메뉴 건너뛰기




Volumn 30, Issue 13, 2016, Pages 1483-1491

Regulating telomere length from the inside out: The replication fork model

Author keywords

DNA replication; Telomerase; Telomere

Indexed keywords

DNA; DNA POLYMERASE; OKAZAKI FRAGMENT; REPLICATION FACTOR A; TELOMERASE; TELOMERE BINDING PROTEIN; DNA DIRECTED DNA POLYMERASE; DNA DIRECTED RNA POLYMERASE; OKAZAKI FRAGMENTS;

EID: 84978177131     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.280578.116     Document Type: Article
Times cited : (59)

References (110)
  • 1
    • 0029772312 scopus 로고    scopus 로고
    • Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae
    • Adams AK, Holm C. 1996. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Mol Cell Biol 16: 4614-4620.
    • (1996) Mol Cell Biol , vol.16 , pp. 4614-4620
    • Adams, A.K.1    Holm, C.2
  • 2
    • 0033982575 scopus 로고    scopus 로고
    • The function of DNA polymerase α at telomeric G tails is important for telomere homeostasis
    • Adams Martin A, Dionne I, Wellinger RJ, Holm C. 2000. The function of DNA polymerase α at telomeric G tails is important for telomere homeostasis. Mol Cell Biol 20: 786- 796.
    • (2000) Mol Cell Biol , vol.20 , pp. 786-796
    • Adams Martin, A.1    Dionne, I.2    Wellinger, R.J.3    Holm, C.4
  • 4
    • 67650079362 scopus 로고    scopus 로고
    • Syndromes of telomere shortening
    • Armanios M. 2009. Syndromes of telomere shortening. Annu Rev Genomics Hum Genet 10: 45-61.
    • (2009) Annu Rev Genomics Hum Genet , vol.10 , pp. 45-61
    • Armanios, M.1
  • 5
    • 33751237066 scopus 로고    scopus 로고
    • The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes
    • Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. 2006. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 20: 3104-3116.
    • (2006) Genes Dev , vol.20 , pp. 3104-3116
    • Azvolinsky, A.1    Dunaway, S.2    Torres, J.Z.3    Bessler, J.B.4    Zakian, V.A.5
  • 7
    • 84880507215 scopus 로고    scopus 로고
    • Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast
    • Ballew BJ, Lundblad V. 2013. Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast. Aging Cell 12: 719-727.
    • (2013) Aging Cell , vol.12 , pp. 719-727
    • Ballew, B.J.1    Lundblad, V.2
  • 8
    • 33947308706 scopus 로고    scopus 로고
    • Early replication of short telomeres in budding yeast
    • Bianchi A, Shore D. 2007a. Early replication of short telomeres in budding yeast. Cell 128: 1051-1062.
    • (2007) Cell , vol.128 , pp. 1051-1062
    • Bianchi, A.1    Shore, D.2
  • 9
    • 34447532519 scopus 로고    scopus 로고
    • Increased association of telomerase with short telomeres in yeast
    • Bianchi A, Shore D. 2007b. Increased association of telomerase with short telomeres in yeast. Genes Dev 21: 1726-1730.
    • (2007) Genes Dev , vol.21 , pp. 1726-1730
    • Bianchi, A.1    Shore, D.2
  • 10
    • 76749129611 scopus 로고    scopus 로고
    • Unwinding the functions of the Pif1 family helicases
    • Bochman ML, Sabouri N, Zakian VA. 2010. Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst) 9: 237-249.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 237-249
    • Bochman, M.L.1    Sabouri, N.2    Zakian, V.A.3
  • 11
    • 0025950546 scopus 로고
    • Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase
    • Brill SJ, Stillman B. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5: 1589-1600.
    • (1991) Genes Dev , vol.5 , pp. 1589-1600
    • Brill, S.J.1    Stillman, B.2
  • 13
    • 33645215616 scopus 로고    scopus 로고
    • Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase δ
    • Budd ME, Reis CC, Smith S, Myung K, Campbell JL. 2006. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase δ. Mol Cell Biol 26: 2490-2500.
    • (2006) Mol Cell Biol , vol.26 , pp. 2490-2500
    • Budd, M.E.1    Reis, C.C.2    Smith, S.3    Myung, K.4    Campbell, J.L.5
  • 14
    • 75549090255 scopus 로고    scopus 로고
    • Mammalian Rif1 contributes to replication stress survival and homologydirected repair
    • Buonomo SB, Wu Y, Ferguson D, de Lange T. 2009. Mammalian Rif1 contributes to replication stress survival and homologydirected repair. J Cell Biol 187: 385-398.
