-
2
-
-
84902147599
-
Engineering biology to address global problems: Synthetic Biology markets, needs, and applications
-
Kelley NJ, Whelan DJ, Kerr E, et al. Engineering biology to address global problems:Synthetic Biology markets, needs, and applications. Industrial Biotechnol. 2014;10:140–149.
-
(2014)
Industrial Biotechnol
, vol.10
, pp. 140-149
-
-
Kelley, N.J.1
Whelan, D.J.2
Kerr, E.3
-
3
-
-
84939429985
-
Freedom and responsibility in synthetic genomics: The Synthetic Yeast Project
-
Silva A, Yang H, Boeke JD, et al. Freedom and responsibility in synthetic genomics:The Synthetic Yeast Project. Genetics. 2015;200:1021–1028.
-
(2015)
Genetics
, vol.200
, pp. 1021-1028
-
-
Silva, A.1
Yang, H.2
Boeke, J.D.3
-
4
-
-
84962085874
-
Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion
-
Lee D, Lloyd N, Pretorius IS, et al. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microb Cell Fact. 2016;15:49–55.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 49-55
-
-
Lee, D.1
Lloyd, N.2
Pretorius, I.S.3
-
6
-
-
0037047595
-
Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template
-
Cello J, Paul AV, Wimmer E., Chemical synthesis of poliovirus cDNA:generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018.
-
(2002)
Science
, vol.297
, pp. 1016-1018
-
-
Cello, J.1
Paul, A.V.2
Wimmer, E.3
-
7
-
-
0347364647
-
Generating a synthetic genome by whole genome assembly: Phi-X174 bacteriophage from synthetic oligonucleotides
-
Smith HO, Hutchison CA, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly:Phi-X174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA. 2003;100:15440–15445.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 15440-15445
-
-
Smith, H.O.1
Hutchison, C.A.2
Pfannkoch, C.3
-
8
-
-
39449112551
-
Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome
-
Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220.
-
(2008)
Science
, vol.319
, pp. 1215-1220
-
-
Gibson, D.G.1
Benders, G.A.2
Andrews-Pfannkoch, C.3
-
9
-
-
77953584054
-
Creation of a bacterial cell controlled by a chemically synthesized genome
-
Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–56.
-
(2010)
Science
, vol.329
, pp. 52-56
-
-
Gibson, D.G.1
Glass, J.I.2
Lartigue, C.3
-
10
-
-
84899957367
-
Synthetic biology: construction of a yeast chromosome
-
Gibson DG, Venter JG. Synthetic biology:construction of a yeast chromosome. Nature. 2014;509:168–169.
-
(2014)
Nature
, vol.509
, pp. 168-169
-
-
Gibson, D.G.1
Venter, J.G.2
-
11
-
-
84962227074
-
Design and synthesis of a minimal bacterial genome
-
Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351:6253–6255.
-
(2016)
Science
, vol.351
, pp. 6253-6255
-
-
Hutchison, C.A.1
Chuang, R.Y.2
Noskov, V.N.3
-
12
-
-
79960502359
-
Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
-
Isaacs FJ, Carr PA, Wang HH, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science. 2011;333:348–353.
-
(2011)
Science
, vol.333
, pp. 348-353
-
-
Isaacs, F.J.1
Carr, P.A.2
Wang, H.H.3
-
13
-
-
84885791219
-
Genomically recoded organisms expand biological functions
-
Lajoie MJ, Rovner AJ, Goodman DB, et al. Genomically recoded organisms expand biological functions. Science. 2013;342:357–360.
-
(2013)
Science
, vol.342
, pp. 357-360
-
-
Lajoie, M.J.1
Rovner, A.J.2
Goodman, D.B.3
-
14
-
-
84896992265
-
Building the ultimate yeast genome
-
Pennisi E., Building the ultimate yeast genome. Science. 2014;343:1426–1429.
-
(2014)
Science
, vol.343
, pp. 1426-1429
-
-
Pennisi, E.1
-
15
-
-
84896128744
-
Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered
-
Jolly NP, Varela C, Pretorius IS., Not your ordinary yeast:non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014;14:215–237.
