-
2
-
-
0141934861
-
Signal Theory Methods in Multispectral Remote Sensing
-
John Wiley & Sons, Hoboken, New Jersey
-
DA Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, vol. 29 (John Wiley & Sons, Hoboken, New Jersey, 2005).
-
(2005)
vol
, vol.29
-
-
Landgrebe, D.A.1
-
3
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
F Melgani, L Bruzzone, Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004). doi:10.1109/TGRS.2004.831865.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
4
-
-
77958017904
-
SVM-and MRF-based method for accurate classification of hyperspectral images
-
Y Tarabalka, M Fauvel, J Chanussot, JA Benediktsson, SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010).
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.4
, pp. 736-740
-
-
Tarabalka, Y.1
Fauvel, M.2
Chanussot, J.3
Benediktsson, J.A.4
-
5
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
G Hughes, On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inform. Theory. 14(1), 55–63 (1968). doi:10.1109/TIT.1968.1054102.
-
(1968)
IEEE Trans. Inform. Theory.
, vol.14
, Issue.1
, pp. 55-63
-
-
Hughes, G.1
-
6
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
G Camps-Valls, L Bruzzone, Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005). doi:10.1109/TGRS.2005.846154.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
7
-
-
84862993024
-
Representative multiple kernel learning for classification in hyperspectral imagery
-
Y Gu, C Wang, D You, Y Zhang, S Wang, Y Zhang, Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 50(7), 2852–2865 (2012). doi:10.1109/TGRS.2005.846154.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.7
, pp. 2852-2865
-
-
Gu, Y.1
Wang, C.2
You, D.3
Zhang, Y.4
Wang, S.5
Zhang, Y.6
-
8
-
-
84883824357
-
Generalized composite kernel framework for hyperspectral image classification
-
J Li, PR Marpu, A Plaza, JM Bioucas-Dias, JA Benediktsson, Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013). doi:10.1109/TGRS.2005.846154.
-
(2013)
IEEE Trans. Geosci. Remote Sens
, vol.51
, Issue.9
, pp. 4816-4829
-
-
Li, J.1
Marpu, P.R.2
Plaza, A.3
Bioucas-Dias, J.M.4
Benediktsson, J.A.5
-
9
-
-
85032751606
-
Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection
-
RM Willett, MF Duarte, MA Davenport, RG Baraniuk, Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process. Mag. 31(1), 116–126 (2014). doi:10.1109/MSP.2013.2279507.
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, Issue.1
, pp. 116-126
-
-
Willett, R.M.1
Duarte, M.F.2
Davenport, M.A.3
Baraniuk, R.G.4
-
10
-
-
84900815487
-
-
P Ghamisi, JA Benediktsson, JR Sveinsson, Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Trans. Geosci. Remote Sens. 52(9), 5771–5782
-
P Ghamisi, JA Benediktsson, JR Sveinsson, Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Trans. Geosci. Remote Sens. 52(9), 5771–5782. doi:10.1109/TGRS.2013.2292544.
-
-
-
-
11
-
-
84905903346
-
Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles
-
P Ghamisi, JA Benediktsson, G Cavallaro, A Plaza, Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(6), 2147–2160 (2014). doi:10.1109/JSTARS.2014.2298876.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2147-2160
-
-
Ghamisi, P.1
Benediktsson, J.A.2
Cavallaro, G.3
Plaza, A.4
-
12
-
-
84897024579
-
Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform
-
J Li, H Zhang, L Zhang, Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform. IEEE Geosci. Remote Sens. Lett. 11(8), 1409–1413 (2014).
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.8
, pp. 1409-1413
-
-
Li, J.1
Zhang, H.2
Zhang, L.3
-
13
-
-
84896329631
-
Remotely sensed image classification using sparse representations of morphological attribute profiles
-
B Song, J Li, M Dalla Mura, P Li, A Plaza, JM Bioucas-Dias, J Atli Benediktsson, J Chanussot, Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 52(8), 5122–5136 (2014).