    • (2009) J Cell Biol , vol.187 , pp. 385-398
    • Buonomo, S.B.1    Wu, Y.2    Ferguson, D.3    de Lange, T.4
  • 15
    • 0022387528 scopus 로고
    • CDC17: An essential gene that prevents telomere elongation in yeast
    • Carson MJ, Hartwell L. 1985. CDC17: an essential gene that prevents telomere elongation in yeast. Cell 42: 249-257.
    • (1985) Cell , vol.42 , pp. 249-257
    • Carson, M.J.1    Hartwell, L.2
  • 16
    • 0020621223 scopus 로고
    • Organization of DNA sequences and replication origins at yeast telomeres
    • Chan CSM, Tye B. 1983. Organization of DNA sequences and replication origins at yeast telomeres. Cell 33: 563-573.
    • (1983) Cell , vol.33 , pp. 563-573
    • Chan, C.S.M.1    Tye, B.2
  • 17
    • 80655129509 scopus 로고    scopus 로고
    • Rif1/2 and Tel1 function in separate pathways during replicative senescence
    • Chang M, Rothstein R. 2011. Rif1/2 and Tel1 function in separate pathways during replicative senescence. Cell Cycle 10: 3798-3799.
    • (2011) Cell Cycle , vol.10 , pp. 3798-3799
    • Chang, M.1    Rothstein, R.2
  • 19
    • 0344423818 scopus 로고    scopus 로고
    • Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae
    • Craven RJ, Petes TD. 1999. Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae. Genetics 152: 1531-1541.
    • (1999) Genetics , vol.152 , pp. 1531-1541
    • Craven, R.J.1    Petes, T.D.2
  • 20
    • 0344490247 scopus 로고    scopus 로고
    • Replication proteins influence the maintenance of telomere length and telomerase protein stability
    • Dahlen M, Sunnerhagen P, Wang TS. 2003. Replication proteins influence the maintenance of telomere length and telomerase protein stability. Mol Cell Biol 23: 3031-3042.
    • (2003) Mol Cell Biol , vol.23 , pp. 3031-3042
    • Dahlen, M.1    Sunnerhagen, P.2    Wang, T.S.3
  • 21
    • 84898051697 scopus 로고    scopus 로고
    • Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity
    • Dave A, Cooley C, Garg M, Bianchi A. 2014. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 7: 53-61.
    • (2014) Cell Rep , vol.7 , pp. 53-61
    • Dave, A.1    Cooley, C.2    Garg, M.3    Bianchi, A.4
  • 22
    • 84908339330 scopus 로고    scopus 로고
    • Role of STN1 and DNA polymerase α in telomere stability and genome- wide replication in Arabidopsis
    • Derboven E, Ekker H, Kusenda B, Bulankova P, Riha K. 2014. Role of STN1 and DNA polymerase α in telomere stability and genome- wide replication in Arabidopsis. PLoS Genet 10: e1004682.
    • (2014) PLoS Genet , vol.10
    • Derboven, E.1    Ekker, H.2    Kusenda, B.3    Bulankova, P.4    Riha, K.5
  • 23
    • 0033598944 scopus 로고    scopus 로고
    • Telomerase-mediated telomere addition in vivo requiresDNAprimase andDNApolymerases α and δ
    • Diede SJ, Gottschling DE. 1999. Telomerase-mediated telomere addition in vivo requiresDNAprimase andDNApolymerases α and δ. Cell 99: 723-733.
    • (1999) Cell , vol.99 , pp. 723-733
    • Diede, S.J.1    Gottschling, D.E.2
  • 24
    • 0032403147 scopus 로고    scopus 로고
    • Processing of telomeric DNA ends requires the passage of a replication fork
    • Dionne I, Wellinger RJ. 1998. Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Res 26: 5365-5371.
    • (1998) Nucleic Acids Res , vol.26 , pp. 5365-5371
    • Dionne, I.1    Wellinger, R.J.2
  • 25
    • 0025220524 scopus 로고
    • The primary structure of the 32-kDa subunit of human replication protein A
    • Erdile LF, Wold MS, Kelly TJ. 1990. The primary structure of the 32-kDa subunit of human replication protein A. J Biol Chem 265: 3177-3182.