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 215-237
-
-
Jolly, N.P.1
Varela, C.2
Pretorius, I.S.3
-
17
-
-
0024244073
-
Life cycle of the budding yeast Saccharomyces cerevisiae
-
Herskowitz I., Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 1988;52:536–553.
-
(1988)
Microbiol Rev
, vol.52
, pp. 536-553
-
-
Herskowitz, I.1
-
18
-
-
84898921696
-
Milestones in synthetic (micro)biology
-
Jermy A., Milestones in synthetic (micro)biology. Nat Microbiol. 2014;12:309.
-
(2014)
Nat Microbiol
, vol.12
, pp. 309
-
-
Jermy, A.1
-
19
-
-
78649489309
-
Fermenting knowledge: the history of winemaking, science and yeast research
-
Chambers PJ, Pretorius IS., Fermenting knowledge:the history of winemaking, science and yeast research. EMBO Rep. 2010;11:1–7.
-
(2010)
EMBO Rep
, vol.11
, pp. 1-7
-
-
Chambers, P.J.1
Pretorius, I.S.2
-
20
-
-
84862726626
-
The winemaker’s bug: from ancient wisdom to opening new vistas with frontier yeast science
-
Pretorius IS, Curtin CD, Chambers PJ. The winemaker’s bug:from ancient wisdom to opening new vistas with frontier yeast science. Bioeng Bugs. 2012;3:147–156.
-
(2012)
Bioeng Bugs
, vol.3
, pp. 147-156
-
-
Pretorius, I.S.1
Curtin, C.D.2
Chambers, P.J.3
-
22
-
-
0030071902
-
From DNA sequence to biological function
-
Oliver SG., From DNA sequence to biological function. Nature. 1996;379:597–600.
-
(1996)
Nature
, vol.379
, pp. 597-600
-
-
Oliver, S.G.1
-
23
-
-
0033529707
-
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
-
Winzeler EA, Shoemaker DD, Astromoff A., Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285:901–906.
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.A.1
Shoemaker, D.D.2
Astromoff, A.3
-
24
-
-
84897581176
-
Total synthesis of a functional designer eukaryotic chromosome
-
Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science. 2014;344:55–58.
-
(2014)
Science
, vol.344
, pp. 55-58
-
-
Annaluru, N.1
Muller, H.2
Mitchell, L.A.3
-
25
-
-
80053132391
-
Synthetic chromosome arms function in yeast and generate phenotypic diversity by design
-
Dymond JS, Richardson SM, Coombes CE, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature. 2011;477:471–476.
-
(2011)
Nature
, vol.477
, pp. 471-476
-
-
Dymond, J.S.1
Richardson, S.M.2
Coombes, C.E.3
-
27
-
-
23144466073
-
Grape and wine biotechnology: challenges, opportunities and potential benefits
-
Pretorius IS, Høj PB., Grape and wine biotechnology:challenges, opportunities and potential benefits. Austral J Grape Wine Res. 2005;11:83–108.
-
(2005)
Austral J Grape Wine Res
, vol.11
, pp. 83-108
-
-
Pretorius, I.S.1
Høj, P.B.2
-
28
-
-
84874990532
-
Comparative genomics: a revolutionary tool for wine yeast strain development
-
Borneman AR, Pretorius IS, Chambers PJ., Comparative genomics:a revolutionary tool for wine yeast strain development. Curr Opin Biotechnol. 2013;24:192–199.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 192-199
-
-
Borneman, A.R.1
Pretorius, I.S.2
Chambers, P.J.3
-
30
-
-
84959504252
-
Synthetic evolution of metabolic productivity using biosensors
-
Williams CT, Pretorius IS, Paulsen PT., Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 2016;34:371–381.
-
(2016)
Trends Biotechnol
, vol.34
, pp. 371-381
-
-
Williams, C.T.1
Pretorius, I.S.2
Paulsen, P.T.3
-
31
-
-
84935472715
-
Advances in yeast genome engineering
-
David F, Siewers V., Advances in yeast genome engineering. FEMS Yeast Res. 2015;15:1–14. doi:10.1111/1567-1364.12200.