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.8
, pp. 5122-5136
-
-
Song, B.1
Li, J.2
Dalla Mura, M.3
Li, P.4
Plaza, A.5
Bioucas-Dias, J.M.6
Atli Benediktsson, J.7
Chanussot, J.8
-
14
-
-
84921020001
-
A survey on spectral-spatial classification techniques based on attribute profiles
-
P Ghamisi, M Dalla Mura, JA Benediktsson, A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 53(5), 2335–2353 (2015).
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.5
, pp. 2335-2353
-
-
Ghamisi, P.1
Dalla Mura, M.2
Benediktsson, J.A.3
-
15
-
-
84906784859
-
Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning
-
Q Zhang, Y Tian, Y Yang, C Pan, Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning. IEEE Trans. Geosci. Remote Sens. 53(1), 261–279 (2015). doi:10.1109/TGRS.2014.2321405.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.1
, pp. 261-279
-
-
Zhang, Q.1
Tian, Y.2
Yang, Y.3
Pan, C.4
-
16
-
-
85027914747
-
Extreme learning machine with composite kernels for hyperspectral image classification
-
Y Zhou, J Peng, C Chen, Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.PP(99), 1–10 (2014).
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.PP
, Issue.99
, pp. 1-10
-
-
Zhou, Y.1
Peng, J.2
Chen, C.3
-
17
-
-
85027908382
-
Locality preserving composite kernel feature extraction for multi-source geospatial image analysis
-
Y Zhang, S Prasad, Locality preserving composite kernel feature extraction for multi-source geospatial image analysis. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.PP(99), 1–8 (2014).
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.PP
, Issue.99
, pp. 1-8
-
-
Zhang, Y.1
Prasad, S.2
-
18
-
-
84871731919
-
Hyperspectral image classification via kernel sparse representation
-
Y Chen, NM Nasrabadi, TD Tran, Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013). doi:10.1109/TGRS.2012.2201730.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.1
, pp. 217-231
-
-
Chen, Y.1
Nasrabadi, N.M.2
Tran, T.D.3
-
19
-
-
84872922940
-
Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
-
J Li, JM Bioucas-Dias, A Plaza, Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51(2), 844–856 (2013). doi:10.1109/TGRS.2012.2205263.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.2
, pp. 844-856
-
-
Li, J.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
20
-
-
85032751634
-
Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
-
G Camps-Valls, D Tuia, L Bruzzone, J Atli Benediktsson, Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2014). doi:10.1109/MSP.2013.2279179.
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, Issue.1
, pp. 45-54
-
-
Camps-Valls, G.1
Tuia, D.2
Bruzzone, L.3
Atli Benediktsson, J.4
-
21
-
-
80052099081
-
A spatial-contextual support vector machine for remotely sensed image classification
-
L Cheng-Hsuan, K Bor-Chen, L Chin-Teng, H Chih-Sheng, A spatial-contextual support vector machine for remotely sensed image classification. IEEE Trans. Geosci. Remote Sens. 50(3), 784–799 (2012). doi:10.1109/TGRS.2011.2162246.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.3
, pp. 784-799
-
-
Cheng-Hsuan, L.1
Bor-Chen, K.2
Chin-Teng, L.3
Chih-Sheng, H.4
-
22
-
-
84885019653
-
Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
-
G Moser, SB Serpico, Combining support vector machines and Markov random fields in an integrated framework for contextual image classification. IEEE Trans. Geosci. Remote Sens. 51(5), 2734–2752 (2013). [doi:110.1109/TGRS.2012.2211882].
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.5
, pp. 2734-2752
-
-
Moser, G.1
Serpico, S.B.2
-
23
-
-
84947648698
-
Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images
-
G Moser, SB Serpico, JA Benediktsson, Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images. Proc. IEEE. 101(3), 631–651 (2013). doi:10.1109/JPROC.2012.2211551.