    • (1990) J Biol Chem , vol.265 , pp. 3177-3182
    • Erdile, L.F.1    Wold, M.S.2    Kelly, T.J.3
  • 26
    • 0033214013 scopus 로고    scopus 로고
    • Est1 and Cdc13 as comediators of telomerase access
    • Evans SK, Lundblad V. 1999. Est1 and Cdc13 as comediators of telomerase access. Science 286: 117-120.
    • (1999) Science , vol.286 , pp. 117-120
    • Evans, S.K.1    Lundblad, V.2
  • 27
    • 1842311742 scopus 로고
    • Cellular Factors required for multiple stages of SV40 DNA replication
    • Fairman MP, Stillman B. 1988. Cellular Factors required for multiple stages of SV40 DNA replication. EMBO J 7: 1211-1218.
    • (1988) EMBO J , vol.7 , pp. 1211-1218
    • Fairman, M.P.1    Stillman, B.2
  • 28
    • 0029080177 scopus 로고
    • TelomeraseRNAlocalized in the replication band and spherical subnuclear organelles in hypotrichous ciliates
    • Fang G, Cech TR. 1995. TelomeraseRNAlocalized in the replication band and spherical subnuclear organelles in hypotrichous ciliates. J Cell Biol 130: 243-253.
    • (1995) J Cell Biol , vol.130 , pp. 243-253
    • Fang, G.1    Cech, T.R.2
  • 29
    • 77955500554 scopus 로고    scopus 로고
    • Cdc13 and telomerase bind through different mechanisms at the lagging- and leading- strand telomeres
    • Faure V, Coulon S, Hardy J, Geli V. 2010. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading- strand telomeres. Mol Cell 38: 842-852.
    • (2010) Mol Cell , vol.38 , pp. 842-852
    • Faure, V.1    Coulon, S.2    Hardy, J.3    Geli, V.4
  • 30
    • 0026571672 scopus 로고
    • Aposition effect on the time of replication origin activation in yeast
    • Ferguson BM, Fangman WL. 1992. Aposition effect on the time of replication origin activation in yeast. Cell 68: 333-339.
    • (1992) Cell , vol.68 , pp. 333-339
    • Ferguson, B.M.1    Fangman, W.L.2
  • 33
    • 79251551669 scopus 로고    scopus 로고
    • Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13
    • Gao H, Toro TB, Paschini M, Braunstein-Ballew B, Cervantes RB, Lundblad V. 2010. Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13. Genetics 186: 1147-1159.
    • (2010) Genetics , vol.186 , pp. 1147-1159
    • Gao, H.1    Toro, T.B.2    Paschini, M.3    Braunstein-Ballew, B.4    Cervantes, R.B.5    Lundblad, V.6
  • 35
    • 0025357511 scopus 로고
    • Purification and properties of an accessory protein for DNA polymerase α/primase
    • Goulian M, Heard CJ, Grimm SL. 1990. Purification and properties of an accessory protein for DNA polymerase α/primase. J Biol Chem 265: 13221-13230.
    • (1990) J Biol Chem , vol.265 , pp. 13221-13230
    • Goulian, M.1    Heard, C.J.2    Grimm, S.L.3
  • 36
    • 0031029001 scopus 로고    scopus 로고
    • Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13
    • Grandin N, Reed SI, Charbonneau M. 1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11: 512-527.
    • (1997) Genes Dev , vol.11 , pp. 512-527
    • Grandin, N.1    Reed, S.I.2    Charbonneau, M.3
  • 37
    • 0035282781 scopus 로고    scopus 로고
    • Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13
    • Grandin N, Damon C, Charbonneau M. 2001. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. Embo J 20: 1173-1183.
    • (2001) Embo J , vol.20 , pp. 1173-1183
    • Grandin, N.1    Damon, C.2    Charbonneau, M.3
  • 38
    • 0033028428 scopus 로고    scopus 로고
    • Telomerase activation: One step on the road to cancer?
    • Greider CW. 1999. Telomerase activation: one step on the road to cancer? Trends Genet 15: 109-112.
    • (1999) Trends Genet , vol.15 , pp. 109-112
    • Greider, C.W.1
  • 39
    • 0022402513 scopus 로고
    • Identification of a specific telomere terminal transferase activity in Tetrahymena extracts
    • Greider CW, Blackburn EH. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405-413.