-
(2015)
FEMS Yeast Res
, vol.15
, pp. 1-14
-
-
David, F.1
Siewers, V.2
-
32
-
-
84857058761
-
A systems-level approach for metabolic engineering of yeast cell factories
-
Kim IL, Roldão A, Siewers V, et al. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 2012;12:228–248.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 228-248
-
-
Kim, I.L.1
Roldão, A.2
Siewers, V.3
-
33
-
-
65549118633
-
De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae)
-
Hansen EH, Møller BL, Kock GR, et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol. 2009;75:2765–2774.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 2765-2774
-
-
Hansen, E.H.1
Møller, B.L.2
Kock, G.R.3
-
34
-
-
78049460641
-
Improved vanillin production in baker’s yeast through in silico design
-
Brochado AR, Matos C, Møller BL, et al. Improved vanillin production in baker’s yeast through in silico design. Microbial Cell Fact. 2010;9:1–15.
-
(2010)
Microbial Cell Fact
, vol.9
, pp. 1-15
-
-
Brochado, A.R.1
Matos, C.2
Møller, B.L.3
-
35
-
-
84871715483
-
Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast only when complemented with model-guided network engineering
-
Brochado AR, Patil KR. Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast only when complemented with model-guided network engineering. Biotechnol Bioeng. 2013;110:656–659.
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 656-659
-
-
Brochado, A.R.1
Patil, K.R.2
-
36
-
-
78650923938
-
A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene
-
Cankar K, Van Houwelingen A, Bosch D, et al. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett. 2011;585:178–182.
-
(2011)
. FEBS Lett
, vol.585
, pp. 178-182
-
-
Cankar, K.1
Van Houwelingen, A.2
Bosch, D.3
-
37
-
-
84925153777
-
Vanillin bioconversion and bioengineering of the most popular plant flavour and its de novo biosynthesis in the vanilla orchid
-
Gallage NJ, Møller BL., Vanillin bioconversion and bioengineering of the most popular plant flavour and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8:40–57.
-
(2015)
Mol Plant
, vol.8
, pp. 40-57
-
-
Gallage, N.J.1
Møller, B.L.2
-
38
-
-
84942279091
-
Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production
-
Strucko T, Magnesko O, Mortensen UH., Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production. Metabolic Eng Comm. 2015;2:99–108.
-
(2015)
Metabolic Eng Comm
, vol.2
, pp. 99-108
-
-
Strucko, T.1
Magnesko, O.2
Mortensen, U.H.3
-
39
-
-
1642401219
-
Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol
-
Becker VW, Armstrong GO, Van der Merwe MJ, et al. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res. 2003;4:79–85.
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 79-85
-
-
Becker, V.W.1
Armstrong, G.O.2
Van der Merwe, M.J.3
-
40
-
-
84941962714
-
De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
-
Li M, Kildegaard KR, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng. 2015;32:1–11.
-
(2015)
. Metab Eng
, vol.32
, pp. 1-11
-
-
Li, M.1
Kildegaard, K.R.2
Chen, Y.3
-
41
-
-
84876784070
-
High-level semi-synthetic production of the potent antimalarial artemisinin
-
Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532.
-
(2013)
Nature
, vol.496
, pp. 528-532
-
-
Paddon, C.J.1
Westfall, P.J.2
Pitera, D.J.3
-
42
-
-
85006226609
-
Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis
-
Andersen-Ranberg J, Kongstad KT, Nielsen MT, et al. Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angewandte Chem. 2016;128:2182–2186.
-
(2016)
Angewandte Chem
, vol.128
, pp. 2182-2186
-
-
Andersen-Ranberg, J.1
Kongstad, K.T.2
Nielsen, M.T.3
-
43
-
-
0034659738
-
Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking
-
Pretorius IS., Tailoring wine yeast for the new millennium:novel approaches to the ancient art of winemaking. Yeast. 2000;16:675–729.
