.12 , Issue.3 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 32
    • 84890734733 scopus 로고    scopus 로고
    • An innovative support vector machine based method for contextual image classification
    • Negri R.G., Dutra L.V., Sant'Anna S.J.S. An innovative support vector machine based method for contextual image classification. ISPRS J. Photogramm. Remote Sens. 2014, 87:241-248.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.87 , pp. 241-248
    • Negri, R.G.1    Dutra, L.V.2    Sant'Anna, S.J.S.3
  • 34
    • 84889654522 scopus 로고    scopus 로고
    • Contextual classification of lidar data and building object detection in urban areas
    • Niemeyer J., Rottensteiner F., Soergel U. Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sensing 2014, 87:152-165.
    • (2014) ISPRS J. Photogramm. Remote Sensing , vol.87 , pp. 152-165
    • Niemeyer, J.1    Rottensteiner, F.2    Soergel, U.3
  • 36
    • 64349105831 scopus 로고    scopus 로고
    • Managing the spectral-spatial mix in context classification using Markov random fields
    • Richards J.A., Jia X. Managing the spectral-spatial mix in context classification using Markov random fields. IEEE Geosci. Remote Sens. Lett. 2008, 5(2):311-314.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 311-314
    • Richards, J.A.1    Jia, X.2
  • 37
    • 83655191931 scopus 로고    scopus 로고
    • Supervised neighborhood graph construction for semi-supervised classification
    • Rohban M.H., Rabiee H.R. Supervised neighborhood graph construction for semi-supervised classification. Pattern Recogn. 2012, 45(4):1363-1372.
    • (2012) Pattern Recogn. , vol.45 , Issue.4 , pp. 1363-1372
    • Rohban, M.H.1    Rabiee, H.R.2
  • 39
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani B.M., Landgrebe D. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 1994, 32(5):1087-1095.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.2
  • 40
    • 33748469875 scopus 로고    scopus 로고
    • Mutual Boost learning for selecting Gabor features for face recognition
    • Shen L., Bai L. Mutual Boost learning for selecting Gabor features for face recognition. Pattern Recogn. 2006, 27(15):1758-1767.
    • (2006) Pattern Recogn. , vol.27 , Issue.15 , pp. 1758-1767
    • Shen, L.1    Bai, L.2
  • 41
    • 82155181590 scopus 로고    scopus 로고
    • Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification
    • Shen L., Jia S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49(12):5039-5046.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 5039-5046
    • Shen, L.1    Jia, S.2
  • 42
    • 33847056268 scopus 로고    scopus 로고
    • Gabor wavelets and general discriminant analysis for face identification and verification
    • Shen L., Bai L., Michael F. Gabor wavelets and general discriminant analysis for face identification and verification. Image Vis. Comput. 2007, 25(5):553-563.
    • (2007) Image Vis. Comput. , vol.25 , Issue.5 , pp. 553-563
    • Shen, L.1    Bai, L.2    Michael, F.3
  • 43
    • 18444411712 scopus 로고    scopus 로고
    • Hyperspectral texture recognition using a multiscale opponent representation
    • Shi M., Healey G. Hyperspectral texture recognition using a multiscale opponent representation. IEEE Trans. Geosci. Remote Sens. 2003, 41(5):1090-1095.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.5 , pp. 1090-1095
    • Shi, M.1    Healey, G.2
  • 45
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Tarabalka Y., Chanussot J., Benediktsson J.A. Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Trans. Syst. Man Cybern. B Cybern. 2010, 40(5):1267-1279.
    • (2010) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 48
    • 52149097785 scopus 로고    scopus 로고
    • The research of simplification of structure of multi-class classifier of support vector machine
    • Wang L., Zhang Y., Gu Y. The research of simplification of structure of multi-class classifier of support vector machine. J. Image Graph. 2005, 10(5):571-572.
    • (2005) J. Image Graph. , vol.10 , Issue.5 , pp. 571-572
    • Wang, L.1    Zhang, Y.2    Gu, Y.3
  • 49
    • 84883080198 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine
    • Yang L., Yang S., Jin P., Zhang R. Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geosci. Remote Sens. Lett. 2014, 11(3):651-655.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.3 , pp. 651-655
    • Yang, L.1    Yang, S.2    Jin, P.3    Zhang, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.