    • (1985) Cell , vol.43 , pp. 405-413
    • Greider, C.W.1    Blackburn, E.H.2
  • 41
    • 2442564703 scopus 로고    scopus 로고
    • Pol12, the B subunit of DNA polymerase α, functions in both telomere capping and length regulation
    • Grossi S, Puglisi A, Dmitriev PV, Lopes M, Shore D. 2004. Pol12, the B subunit of DNA polymerase α, functions in both telomere capping and length regulation. Genes Dev 18: 992-1006.
    • (2004) Genes Dev , vol.18 , pp. 992-1006
    • Grossi, S.1    Puglisi, A.2    Dmitriev, P.V.3    Lopes, M.4    Shore, D.5
  • 42
    • 0030990291 scopus 로고    scopus 로고
    • Molecular model for telomeric heterochromatin in yeast
    • Grunstein M. 1997. Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol 9: 383-387.
    • (1997) Curr Opin Cell Biol , vol.9 , pp. 383-387
    • Grunstein, M.1
  • 43
    • 0026623241 scopus 로고
    • A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation
    • Hardy CF, Sussel L, Shore D. 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6: 801-814.
    • (1992) Genes Dev , vol.6 , pp. 801-814
    • Hardy, C.F.1    Sussel, L.2    Shore, D.3
  • 46
    • 84857203923 scopus 로고    scopus 로고
    • Kinetics of DNA replication and telomerase reaction at a single-seeded telomere in human cells
    • Hirai Y, Masutomi K, Ishikawa F. 2012. Kinetics of DNA replication and telomerase reaction at a single-seeded telomere in human cells. Genes Cells 17: 186-204.
    • (2012) Genes Cells , vol.17 , pp. 186-204
    • Hirai, Y.1    Masutomi, K.2    Ishikawa, F.3
  • 47
    • 46249089163 scopus 로고    scopus 로고
    • Engineered telomere degradation models dyskeratosis congenita
    • Hockemeyer D, Palm W, Wang RC, Couto SS, de Lange T. 2008. Engineered telomere degradation models dyskeratosis congenita. Genes Dev 22: 1773-1785.
    • (2008) Genes Dev , vol.22 , pp. 1773-1785
    • Hockemeyer, D.1    Palm, W.2    Wang, R.C.3    Couto, S.S.4    de Lange, T.5
  • 49
    • 0141504148 scopus 로고    scopus 로고
    • Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability
    • Kanellis P, Agyei R, Durocher D. 2003. Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr Biol 13: 1583-1595.
    • (2003) Curr Biol , vol.13 , pp. 1583-1595
    • Kanellis, P.1    Agyei, R.2    Durocher, D.3
  • 51
    • 84883218668 scopus 로고    scopus 로고
    • Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex?
    • Kubota T, Myung K, Donaldson AD. 2013. Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex? Cell Cycle 12: 2570-2579.
    • (2013) Cell Cycle , vol.12 , pp. 2570-2579
    • Kubota, T.1    Myung, K.2    Donaldson, A.D.3
  • 52
    • 84938554960 scopus 로고    scopus 로고
    • Replication-coupled PCNA unloading by the Elg1 complex occurs genome-wide and requires okazaki fragment ligation
    • Kubota T, Katou Y, Nakato R, Shirahige K, Donaldson AD. 2015. Replication-coupled PCNA unloading by the Elg1 complex occurs genome-wide and requires okazaki fragment ligation. Cell Rep 12: 774-787.
    • (2015) Cell Rep , vol.12 , pp. 774-787
    • Kubota, T.1    Katou, Y.2    Nakato, R.3    Shirahige, K.4    Donaldson, A.D.5
  • 53
    • 84875553632 scopus 로고    scopus 로고
    • New insights into replisome fluidity during chromosome replication
    • Kurth I, O'Donnell M. 2013. New insights into replisome fluidity during chromosome replication. Trends Biochem Sci 38: 195-203.
    • (2013) Trends Biochem Sci , vol.38 , pp. 195-203
    • Kurth, I.1    O'Donnell, M.2
  • 54
    • 69749124647 scopus 로고    scopus 로고
    • Whither the replisome: Emerging perspectives on the dynamic nature of the DNA replication machinery
    • Langston LD, Indiani C, O'Donnell M. 2009. Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery. Cell Cycle 8: 2686-2691.
