메뉴 건너뛰기




Volumn 37, Issue 1, 2017, Pages 112-136

Synthetic genome engineering forging new frontiers for wine yeast

Author keywords

Bioengineering; CRISPR technology; genome editing; genome scrambling; genome synthesis; Synthetic Biology; synthetic chromosomes; synthetic genomics; Synthetic Yeast Genome (Sc2.0) Project; Yeast 2.0

Indexed keywords

BIOLOGY; CELLS; CHROMOSOMES; COMPLEX NETWORKS; CYTOLOGY; DNA; DNA SEQUENCES; FOOD ADDITIVES; GENE ENCODING; GENES; GENETIC ENGINEERING; KETONES; PRECISION ENGINEERING; SUGAR SUBSTITUTES; SYSTEMS SCIENCE; WINE;

EID: 84982306240     PISSN: 07388551     EISSN: 15497801     Source Type: Journal    
DOI: 10.1080/07388551.2016.1214945     Document Type: Review
Times cited : (43)

References (91)
  • 2
    • 84902147599 scopus 로고    scopus 로고
    • Engineering biology to address global problems: Synthetic Biology markets, needs, and applications
    • Kelley NJ, Whelan DJ, Kerr E, et al. Engineering biology to address global problems:Synthetic Biology markets, needs, and applications. Industrial Biotechnol. 2014;10:140–149.
    • (2014) Industrial Biotechnol , vol.10 , pp. 140-149
    • Kelley, N.J.1    Whelan, D.J.2    Kerr, E.3
  • 3
    • 84939429985 scopus 로고    scopus 로고
    • Freedom and responsibility in synthetic genomics: The Synthetic Yeast Project
    • Silva A, Yang H, Boeke JD, et al. Freedom and responsibility in synthetic genomics:The Synthetic Yeast Project. Genetics. 2015;200:1021–1028.
    • (2015) Genetics , vol.200 , pp. 1021-1028
    • Silva, A.1    Yang, H.2    Boeke, J.D.3
  • 4
    • 84962085874 scopus 로고    scopus 로고
    • Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion
    • Lee D, Lloyd N, Pretorius IS, et al. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microb Cell Fact. 2016;15:49–55.
    • (2016) Microb Cell Fact , vol.15 , pp. 49-55
    • Lee, D.1    Lloyd, N.2    Pretorius, I.S.3
  • 6
    • 0037047595 scopus 로고    scopus 로고
    • Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template
    • Cello J, Paul AV, Wimmer E., Chemical synthesis of poliovirus cDNA:generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018.
    • (2002) Science , vol.297 , pp. 1016-1018
    • Cello, J.1    Paul, A.V.2    Wimmer, E.3
  • 7
    • 0347364647 scopus 로고    scopus 로고
    • Generating a synthetic genome by whole genome assembly: Phi-X174 bacteriophage from synthetic oligonucleotides
    • Smith HO, Hutchison CA, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly:Phi-X174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA. 2003;100:15440–15445.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 15440-15445
    • Smith, H.O.1    Hutchison, C.A.2    Pfannkoch, C.3
  • 8
    • 39449112551 scopus 로고    scopus 로고
    • Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome
    • Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220.
    • (2008) Science , vol.319 , pp. 1215-1220
    • Gibson, D.G.1    Benders, G.A.2    Andrews-Pfannkoch, C.3
  • 9
    • 77953584054 scopus 로고    scopus 로고
    • Creation of a bacterial cell controlled by a chemically synthesized genome
    • Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–56.
    • (2010) Science , vol.329 , pp. 52-56
    • Gibson, D.G.1    Glass, J.I.2    Lartigue, C.3
  • 10
    • 84899957367 scopus 로고    scopus 로고
    • Synthetic biology: construction of a yeast chromosome
    • Gibson DG, Venter JG. Synthetic biology:construction of a yeast chromosome. Nature. 2014;509:168–169.