-
(2013)
Proc. IEEE
, vol.101
, Issue.3
, pp. 631-651
-
-
Moser, G.1
Serpico, S.B.2
Benediktsson, J.A.3
-
25
-
-
80053562930
-
Hyperspectral image segmentation using a new Bayesian approach with active learning
-
J Li, JM Bioucas-Dias, A Plaza, Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–3960 (2011). doi:10.1109/TGRS.2011.2128330.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.10
, pp. 3947-3960
-
-
Li, J.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
26
-
-
84911126535
-
in IEEE Conf. Comput. Vision and Pattern Recognition. Deep learning face representation from predicting 10,000 classes (IEEEColumbus, OH
-
Y Sun, X Wang, X Tang, in IEEE Conf. Comput. Vision and Pattern Recognition. Deep learning face representation from predicting 10,000 classes (IEEEColumbus, OH, USA, 23–28 June 2014), pp. 1891–1898. doi:10.1109/CVPR.2014.244.
-
(2014)
USA
, vol.23-28
, pp. 1891-1898
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
27
-
-
84938391768
-
L Deng, GE Dahl, in NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning. Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition (Whistler, BC
-
D Yu, L Deng, GE Dahl, in NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning. Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition (Whistler, BC, Canada, 10 December 2010).
-
(2010)
Canada
, pp. 10
-
-
-
28
-
-
84908032942
-
-
F Zhang, B Du, L Zhang, Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184. IEEE
-
F Zhang, B Du, L Zhang, Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184. IEEE.
-
-
-
-
29
-
-
84890425279
-
-
AM Cheriyadat, Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52(1), 439–451
-
AM Cheriyadat, Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52(1), 439–451. doi:10.1109/TGRS.2013.2241444.
-
-
-
-
30
-
-
84911366271
-
Lin, B Hou, in
-
H Xie, S Wang, K Liu, S Lin, B Hou, in IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Multilayer feature learning for polarimetric synthetic radar data classification (IEEEQuebec City, 2014), pp. 2818–2821.
-
(2014)
IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Multilayer feature learning for polarimetric synthetic radar data classification (IEEEQuebec City
, pp. 2818-2821
-
-
H Xie, S.1
Wang, K.2
Liu, S.3
-
31
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Y Chen, Z Lin, X Zhao, G Wang, Y Gu, Deep learning-based classification of hyperspectral data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.PP(99), 1–14 (2014).
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.PP
, Issue.99
, pp. 1-14
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
32
-
-
84899107237
-
Wang, in Proc. 9th
-
Z Lin, Y Chen, X Zhao, G Wang, in Proc. 9th Int. Conf. Inf., Commun. Signal Process. (ICICS). Spectral-spatial classification of hyperspectral image using autoencoders, (Dec. 2013), pp. 1–5. doi:10.1109/ICICS.2013.6782778.
-
(2013)
Int. Conf. Inf., Commun. Signal Process. (ICICS). Spectral-spatial classification of hyperspectral image using autoencoders
, pp. 1-5
-
-
Z Lin, Y.1
Chen, X.2
Zhao, G.3
-
33
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
GE Hinton, S Osindero, Y-W Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006). doi:10.1162/neco.2006.18.7.1527.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
34
-
-
84938376540
-
G Tesauro, and J Alspector
-
GE Hinton, RS Zemel, in Advances in Neural Information Processing Systems 6, ed. by JD Cowan, G Tesauro, and J Alspector. Autoencoders, minimum description length and helmholtz free energy (NIPS, 1993), pp. 3–10.
-
Autoencoders, minimum description length and helmholtz free energy (NIPS
, vol.1993
, pp. 3-10
-
-
GE Hinton, R.S.1
-
35
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
P Vincent, H Larochelle, I Lajoie, Y Bengio, P-A Manzagol, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010).
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
|