    • (2009) Cell Cycle , vol.8 , pp. 2686-2691
    • Langston, L.D.1    Indiani, C.2    O'Donnell, M.3
  • 55
    • 10044265469 scopus 로고    scopus 로고
    • Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length
    • Levy DL, Blackburn EH. 2004. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24: 10857-10867.
    • (2004) Mol Cell Biol , vol.24 , pp. 10857-10867
    • Levy, D.L.1    Blackburn, E.H.2
  • 57
    • 0030447657 scopus 로고    scopus 로고
    • The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo
    • Lin JJ, Zakian VA. 1996. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci 93: 13760-13765.
    • (1996) Proc Natl Acad Sci , vol.93 , pp. 13760-13765
    • Lin, J.J.1    Zakian, V.A.2
  • 58
    • 0038451396 scopus 로고    scopus 로고
    • POT1 as a terminal transducer of TRF1 telomere length control
    • Loayza D, de Lange T. 2003. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423: 1013-1018.
    • (2003) Nature , vol.423 , pp. 1013-1018
    • Loayza, D.1    de Lange, T.2
  • 59
    • 0029417194 scopus 로고
    • The chromosome ends of Saccharomyces cerevisiae
    • Louis EJ. 1995. The chromosome ends of Saccharomyces cerevisiae. Yeast 11: 1553-1573.
    • (1995) Yeast , vol.11 , pp. 1553-1573
    • Louis, E.J.1
  • 60
    • 84923379956 scopus 로고    scopus 로고
    • The CDC13-STN1- TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch
    • Lue NF, Chan J, Wright WE, Hurwitz J. 2014. The CDC13-STN1- TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch. Nat Commun 5: 5762.
    • (2014) Nat Commun , vol.5 , pp. 5762
    • Lue, N.F.1    Chan, J.2    Wright, W.E.3    Hurwitz, J.4
  • 61
    • 0031036351 scopus 로고    scopus 로고
    • A protein-counting mechanism for telomere length regulation in yeast
    • Marcand S, Gilson E, Shore D. 1997. A protein-counting mechanism for telomere length regulation in yeast. Science 275: 986-990.
    • (1997) Science , vol.275 , pp. 986-990
    • Marcand, S.1    Gilson, E.2    Shore, D.3
  • 62
    • 0033564210 scopus 로고    scopus 로고
    • Progressive cis-inhibition of telomerase upon telomere elongation
    • Marcand S, Brevet V, Gilson E. 1999. Progressive cis-inhibition of telomerase upon telomere elongation. Embo J 18: 3509-3519.
    • (1999) Embo J , vol.18 , pp. 3509-3519
    • Marcand, S.1    Brevet, V.2    Gilson, E.3
  • 63
    • 0034175814 scopus 로고    scopus 로고
    • Cell cycle restriction of telomere elongation
    • Marcand S, Brevet V, Mann C, Gilson E. 2000. Cell cycle restriction of telomere elongation. Curr Biol 10: 487-490.
    • (2000) Curr Biol , vol.10 , pp. 487-490
    • Marcand, S.1    Brevet, V.2    Mann, C.3    Gilson, E.4
  • 65
    • 0024285032 scopus 로고
    • Time of replication of yeast centromeres and telomeres
    • McCarroll RM, Fangman WL. 1988. Time of replication of yeast centromeres and telomeres. Cell 54: 505-513.
    • (1988) Cell , vol.54 , pp. 505-513
    • McCarroll, R.M.1    Fangman, W.L.2
  • 66
    • 70350031814 scopus 로고    scopus 로고
    • RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway
    • Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S, Saito M, Ishikawa F. 2009. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell 36: 193-206.
    • (2009) Mol Cell , vol.36 , pp. 193-206
    • Miyake, Y.1    Nakamura, M.2    Nabetani, A.3    Shimamura, S.4    Tamura, M.5    Yonehara, S.6    Saito, M.7    Ishikawa, F.8
  • 67
    • 70450265298 scopus 로고    scopus 로고
    • The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex
    • Morohashi H, Maculins T, Labib K. 2009. The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex. Curr Biol 19: 1943-1949.
    • (2009) Curr Biol , vol.19 , pp. 1943-1949
    • Morohashi, H.1    Maculins, T.2    Labib, K.3
  • 68
    • 70149121335 scopus 로고    scopus 로고
    • Fission yeast Tel1(ATM) and Rad3(ATR) promote telomere protection and telomerase recruitment
    • Moser BA, Subramanian L, Khair L, Chang YT, Nakamura TM. 2009. Fission yeast Tel1(ATM) and Rad3(ATR) promote telomere protection and telomerase recruitment. PLoS Genet 5: e1000622.