    • (2014) Nature , vol.509 , pp. 168-169
    • Gibson, D.G.1    Venter, J.G.2
  • 11
    • 84962227074 scopus 로고    scopus 로고
    • Design and synthesis of a minimal bacterial genome
    • Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351:6253–6255.
    • (2016) Science , vol.351 , pp. 6253-6255
    • Hutchison, C.A.1    Chuang, R.Y.2    Noskov, V.N.3
  • 12
    • 79960502359 scopus 로고    scopus 로고
    • Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
    • Isaacs FJ, Carr PA, Wang HH, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science. 2011;333:348–353.
    • (2011) Science , vol.333 , pp. 348-353
    • Isaacs, F.J.1    Carr, P.A.2    Wang, H.H.3
  • 13
    • 84885791219 scopus 로고    scopus 로고
    • Genomically recoded organisms expand biological functions
    • Lajoie MJ, Rovner AJ, Goodman DB, et al. Genomically recoded organisms expand biological functions. Science. 2013;342:357–360.
    • (2013) Science , vol.342 , pp. 357-360
    • Lajoie, M.J.1    Rovner, A.J.2    Goodman, D.B.3
  • 14
    • 84896992265 scopus 로고    scopus 로고
    • Building the ultimate yeast genome
    • Pennisi E., Building the ultimate yeast genome. Science. 2014;343:1426–1429.
    • (2014) Science , vol.343 , pp. 1426-1429
    • Pennisi, E.1
  • 15
    • 84896128744 scopus 로고    scopus 로고
    • Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered
    • Jolly NP, Varela C, Pretorius IS., Not your ordinary yeast:non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014;14:215–237.
    • (2014) FEMS Yeast Res , vol.14 , pp. 215-237
    • Jolly, N.P.1    Varela, C.2    Pretorius, I.S.3
  • 17
    • 0024244073 scopus 로고
    • Life cycle of the budding yeast Saccharomyces cerevisiae
    • Herskowitz I., Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 1988;52:536–553.
    • (1988) Microbiol Rev , vol.52 , pp. 536-553
    • Herskowitz, I.1
  • 18
    • 84898921696 scopus 로고    scopus 로고
    • Milestones in synthetic (micro)biology
    • Jermy A., Milestones in synthetic (micro)biology. Nat Microbiol. 2014;12:309.
    • (2014) Nat Microbiol , vol.12 , pp. 309
    • Jermy, A.1
  • 19
    • 78649489309 scopus 로고    scopus 로고
    • Fermenting knowledge: the history of winemaking, science and yeast research
    • Chambers PJ, Pretorius IS., Fermenting knowledge:the history of winemaking, science and yeast research. EMBO Rep. 2010;11:1–7.
    • (2010) EMBO Rep , vol.11 , pp. 1-7
    • Chambers, P.J.1    Pretorius, I.S.2
  • 20
    • 84862726626 scopus 로고    scopus 로고
    • The winemaker’s bug: from ancient wisdom to opening new vistas with frontier yeast science
    • Pretorius IS, Curtin CD, Chambers PJ. The winemaker’s bug:from ancient wisdom to opening new vistas with frontier yeast science. Bioeng Bugs. 2012;3:147–156.
    • (2012) Bioeng Bugs , vol.3 , pp. 147-156
    • Pretorius, I.S.1    Curtin, C.D.2    Chambers, P.J.3
  • 22
    • 0030071902 scopus 로고    scopus 로고
    • From DNA sequence to biological function
    • Oliver SG., From DNA sequence to biological function. Nature. 1996;379:597–600.
    • (1996) Nature , vol.379 , pp. 597-600
    • Oliver, S.G.1
  • 23
    • 0033529707 scopus 로고    scopus 로고
    • Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
    • Winzeler EA, Shoemaker DD, Astromoff A., Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285:901–906.
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.A.1    Shoemaker, D.D.2    Astromoff, A.3
  • 24
    • 84897581176 scopus 로고    scopus 로고
    • Total synthesis of a functional designer eukaryotic chromosome
    • Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science. 2014;344:55–58.