-
(2000)
Yeast
, vol.16
, pp. 675-729
-
-
Pretorius, I.S.1
-
44
-
-
33748111498
-
The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits
-
Querol A., Fleet G.H., (eds), Heidelberg: Springer
-
Verstrepen KJ, Chambers PJ, Pretorius IS., The development of superior yeast strains for the food and beverage industries:challenges, opportunities and potential benefits. In:Querol A, Fleet GH, editors. The yeast handbook:yeasts in food and beverages. Heidelberg:Springer; 2006. p. 399–444.
-
(2006)
The yeast handbook: yeasts in food and beverages
, pp. 399-444
-
-
Verstrepen, K.J.1
Chambers, P.J.2
Pretorius, I.S.3
-
45
-
-
84856365213
-
Non-genetic engineering approaches to isolating and generating novel yeasts for industrial applications
-
Kunze G., Satyanarayana T., (eds), Berlin: Springer
-
Chambers PJ, Bellon JR, Schmidt SA, et al. (2009). Non-genetic engineering approaches to isolating and generating novel yeasts for industrial applications. In:Kunze G, Satyanarayana T, editors. Yeast biotechnology:diversity and applications. Berlin:Springer; 2009. p. 433–457.
-
(2009)
Yeast biotechnology: diversity and applications
, vol.2009
, pp. 433-457
-
-
Chambers, P.J.1
Bellon, J.R.2
Schmidt, S.A.3
-
46
-
-
33746238073
-
Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes
-
Cambon B, Monteil V, Remize F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol. 2006;72:4688–4694.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 4688-4694
-
-
Cambon, B.1
Monteil, V.2
Remize, F.3
-
47
-
-
0034368456
-
Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2)
-
De Barros Lopes MA, Rehman AU, Gockowiak H, et al. Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2). Austral J Grape Wine Res. 2000;6:208–215.
-
(2000)
Austral J Grape Wine Res
, vol.6
, pp. 208-215
-
-
De Barros Lopes, M.A.1
Rehman, A.U.2
Gockowiak, H.3
-
48
-
-
0037087377
-
Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene
-
Eglinton JM, Heinrich AJ, Pollnitz AP, et al. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast. 2002;19:295–301.
-
(2002)
Yeast
, vol.19
, pp. 295-301
-
-
Eglinton, J.M.1
Heinrich, A.J.2
Pollnitz, A.P.3
-
49
-
-
77954844224
-
Microbiological approaches to lowering ethanol concentration in wine
-
Kutyna DR, Varela C, Henschke PA, et al. Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci Technol. 2010;21:293–302.
-
(2010)
Trends Food Sci Technol
, vol.21
, pp. 293-302
-
-
Kutyna, D.R.1
Varela, C.2
Henschke, P.A.3
-
50
-
-
84856367465
-
Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production
-
Kutyna DR, Varela C, Stanley GA, et al. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol. 2012;93:1175–1184.
-
(2012)
Appl Microbiol Biotechnol
, vol.93
, pp. 1175-1184
-
-
Kutyna, D.R.1
Varela, C.2
Stanley, G.A.3
-
51
-
-
0030792275
-
Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase
-
Michnick S, Roustan J-L, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast. 1997;13:783–793.
-
(1997)
Yeast
, vol.13
, pp. 783-793
-
-
Michnick, S.1
Roustan, J.-L.2
Remize, F.3
-
52
-
-
0032939504
-
Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase
-
Remize F, Roustan J, Sablayrolles J, et al. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol. 1999;65:143–149.
-
(1999)
Appl Environ Microbiol
, vol.65
, pp. 143-149
-
-
Remize, F.1
Roustan, J.2
Sablayrolles, J.3
-
53
-
-
84896919039
-
Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions
-
Tilloy V, Ortiz-Julien A, Dequin S., Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014;80:2623–2632.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 2623-2632
-
-
Tilloy, V.1
Ortiz-Julien, A.2
Dequin, S.3
-
54
-
-
84943661449
-
Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae
-
Tilloy V, Cadiere A, Ehsani M, et al. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int J Food Microbiol. 2015;213:49–58.