    • (2009) PLoS Genet , vol.5
    • Moser, B.A.1    Subramanian, L.2    Khair, L.3    Chang, Y.T.4    Nakamura, T.M.5
  • 69
    • 33748183271 scopus 로고    scopus 로고
    • Low abundance of telomerase in yeast: Implications for telomerase haploinsufficiency
    • Mozdy AD, Cech TR. 2006. Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency. RNA 12: 1721-1737.
    • (2006) RNA , vol.12 , pp. 1721-1737
    • Mozdy, A.D.1    Cech, T.R.2
  • 70
    • 84920564565 scopus 로고    scopus 로고
    • DDK links replication and recombination in meiosis
    • Murakami H, Keeney S. 2014. DDK links replication and recombination in meiosis. Cell Cycle 13: 3621-3622.
    • (2014) Cell Cycle , vol.13 , pp. 3621-3622
    • Murakami, H.1    Keeney, S.2
  • 71
    • 0029845892 scopus 로고    scopus 로고
    • Cdc13p: A single- strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance
    • Nugent CI, Hughes TR, Lue NF, Lundblad V. 1996. Cdc13p: a single- strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274: 249-252.
    • (1996) Science , vol.274 , pp. 249-252
    • Nugent, C.I.1    Hughes, T.R.2    Lue, N.F.3    Lundblad, V.4
  • 72
  • 73
    • 0024745518 scopus 로고
    • Proliferating cell nuclear antigen/cyclin in the ciliate Euplotes eurystomus: Localization in the replication band and in micronuclei
    • Olins DE, Olins AL, Cacheiro LH, Tan EM. 1989. Proliferating cell nuclear antigen/cyclin in the ciliate Euplotes eurystomus: localization in the replication band and in micronuclei. J Cell Biol 109: 1399-1410.
    • (1989) J Cell Biol , vol.109 , pp. 1399-1410
    • Olins, D.E.1    Olins, A.L.2    Cacheiro, L.H.3    Tan, E.M.4
  • 74
    • 46249125488 scopus 로고    scopus 로고
    • How shelterin protects mammalian telomeres
    • Palm W, de Lange T. 2008. How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301-334.
    • (2008) Annu Rev Genet , vol.42 , pp. 301-334
    • Palm, W.1    de Lange, T.2
  • 75
    • 0032974345 scopus 로고    scopus 로고
    • Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27
    • Parenteau J, Wellinger RJ. 1999. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol Cell Biol 19: 4143-4152.
    • (1999) Mol Cell Biol , vol.19 , pp. 4143-4152
    • Parenteau, J.1    Wellinger, R.J.2
  • 76
    • 84902350415 scopus 로고    scopus 로고
    • Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome
    • Peace JM, Ter-Zakarian A, Aparicio OM. 2014. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One 9: e98501.
    • (2014) PLoS One , vol.9
    • Peace, J.M.1    Ter-Zakarian, A.2    Aparicio, O.M.3
  • 77
    • 56549089924 scopus 로고    scopus 로고
    • Telomeric nucleosomes: Forgotten players at chromosome ends
    • Pisano S, Galati A, Cacchione S. 2008. Telomeric nucleosomes: forgotten players at chromosome ends. Cell Mol Life Sci 65: 3553-3563.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 3553-3563
    • Pisano, S.1    Galati, A.2    Cacchione, S.3
  • 79
    • 0034661246 scopus 로고    scopus 로고
    • The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein
    • Qi H, Zakian VA. 2000. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev 14: 1777-1788.
    • (2000) Genes Dev , vol.14 , pp. 1777-1788
    • Qi, H.1    Zakian, V.A.2
  • 81
    • 0035830960 scopus 로고    scopus 로고
    • Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites
    • Rossetti L, Cacchione S, De Menna A, Chapman L, Rhodes D, Savino M. 2001. Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites. J Mol Biol 306: 903-913.
    • (2001) J Mol Biol , vol.306 , pp. 903-913
    • Rossetti, L.1    Cacchione, S.2    De Menna, A.3    Chapman, L.4    Rhodes, D.5    Savino, M.6
  • 82
    • 63649138336 scopus 로고    scopus 로고
    • Human flap endonuclease I is in complex with telomerase and is required for telomerase-mediated telomere maintenance
    • Sampathi S, Bhusari A, Shen B, Chai W. 2009. Human flap endonuclease I is in complex with telomerase and is required for telomerase-mediated telomere maintenance. J Biol Chem 284: 3682-3690.