    • (2014) Science , vol.344 , pp. 55-58
    • Annaluru, N.1    Muller, H.2    Mitchell, L.A.3
  • 25
    • 80053132391 scopus 로고    scopus 로고
    • Synthetic chromosome arms function in yeast and generate phenotypic diversity by design
    • Dymond JS, Richardson SM, Coombes CE, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature. 2011;477:471–476.
    • (2011) Nature , vol.477 , pp. 471-476
    • Dymond, J.S.1    Richardson, S.M.2    Coombes, C.E.3
  • 27
    • 23144466073 scopus 로고    scopus 로고
    • Grape and wine biotechnology: challenges, opportunities and potential benefits
    • Pretorius IS, Høj PB., Grape and wine biotechnology:challenges, opportunities and potential benefits. Austral J Grape Wine Res. 2005;11:83–108.
    • (2005) Austral J Grape Wine Res , vol.11 , pp. 83-108
    • Pretorius, I.S.1    Høj, P.B.2
  • 28
    • 84874990532 scopus 로고    scopus 로고
    • Comparative genomics: a revolutionary tool for wine yeast strain development
    • Borneman AR, Pretorius IS, Chambers PJ., Comparative genomics:a revolutionary tool for wine yeast strain development. Curr Opin Biotechnol. 2013;24:192–199.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 192-199
    • Borneman, A.R.1    Pretorius, I.S.2    Chambers, P.J.3
  • 29
    • 84880514653 scopus 로고    scopus 로고
    • At the cutting-edge of grape and wine biotechnology
    • Borneman AR, Schmidt SA, Pretorius IS., At the cutting-edge of grape and wine biotechnology. Trends Genet. 2013;29:263–271.
    • (2013) Trends Genet , vol.29 , pp. 263-271
    • Borneman, A.R.1    Schmidt, S.A.2    Pretorius, I.S.3
  • 30
    • 84959504252 scopus 로고    scopus 로고
    • Synthetic evolution of metabolic productivity using biosensors
    • Williams CT, Pretorius IS, Paulsen PT., Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 2016;34:371–381.
    • (2016) Trends Biotechnol , vol.34 , pp. 371-381
    • Williams, C.T.1    Pretorius, I.S.2    Paulsen, P.T.3
  • 31
    • 84935472715 scopus 로고    scopus 로고
    • Advances in yeast genome engineering
    • David F, Siewers V., Advances in yeast genome engineering. FEMS Yeast Res. 2015;15:1–14. doi:10.1111/1567-1364.12200.
    • (2015) FEMS Yeast Res , vol.15 , pp. 1-14
    • David, F.1    Siewers, V.2
  • 32
    • 84857058761 scopus 로고    scopus 로고
    • A systems-level approach for metabolic engineering of yeast cell factories
    • Kim IL, Roldão A, Siewers V, et al. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 2012;12:228–248.
    • (2012) FEMS Yeast Res , vol.12 , pp. 228-248
    • Kim, I.L.1    Roldão, A.2    Siewers, V.3
  • 33
    • 65549118633 scopus 로고    scopus 로고
    • De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae)
    • Hansen EH, Møller BL, Kock GR, et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol. 2009;75:2765–2774.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2765-2774
    • Hansen, E.H.1    Møller, B.L.2    Kock, G.R.3
  • 34
    • 78049460641 scopus 로고    scopus 로고
    • Improved vanillin production in baker’s yeast through in silico design
    • Brochado AR, Matos C, Møller BL, et al. Improved vanillin production in baker’s yeast through in silico design. Microbial Cell Fact. 2010;9:1–15.