-
(2015)
Int J Food Microbiol
, vol.213
, pp. 49-58
-
-
Tilloy, V.1
Cadiere, A.2
Ehsani, M.3
-
55
-
-
84866150087
-
Evaluation of gene modification strategies to develop low-alcohol wine yeasts
-
Varela C, Kutyna DR, Solomon M, et al. Evaluation of gene modification strategies to develop low-alcohol wine yeasts. Appl Environ Microbiol. 2012;17:6068–6077.
-
(2012)
Appl Environ Microbiol
, vol.17
, pp. 6068-6077
-
-
Varela, C.1
Kutyna, D.R.2
Solomon, M.3
-
56
-
-
64549096493
-
Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production
-
Cordente AG, Heinrich AJ, Pretorius IS, et al. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res. 2009;9:446–459.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 446-459
-
-
Cordente, A.G.1
Heinrich, A.J.2
Pretorius, I.S.3
-
58
-
-
84880160434
-
Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine
-
Luo Z, Walkey CJ, Madilao LL, et al. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine. FEMS Yeast Res. 2013;13:485–494.
-
(2013)
FEMS Yeast Res
, vol.13
, pp. 485-494
-
-
Luo, Z.1
Walkey, C.J.2
Madilao, L.L.3
-
59
-
-
33747061543
-
The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates
-
Lilly M, Bauer FF, Lambrechts MG, et al. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast. 2006;23:641–659.
-
(2006)
Yeast
, vol.23
, pp. 641-659
-
-
Lilly, M.1
Bauer, F.F.2
Lambrechts, M.G.3
-
60
-
-
33745886499
-
The effect of increased yeast branched-chain amino acid transaminase activity and the production of higher alcohols on the flavor profiles of wine and distillates
-
Lilly M, Styger G, Bauer FF, et al. The effect of increased yeast branched-chain amino acid transaminase activity and the production of higher alcohols on the flavor profiles of wine and distillates. FEMS Yeast Res. 2006;6:726–743.
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 726-743
-
-
Lilly, M.1
Styger, G.2
Bauer, F.F.3
-
61
-
-
12844272325
-
De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts
-
Carrau FM, Medina K, Boido E, et al. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett. 2005;243:107–115.
-
(2005)
FEMS Microbiol Lett
, vol.243
, pp. 107-115
-
-
Carrau, F.M.1
Medina, K.2
Boido, E.3
-
62
-
-
84872373493
-
Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation
-
Cordente AG, Cordero-Bueso G, Pretorius IS, et al. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res. 2013;13:62–73.
-
(2013)
FEMS Yeast Res
, vol.13
, pp. 62-73
-
-
Cordente, A.G.1
Cordero-Bueso, G.2
Pretorius, I.S.3
-
63
-
-
79958282133
-
Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma
-
Holt S, Cordente AG, Williams SJ, et al. Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma. Appl Environ Microbiol. 2011;77:3626–3632.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 3626-3632
-
-
Holt, S.1
Cordente, A.G.2
Williams, S.J.3
-
64
-
-
79955792126
-
The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine
-
Roncoroni M, Santiago M, Hooks DO, et al. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 2011;28:926–935.
-
(2011)
Food Microbiol
, vol.28
, pp. 926-935
-
-
Roncoroni, M.1
Santiago, M.2
Hooks, D.O.3
-
66
-
-
34447524870
-
Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma
-
Swiegers JH, Capone DL, Pardon KH, et al. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast. 2007;24:561–574.
-
(2007)
Yeast
, vol.24
, pp. 561-574
-
-
Swiegers, J.H.1
Capone, D.L.2
Pardon, K.H.3
-
68
-
-
84883184395
-
Novel yeast strains as tools to adjust the flavour of fermented beverages to market specifications
-
Frenkel D.H., Belanger F., (eds), Oxford: Blackwell Publishing
-
Swiegers JH, Saerens SMG, Pretorius IS., Novel yeast strains as tools to adjust the flavour of fermented beverages to market specifications. In:Frenkel DH, Belanger F, editors. Biotechnology in flavour production. Oxford:Blackwell Publishing; 2008. p. 1–55.