    • (2009) J Biol Chem , vol.284 , pp. 3682-3690
    • Sampathi, S.1    Bhusari, A.2    Shen, B.3    Chai, W.4
  • 83
    • 0028178792 scopus 로고
    • The Saccharomyces PIF1DNAhelicase inhibits telomere elongation and de novo telomere formation
    • Schulz VP, Zakian VA. 1994. The Saccharomyces PIF1DNAhelicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145-155.
    • (1994) Cell , vol.76 , pp. 145-155
    • Schulz, V.P.1    Zakian, V.A.2
  • 84
    • 69249229528 scopus 로고    scopus 로고
    • Telomere length regulation: Coupling DNA end processing to feedback regulation of telomerase
    • Shore D, Bianchi A. 2009. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 28: 2309-2322.
    • (2009) EMBO J , vol.28 , pp. 2309-2322
    • Shore, D.1    Bianchi, A.2
  • 86
    • 0029761346 scopus 로고    scopus 로고
    • rTP: A candidate telomere protein that is associated with DNA replication
    • Skopp R, Wang W, Price C. 1996. rTP: a candidate telomere protein that is associated with DNA replication. Chromosoma 105: 82-91.
    • (1996) Chromosoma , vol.105 , pp. 82-91
    • Skopp, R.1    Wang, W.2    Price, C.3
  • 87
    • 0032870656 scopus 로고    scopus 로고
    • The pattern of replication at a human telomeric region (16p13.3): Its relationship to chromosome structure and gene expression
    • Smith ZE, Higgs DR. 1999. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum Mol Genet 8: 1373-1386.
    • (1999) Hum Mol Genet , vol.8 , pp. 1373-1386
    • Smith, Z.E.1    Higgs, D.R.2
  • 88
    • 0037326054 scopus 로고    scopus 로고
    • Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae
    • Smith CD, Smith DL, DeRisi JL, Blackburn EH. 2003. Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell 14: 556-570.
    • (2003) Mol Biol Cell , vol.14 , pp. 556-570
    • Smith, C.D.1    Smith, D.L.2    DeRisi, J.L.3    Blackburn, E.H.4
  • 90
    • 84930646018 scopus 로고    scopus 로고
    • Drosophila Rif1 is an essential gene and controls late developmental events by direct interaction with PP1-87B
    • Sreesankar E, Bharathi V, Mishra RK, Mishra K. 2015. Drosophila Rif1 is an essential gene and controls late developmental events by direct interaction with PP1-87B. Sci Rep 5: 10679.
    • (2015) Sci Rep , vol.5
    • Sreesankar, E.1    Bharathi, V.2    Mishra, R.K.3    Mishra, K.4
  • 92
    • 85027917185 scopus 로고    scopus 로고
    • Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α
    • Sun J, Yang Y,Wan K, Mao N, Yu TY, Lin YC,DeZwaan DC, Freeman BC, Lin JJ, Lue NF, et al. 2011. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res 21: 258-274.
    • (2011) Cell Res , vol.21 , pp. 258-274
    • Sun, J.1    Yang, Y.2    Wan, K.3    Mao, N.4    Yu, T.Y.5    Lin, Y.C.6    DeZwaan, D.C.7    Freeman, B.C.8    Lin, J.J.9    Lue, N.F.10
  • 94
    • 0025881033 scopus 로고
    • Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: Isolation of viable mutants affecting both silencing and telomere length
    • Sussel L, Shore D. 1991. Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc Natl Acad Sci 88: 7749-7753.
    • (1991) Proc Natl Acad Sci , vol.88 , pp. 7749-7753
    • Sussel, L.1    Shore, D.2
  • 95
    • 0037047643 scopus 로고    scopus 로고
    • Est1p as a cell cycle-regulated activator of telomere-bound telomerase
    • Taggart AK, Teng SC, Zakian VA. 2002. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297: 1023-1026.
    • (2002) Science , vol.297 , pp. 1023-1026
    • Taggart, A.K.1    Teng, S.C.2    Zakian, V.A.3
  • 97
    • 70450265395 scopus 로고    scopus 로고
    • Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis
    • Takashi Y, Kobayashi Y, Tanaka K, Tamura K. 2009. Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. Plant Cell Physiol 50: 1965-1976.