    • (2010) Microbial Cell Fact , vol.9 , pp. 1-15
    • Brochado, A.R.1    Matos, C.2    Møller, B.L.3
  • 35
    • 84871715483 scopus 로고    scopus 로고
    • Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast only when complemented with model-guided network engineering
    • Brochado AR, Patil KR. Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast only when complemented with model-guided network engineering. Biotechnol Bioeng. 2013;110:656–659.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 656-659
    • Brochado, A.R.1    Patil, K.R.2
  • 36
    • 78650923938 scopus 로고    scopus 로고
    • A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene
    • Cankar K, Van Houwelingen A, Bosch D, et al. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett. 2011;585:178–182.
    • (2011) . FEBS Lett , vol.585 , pp. 178-182
    • Cankar, K.1    Van Houwelingen, A.2    Bosch, D.3
  • 37
    • 84925153777 scopus 로고    scopus 로고
    • Vanillin bioconversion and bioengineering of the most popular plant flavour and its de novo biosynthesis in the vanilla orchid
    • Gallage NJ, Møller BL., Vanillin bioconversion and bioengineering of the most popular plant flavour and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8:40–57.
    • (2015) Mol Plant , vol.8 , pp. 40-57
    • Gallage, N.J.1    Møller, B.L.2
  • 38
    • 84942279091 scopus 로고    scopus 로고
    • Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production
    • Strucko T, Magnesko O, Mortensen UH., Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production. Metabolic Eng Comm. 2015;2:99–108.
    • (2015) Metabolic Eng Comm , vol.2 , pp. 99-108
    • Strucko, T.1    Magnesko, O.2    Mortensen, U.H.3
  • 39
    • 1642401219 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol
    • Becker VW, Armstrong GO, Van der Merwe MJ, et al. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res. 2003;4:79–85.
    • (2003) FEMS Yeast Res , vol.4 , pp. 79-85
    • Becker, V.W.1    Armstrong, G.O.2    Van der Merwe, M.J.3
  • 40
    • 84941962714 scopus 로고    scopus 로고
    • De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
    • Li M, Kildegaard KR, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng. 2015;32:1–11.
    • (2015) . Metab Eng , vol.32 , pp. 1-11
    • Li, M.1    Kildegaard, K.R.2    Chen, Y.3
  • 41
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin
    • Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532.
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1    Westfall, P.J.2    Pitera, D.J.3
  • 42
    • 85006226609 scopus 로고    scopus 로고
    • Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis
    • Andersen-Ranberg J, Kongstad KT, Nielsen MT, et al. Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angewandte Chem. 2016;128:2182–2186.
    • (2016) Angewandte Chem , vol.128 , pp. 2182-2186
    • Andersen-Ranberg, J.1    Kongstad, K.T.2    Nielsen, M.T.3
  • 43
    • 0034659738 scopus 로고    scopus 로고
    • Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking
    • Pretorius IS., Tailoring wine yeast for the new millennium:novel approaches to the ancient art of winemaking. Yeast. 2000;16:675–729.
    • (2000) Yeast , vol.16 , pp. 675-729
    • Pretorius, I.S.1
  • 44
    • 33748111498 scopus 로고    scopus 로고
    • The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits
    • Querol A., Fleet G.H., (eds), Heidelberg: Springer
    • Verstrepen KJ, Chambers PJ, Pretorius IS., The development of superior yeast strains for the food and beverage industries:challenges, opportunities and potential benefits. In:Querol A, Fleet GH, editors. The yeast handbook:yeasts in food and beverages. Heidelberg:Springer; 2006. p. 399–444.
    • (2006) The yeast handbook: yeasts in food and beverages , pp. 399-444
    • Verstrepen, K.J.1    Chambers, P.J.2    Pretorius, I.S.3
  • 45
    • 84856365213 scopus 로고    scopus 로고
    • Non-genetic engineering approaches to isolating and generating novel yeasts for industrial applications
    • Kunze G., Satyanarayana T., (eds), Berlin: Springer
    • Chambers PJ, Bellon JR, Schmidt SA, et al. (2009). Non-genetic engineering approaches to isolating and generating novel yeasts for industrial applications. In:Kunze G, Satyanarayana T, editors. Yeast biotechnology:diversity and applications. Berlin:Springer; 2009. p. 433–457.