-
(2008)
Biotechnology in flavour production
, pp. 1-55
-
-
Swiegers, J.H.1
Saerens, S.M.G.2
Pretorius, I.S.3
-
69
-
-
58549084346
-
The influence of yeast on the aroma of Sauvignon Blanc wine
-
Swiegers JH, Kievit RL, Siebert T, et al. The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiol. 2009;26:204–211.
-
(2009)
Food Microbiol
, vol.26
, pp. 204-211
-
-
Swiegers, J.H.1
Kievit, R.L.2
Siebert, T.3
-
70
-
-
54049126527
-
Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation
-
Thibon C, Marullo P, Claisse O, et al. Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Res. 2008;8:1076–1086.
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 1076-1086
-
-
Thibon, C.1
Marullo, P.2
Claisse, O.3
-
71
-
-
45549086155
-
From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound
-
Wood C, Siebert TE, Parker M, et al. From wine to pepper:rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. J Agric Food Chem. 2008;56:3738–3744.
-
(2008)
J Agric Food Chem
, vol.56
, pp. 3738-3744
-
-
Wood, C.1
Siebert, T.E.2
Parker, M.3
-
72
-
-
34247479948
-
Metabolic engineering of sesquiterpene metabolism in yeast
-
Takahashi S, Yeo Y, Greenhagen BT, et al. Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng. 2007;97:170–181.
-
(2007)
Biotechnol Bioeng
, vol.97
, pp. 170-181
-
-
Takahashi, S.1
Yeo, Y.2
Greenhagen, B.T.3
-
73
-
-
84964375945
-
Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone
-
Takase H, Sasaki K, Shinmori H, et al. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone. J Exp Bot. 2016;67:787–798.
-
(2016)
J Exp Bot
, vol.67
, pp. 787-798
-
-
Takase, H.1
Sasaki, K.2
Shinmori, H.3
-
74
-
-
33744490033
-
Genetic engineering of an industrial strain of Saccharomyces cerevisiae for l-malic acid degradation via an efficient malo-ethanolic pathway
-
Volschenk H, Viljoen-Bloom M, Van Staden J, et al. Genetic engineering of an industrial strain of Saccharomyces cerevisiae for l-malic acid degradation via an efficient malo-ethanolic pathway. S Afr J Enol Vitic. 2004;25:63–73.
-
(2004)
S Afr J Enol Vitic
, vol.25
, pp. 63-73
-
-
Volschenk, H.1
Viljoen-Bloom, M.2
Van Staden, J.3
-
75
-
-
33745126685
-
Metabolic engineering of malolactic wine yeast
-
Husnik JI, Volschenk H, Bauer F, et al. Metabolic engineering of malolactic wine yeast. Metabolic Eng. 2006;8:315–323.
-
(2006)
Metabolic Eng
, vol.8
, pp. 315-323
-
-
Husnik, J.I.1
Volschenk, H.2
Bauer, F.3
-
76
-
-
33745643180
-
Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine
-
Coulon J, Husnik JI, Inglis DL, et al. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic. 2006;57:113–124.
-
(2006)
Am J Enol Vitic
, vol.57
, pp. 113-124
-
-
Coulon, J.1
Husnik, J.I.2
Inglis, D.L.3
-
77
-
-
0036773288
-
Meeting the consumer challenge through genetically customized wine-yeast strains
-
Pretorius IS, Bauer FF. Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol. 2002;20:426–432.
-
(2002)
Trends Biotechnol
, vol.20
, pp. 426-432
-
-
Pretorius, I.S.1
Bauer, F.F.2
-
78
-
-
84941248211
-
Designing wine yeast for the future
-
Holzapfel W., (ed), Cambridge: Woodhead Publishing
-
Pretorius IS, Curtin CD, Chambers PJ., Designing wine yeast for the future. In:Holzapfel W, editor. Advances in fermented foods and beverages:improving quality, technologies and health benefits. Cambridge:Woodhead Publishing; 2015. p. 195–226.