    • (2009) Plant Cell Physiol , vol.50 , pp. 1965-1976
    • Takashi, Y.1    Kobayashi, Y.2    Tanaka, K.3    Tamura, K.4
  • 98
    • 2042534735 scopus 로고    scopus 로고
    • Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states
    • Teixeira MT, Arneric M, Sperisen P, Lingner J. 2004. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117: 323-335.
    • (2004) Cell , vol.117 , pp. 323-335
    • Teixeira, M.T.1    Arneric, M.2    Sperisen, P.3    Lingner, J.4
  • 100
    • 0024851541 scopus 로고
    • Multiple replication factors augment DNA synthesis by the two eukaryotic DNA polymerases α and δ
    • Tsurimoto T, Stillman B. 1989. Multiple replication factors augment DNA synthesis by the two eukaryotic DNA polymerases α and δ. EMBO J 8: 3883-3889.
    • (1989) EMBO J , vol.8 , pp. 3883-3889
    • Tsurimoto, T.1    Stillman, B.2
  • 101
    • 0031027618 scopus 로고    scopus 로고
    • Control of telomere length by the human telomeric protein TRF1
    • van Steensel B, de Lange T. 1997. Control of telomere length by the human telomeric protein TRF1. Nature 385: 740-743.
    • (1997) Nature , vol.385 , pp. 740-743
    • van Steensel, B.1    de Lange, T.2
  • 102
    • 77956393411 scopus 로고    scopus 로고
    • Telomere capping in non-dividing yeast cells requires Yku and Rap1
    • Vodenicharov MD, Laterreur N, Wellinger RJ. 2010. Telomere capping in non-dividing yeast cells requires Yku and Rap1. EMBO J 29: 3007-3019.
    • (2010) EMBO J , vol.29 , pp. 3007-3019
    • Vodenicharov, M.D.1    Laterreur, N.2    Wellinger, R.J.3
  • 103
    • 84865105439 scopus 로고    scopus 로고
    • Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: Beginning to end
    • Wellinger RJ, Zakian VA. 2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191: 1073-1105.
    • (2012) Genetics , vol.191 , pp. 1073-1105
    • Wellinger, R.J.1    Zakian, V.A.2
  • 104
    • 0027298574 scopus 로고
    • Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid
    • Wellinger RJ, Wolf AJ, Zakian VA. 1993. Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol Cell Biol 13: 4057-4065.
    • (1993) Mol Cell Biol , vol.13 , pp. 4057-4065
    • Wellinger, R.J.1    Wolf, A.J.2    Zakian, V.A.3
  • 105
    • 0023992803 scopus 로고
    • Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA
    • Wold MS, Kelly T. 1988. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci 85: 2523-2527.
    • (1988) Proc Natl Acad Sci , vol.85 , pp. 2523-2527
    • Wold, M.S.1    Kelly, T.2
  • 106
    • 0030995534 scopus 로고    scopus 로고
    • A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae
    • Wotton D, Shore D. 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11: 748-760.
    • (1997) Genes Dev , vol.11 , pp. 748-760
    • Wotton, D.1    Shore, D.2
  • 107
    • 0026563895 scopus 로고
    • Saccharomyces telomeres assume a non-nucleosomal chromatin structure
    • Wright JH, Gottschling DE, Zakian VA. 1992. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6: 197-210.
    • (1992) Genes Dev , vol.6 , pp. 197-210
    • Wright, J.H.1    Gottschling, D.E.2    Zakian, V.A.3
  • 108
    • 84905595327 scopus 로고    scopus 로고
    • Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT
    • Xi L, Cech TR. 2014. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res 42: 8565-8577.
    • (2014) Nucleic Acids Res , vol.42 , pp. 8565-8577
    • Xi, L.1    Cech, T.R.2
  • 109
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. 2012. Rif1 regulates the replication timing domains on the human genome. EMBO J 31: 3667-3677.
    • (2012) EMBO J , vol.31 , pp. 3667-3677
    • Yamazaki, S.1    Ishii, A.2    Kanoh, Y.3    Oda, M.4    Nishito, Y.5    Masai, H.6
  • 110
    • 2642535870 scopus 로고    scopus 로고
    • TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex
    • Ye JZ, de Lange T. 2004. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet 36: 618-623.
    • (2004) Nat Genet , vol.36 , pp. 618-623
    • Ye, J.Z.1    de Lange, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.