    • (2009) Yeast biotechnology: diversity and applications , vol.2009 , pp. 433-457
    • Chambers, P.J.1    Bellon, J.R.2    Schmidt, S.A.3
  • 46
    • 33746238073 scopus 로고    scopus 로고
    • Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes
    • Cambon B, Monteil V, Remize F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol. 2006;72:4688–4694.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 4688-4694
    • Cambon, B.1    Monteil, V.2    Remize, F.3
  • 47
    • 0034368456 scopus 로고    scopus 로고
    • Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2)
    • De Barros Lopes MA, Rehman AU, Gockowiak H, et al. Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2). Austral J Grape Wine Res. 2000;6:208–215.
    • (2000) Austral J Grape Wine Res , vol.6 , pp. 208-215
    • De Barros Lopes, M.A.1    Rehman, A.U.2    Gockowiak, H.3
  • 48
    • 0037087377 scopus 로고    scopus 로고
    • Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene
    • Eglinton JM, Heinrich AJ, Pollnitz AP, et al. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast. 2002;19:295–301.
    • (2002) Yeast , vol.19 , pp. 295-301
    • Eglinton, J.M.1    Heinrich, A.J.2    Pollnitz, A.P.3
  • 49
    • 77954844224 scopus 로고    scopus 로고
    • Microbiological approaches to lowering ethanol concentration in wine
    • Kutyna DR, Varela C, Henschke PA, et al. Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci Technol. 2010;21:293–302.
    • (2010) Trends Food Sci Technol , vol.21 , pp. 293-302
    • Kutyna, D.R.1    Varela, C.2    Henschke, P.A.3
  • 50
    • 84856367465 scopus 로고    scopus 로고
    • Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production
    • Kutyna DR, Varela C, Stanley GA, et al. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol. 2012;93:1175–1184.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 1175-1184
    • Kutyna, D.R.1    Varela, C.2    Stanley, G.A.3
  • 51
    • 0030792275 scopus 로고    scopus 로고
    • Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase
    • Michnick S, Roustan J-L, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast. 1997;13:783–793.
    • (1997) Yeast , vol.13 , pp. 783-793
    • Michnick, S.1    Roustan, J.-L.2    Remize, F.3
  • 52
    • 0032939504 scopus 로고    scopus 로고
    • Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase
    • Remize F, Roustan J, Sablayrolles J, et al. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol. 1999;65:143–149.
    • (1999) Appl Environ Microbiol , vol.65 , pp. 143-149
    • Remize, F.1    Roustan, J.2    Sablayrolles, J.3
  • 53
    • 84896919039 scopus 로고    scopus 로고
    • Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions
    • Tilloy V, Ortiz-Julien A, Dequin S., Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014;80:2623–2632.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 2623-2632
    • Tilloy, V.1    Ortiz-Julien, A.2    Dequin, S.3
  • 54
    • 84943661449 scopus 로고    scopus 로고
    • Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae
    • Tilloy V, Cadiere A, Ehsani M, et al. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int J Food Microbiol. 2015;213:49–58.
    • (2015) Int J Food Microbiol , vol.213 , pp. 49-58
    • Tilloy, V.1    Cadiere, A.2    Ehsani, M.3
  • 55
    • 84866150087 scopus 로고    scopus 로고
    • Evaluation of gene modification strategies to develop low-alcohol wine yeasts
    • Varela C, Kutyna DR, Solomon M, et al. Evaluation of gene modification strategies to develop low-alcohol wine yeasts. Appl Environ Microbiol. 2012;17:6068–6077.
    • (2012) Appl Environ Microbiol , vol.17 , pp. 6068-6077
    • Varela, C.1    Kutyna, D.R.2    Solomon, M.3
  • 56
    • 64549096493 scopus 로고    scopus 로고
    • Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production
    • Cordente AG, Heinrich AJ, Pretorius IS, et al. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res. 2009;9:446–459.