-
(2015)
Advances in fermented foods and beverages: improving quality, technologies and health benefits
, pp. 195-226
-
-
Pretorius, I.S.1
Curtin, C.D.2
Chambers, P.J.3
-
79
-
-
54049088949
-
Comparative genome analysis of a Saccharomyces cerevisiae wine strain
-
Borneman AR, Forgan AH, Pretorius IS, et al. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res. 2008;8:1185–1195.
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 1185-1195
-
-
Borneman, A.R.1
Forgan, A.H.2
Pretorius, I.S.3
-
80
-
-
79952262678
-
Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae
-
Borneman AR, Desany BA, Riches D, et al. Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 2011;7:e1001287.
-
(2011)
PLoS Genet
, vol.7
, pp. e1001287
-
-
Borneman, A.R.1
Desany, B.A.2
Riches, D.3
-
81
-
-
84855547158
-
The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins
-
Borneman AR, Desany BA, Riches D, et al. The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Res. 2012;12:88–96.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 88-96
-
-
Borneman, A.R.1
Desany, B.A.2
Riches, D.3
-
82
-
-
84860591356
-
Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments
-
Dunn B, Richter C, Kvitek DJ, et al. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 2012;22:908–924.
-
(2012)
Genome Res
, vol.22
, pp. 908-924
-
-
Dunn, B.1
Richter, C.2
Kvitek, D.J.3
-
83
-
-
78650065364
-
FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H + symporter
-
Galeote V, Novo M, Salema-Oom M, et al. FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H + symporter. Microbiology. 2010;56:3754–3761.
-
(2010)
Microbiology
, vol.56
, pp. 3754-3761
-
-
Galeote, V.1
Novo, M.2
Salema-Oom, M.3
-
84
-
-
79952523291
-
Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation
-
Galeote V, Bigey F, Beyne E, et al. Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation. PLoS One. 2011;6:e17872.
-
(2011)
PLoS One
, vol.6
, pp. e17872
-
-
Galeote, V.1
Bigey, F.2
Beyne, E.3
-
85
-
-
70349515584
-
Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118
-
Novo M, Bigey F, Beyne E, et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci USA. 2009;106:16333–16338.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 16333-16338
-
-
Novo, M.1
Bigey, F.2
Beyne, E.3
-
86
-
-
34547913442
-
Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789
-
Wei W, McCusker JH, Hyman RW, et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci USA. 2007;104:12825–12830.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 12825-12830
-
-
Wei, W.1
McCusker, J.H.2
Hyman, R.W.3
-
87
-
-
62649089109
-
Population genomics of domestic and wild yeasts
-
Liti G, Carter DM, Moses AM, et al. Population genomics of domestic and wild yeasts. Nature. 2009;458:337–341.
-
(2009)
Nature
, vol.458
, pp. 337-341
-
-
Liti, G.1
Carter, D.M.2
Moses, A.M.3
-
88
-
-
84925847939
-
Genomic insights into the Saccharomyces sensu stricto complex
-
Borneman AR, Pretorius IS., Genomic insights into the Saccharomyces sensu stricto complex. Genetics. 2015;199:281–291.
-
(2015)
Genetics
, vol.199
, pp. 281-291
-
-
Borneman, A.R.1
Pretorius, I.S.2
-
89
-
-
0030849767
-
Strawberry flavour: analysis and biosynthesis
-
Zabetakis I, Holden MA., Strawberry flavour:analysis and biosynthesis. J Sci Food Agric. 1997;74:421–434.
-
(1997)
J Sci Food Agric
, vol.74
, pp. 421-434
-
-
Zabetakis, I.1
Holden, M.A.2
-
91
-
-
79961179947
-
Synergies between synthetic biology and metabolic engineering
-
Nielsen J, Keasling JD., Synergies between synthetic biology and metabolic engineering. Nat Biotechnol. 2011;29:693–695.
-
(2011)
. Nat Biotechnol
, vol.29
, pp. 693-695
-
-
Nielsen, J.1
Keasling, J.D.2
|