    • (2009) FEMS Yeast Res , vol.9 , pp. 446-459
    • Cordente, A.G.1    Heinrich, A.J.2    Pretorius, I.S.3
  • 58
    • 84880160434 scopus 로고    scopus 로고
    • Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine
    • Luo Z, Walkey CJ, Madilao LL, et al. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine. FEMS Yeast Res. 2013;13:485–494.
    • (2013) FEMS Yeast Res , vol.13 , pp. 485-494
    • Luo, Z.1    Walkey, C.J.2    Madilao, L.L.3
  • 59
    • 33747061543 scopus 로고    scopus 로고
    • The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates
    • Lilly M, Bauer FF, Lambrechts MG, et al. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast. 2006;23:641–659.
    • (2006) Yeast , vol.23 , pp. 641-659
    • Lilly, M.1    Bauer, F.F.2    Lambrechts, M.G.3
  • 60
    • 33745886499 scopus 로고    scopus 로고
    • The effect of increased yeast branched-chain amino acid transaminase activity and the production of higher alcohols on the flavor profiles of wine and distillates
    • Lilly M, Styger G, Bauer FF, et al. The effect of increased yeast branched-chain amino acid transaminase activity and the production of higher alcohols on the flavor profiles of wine and distillates. FEMS Yeast Res. 2006;6:726–743.
    • (2006) FEMS Yeast Res , vol.6 , pp. 726-743
    • Lilly, M.1    Styger, G.2    Bauer, F.F.3
  • 61
    • 12844272325 scopus 로고    scopus 로고
    • De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts
    • Carrau FM, Medina K, Boido E, et al. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett. 2005;243:107–115.
    • (2005) FEMS Microbiol Lett , vol.243 , pp. 107-115
    • Carrau, F.M.1    Medina, K.2    Boido, E.3
  • 62
    • 84872373493 scopus 로고    scopus 로고
    • Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation
    • Cordente AG, Cordero-Bueso G, Pretorius IS, et al. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res. 2013;13:62–73.
    • (2013) FEMS Yeast Res , vol.13 , pp. 62-73
    • Cordente, A.G.1    Cordero-Bueso, G.2    Pretorius, I.S.3
  • 63
    • 79958282133 scopus 로고    scopus 로고
    • Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma
    • Holt S, Cordente AG, Williams SJ, et al. Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma. Appl Environ Microbiol. 2011;77:3626–3632.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 3626-3632
    • Holt, S.1    Cordente, A.G.2    Williams, S.J.3
  • 64
    • 79955792126 scopus 로고    scopus 로고
    • The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine
    • Roncoroni M, Santiago M, Hooks DO, et al. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 2011;28:926–935.
    • (2011) Food Microbiol , vol.28 , pp. 926-935
    • Roncoroni, M.1    Santiago, M.2    Hooks, D.O.3
  • 66
    • 34447524870 scopus 로고    scopus 로고
    • Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma
    • Swiegers JH, Capone DL, Pardon KH, et al. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast. 2007;24:561–574.
    • (2007) Yeast , vol.24 , pp. 561-574
    • Swiegers, J.H.1    Capone, D.L.2    Pardon, K.H.3
  • 67
  • 68
    • 84883184395 scopus 로고    scopus 로고
    • Novel yeast strains as tools to adjust the flavour of fermented beverages to market specifications
    • Frenkel D.H., Belanger F., (eds), Oxford: Blackwell Publishing
    • Swiegers JH, Saerens SMG, Pretorius IS., Novel yeast strains as tools to adjust the flavour of fermented beverages to market specifications. In:Frenkel DH, Belanger F, editors. Biotechnology in flavour production. Oxford:Blackwell Publishing; 2008. p. 1–55.
    • (2008) Biotechnology in flavour production , pp. 1-55
    • Swiegers, J.H.1    Saerens, S.M.G.2    Pretorius, I.S.3
  • 69
    • 58549084346 scopus 로고    scopus 로고
    • The influence of yeast on the aroma of Sauvignon Blanc wine
    • Swiegers JH, Kievit RL, Siebert T, et al. The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiol. 2009;26:204–211.
    • (2009) Food Microbiol , vol.26 , pp. 204-211
    • Swiegers, J.H.1    Kievit, R.L.2    Siebert, T.3
  • 70
    • 54049126527 scopus 로고    scopus 로고
    • Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation
    • Thibon C, Marullo P, Claisse O, et al. Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Res. 2008;8:1076–1086.
    • (2008) FEMS Yeast Res , vol.8 , pp. 1076-1086
    • Thibon, C.1    Marullo, P.2    Claisse, O.3
  • 71
    • 45549086155 scopus 로고    scopus 로고
    • From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound
    • Wood C, Siebert TE, Parker M, et al. From wine to pepper:rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. J Agric Food Chem. 2008;56:3738–3744.
    • (2008) J Agric Food Chem , vol.56 , pp. 3738-3744
    • Wood, C.1    Siebert, T.E.2    Parker, M.3
  • 72
    • 34247479948 scopus 로고    scopus 로고
    • Metabolic engineering of sesquiterpene metabolism in yeast
    • Takahashi S, Yeo Y, Greenhagen BT, et al. Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng. 2007;97:170–181.
    • (2007) Biotechnol Bioeng , vol.97 , pp. 170-181
    • Takahashi, S.1    Yeo, Y.2    Greenhagen, B.T.3
  • 73
    • 84964375945 scopus 로고    scopus 로고
    • Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone
    • Takase H, Sasaki K, Shinmori H, et al. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone. J Exp Bot. 2016;67:787–798.
    • (2016) J Exp Bot , vol.67 , pp. 787-798
    • Takase, H.1    Sasaki, K.2    Shinmori, H.3
  • 74
    • 33744490033 scopus 로고    scopus 로고
    • Genetic engineering of an industrial strain of Saccharomyces cerevisiae for l-malic acid degradation via an efficient malo-ethanolic pathway
    • Volschenk H, Viljoen-Bloom M, Van Staden J, et al. Genetic engineering of an industrial strain of Saccharomyces cerevisiae for l-malic acid degradation via an efficient malo-ethanolic pathway. S Afr J Enol Vitic. 2004;25:63–73.
    • (2004) S Afr J Enol Vitic , vol.25 , pp. 63-73
    • Volschenk, H.1    Viljoen-Bloom, M.2    Van Staden, J.3
  • 75
    • 33745126685 scopus 로고    scopus 로고
    • Metabolic engineering of malolactic wine yeast
    • Husnik JI, Volschenk H, Bauer F, et al. Metabolic engineering of malolactic wine yeast. Metabolic Eng. 2006;8:315–323.
    • (2006) Metabolic Eng , vol.8 , pp. 315-323
    • Husnik, J.I.1    Volschenk, H.2    Bauer, F.3
  • 76
    • 33745643180 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine
    • Coulon J, Husnik JI, Inglis DL, et al. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic. 2006;57:113–124.
    • (2006) Am J Enol Vitic , vol.57 , pp. 113-124
    • Coulon, J.1    Husnik, J.I.2    Inglis, D.L.3
  • 77
    • 0036773288 scopus 로고    scopus 로고
    • Meeting the consumer challenge through genetically customized wine-yeast strains
    • Pretorius IS, Bauer FF. Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol. 2002;20:426–432.
    • (2002) Trends Biotechnol , vol.20 , pp. 426-432
    • Pretorius, I.S.1    Bauer, F.F.2
  • 79
    • 54049088949 scopus 로고    scopus 로고
    • Comparative genome analysis of a Saccharomyces cerevisiae wine strain
    • Borneman AR, Forgan AH, Pretorius IS, et al. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res. 2008;8:1185–1195.
    • (2008) FEMS Yeast Res , vol.8 , pp. 1185-1195
    • Borneman, A.R.1    Forgan, A.H.2    Pretorius, I.S.3
  • 80
    • 79952262678 scopus 로고    scopus 로고
    • Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae
    • Borneman AR, Desany BA, Riches D, et al. Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 2011;7:e1001287.
    • (2011) PLoS Genet , vol.7 , pp. e1001287
    • Borneman, A.R.1    Desany, B.A.2    Riches, D.3
  • 81
    • 84855547158 scopus 로고    scopus 로고
    • The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins
    • Borneman AR, Desany BA, Riches D, et al. The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Res. 2012;12:88–96.
    • (2012) FEMS Yeast Res , vol.12 , pp. 88-96
    • Borneman, A.R.1    Desany, B.A.2    Riches, D.3
  • 82
    • 84860591356 scopus 로고    scopus 로고
    • Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments
    • Dunn B, Richter C, Kvitek DJ, et al. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 2012;22:908–924.
    • (2012) Genome Res , vol.22 , pp. 908-924
    • Dunn, B.1    Richter, C.2    Kvitek, D.J.3
  • 83
    • 78650065364 scopus 로고    scopus 로고
    • FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H + symporter
    • Galeote V, Novo M, Salema-Oom M, et al. FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H + symporter. Microbiology. 2010;56:3754–3761.
    • (2010) Microbiology , vol.56 , pp. 3754-3761
    • Galeote, V.1    Novo, M.2    Salema-Oom, M.3
  • 84
    • 79952523291 scopus 로고    scopus 로고
    • Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation
    • Galeote V, Bigey F, Beyne E, et al. Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation. PLoS One. 2011;6:e17872.
    • (2011) PLoS One , vol.6 , pp. e17872
    • Galeote, V.1    Bigey, F.2    Beyne, E.3
  • 85
    • 70349515584 scopus 로고    scopus 로고
    • Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118
    • Novo M, Bigey F, Beyne E, et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci USA. 2009;106:16333–16338.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 16333-16338
    • Novo, M.1    Bigey, F.2    Beyne, E.3
  • 86
    • 34547913442 scopus 로고    scopus 로고
    • Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789
    • Wei W, McCusker JH, Hyman RW, et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci USA. 2007;104:12825–12830.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 12825-12830
    • Wei, W.1    McCusker, J.H.2    Hyman, R.W.3
  • 87
    • 62649089109 scopus 로고    scopus 로고
    • Population genomics of domestic and wild yeasts
    • Liti G, Carter DM, Moses AM, et al. Population genomics of domestic and wild yeasts. Nature. 2009;458:337–341.
    • (2009) Nature , vol.458 , pp. 337-341
    • Liti, G.1    Carter, D.M.2    Moses, A.M.3
  • 88
    • 84925847939 scopus 로고    scopus 로고
    • Genomic insights into the Saccharomyces sensu stricto complex
    • Borneman AR, Pretorius IS., Genomic insights into the Saccharomyces sensu stricto complex. Genetics. 2015;199:281–291.
    • (2015) Genetics , vol.199 , pp. 281-291
    • Borneman, A.R.1    Pretorius, I.S.2
  • 89
    • 0030849767 scopus 로고    scopus 로고
    • Strawberry flavour: analysis and biosynthesis
    • Zabetakis I, Holden MA., Strawberry flavour:analysis and biosynthesis. J Sci Food Agric. 1997;74:421–434.
    • (1997) J Sci Food Agric , vol.74 , pp. 421-434
    • Zabetakis, I.1    Holden, M.A.2
  • 91
    • 79961179947 scopus 로고    scopus 로고
    • Synergies between synthetic biology and metabolic engineering
    • Nielsen J, Keasling JD., Synergies between synthetic biology and metabolic engineering. Nat Biotechnol. 2011;29:693–695.
    • (2011) . Nat Biotechnol , vol.29 , pp. 693-695
    • Nielsen, J.1    Keasling, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.