메뉴 건너뛰기




Volumn 9, Issue 5, 2014, Pages

Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome

Author keywords

[No Author keywords available]

Indexed keywords

BROXURIDINE; FUNGAL PROTEIN; MEC1 PROTEIN; REGULATOR PROTEIN; RIF1 PROTEIN; UNCLASSIFIED DRUG; CELL CYCLE PROTEIN; REPRESSOR PROTEIN; RIF1 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; TELOMERE BINDING PROTEIN;

EID: 84902350415     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0098501     Document Type: Article
Times cited : (73)

References (54)
  • 1
    • 0035812742 scopus 로고    scopus 로고
    • Making sense of eukaryotic DNA replication origins
    • Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294: 96-100.
    • (2001) Science , vol.294 , pp. 96-100
    • Gilbert, D.M.1
  • 3
    • 77953954908 scopus 로고    scopus 로고
    • How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
    • Labib K (2010) How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 24: 1208-1219.
    • (2010) Genes Dev , vol.24 , pp. 1208-1219
    • Labib, K.1
  • 4
    • 84873044090 scopus 로고    scopus 로고
    • Location, location, location: It's all in the timing for replication origins
    • Aparicio OM (2013) Location, location, location: it's all in the timing for replication origins. Genes Dev 27: 117-128.
    • (2013) Genes Dev , vol.27 , pp. 117-128
    • Aparicio, O.M.1
  • 6
    • 80054948832 scopus 로고    scopus 로고
    • Genetic variation and DNA replication timing, or why is there late replicating DNA?
    • Herrick J (2011) Genetic variation and DNA replication timing, or why is there late replicating DNA? Evolution 65: 3031-3047.
    • (2011) Evolution , vol.65 , pp. 3031-3047
    • Herrick, J.1
  • 7
    • 0037636027 scopus 로고    scopus 로고
    • The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
    • DOI 10.1146/annurev.biochem.72.121801.161547
    • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72: 481-516. (Pubitemid 36930453)
    • (2003) Annual Review of Biochemistry , vol.72 , pp. 481-516
    • Rusche, L.N.1    Kirchmaier, A.L.2    Rine, J.3
  • 8
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson JB, Gottschling DE (1999) Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev 13: 146-151. (Pubitemid 29061944)
    • (1999) Genes and Development , vol.13 , Issue.2 , pp. 146-151
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 9
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • DOI 10.1128/MCB.24.11.4769-4780.2004
    • Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM (2004) The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 24: 4769-4780. (Pubitemid 38668043)
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.11 , pp. 4769-4780
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 10
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott SR, Viggiani CJ, Tavaré S, Aparicio OM (2009) Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23: 1077-1090.
    • (2009) Genes Dev , vol.23 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavaré, S.3    Aparicio, O.M.4
  • 11
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • DOI 10.1016/S1097-2765(02)00702-5
    • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10: 1223-1233. (Pubitemid 35453838)
    • (2002) Molecular Cell , vol.10 , Issue.5 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 12
    • 84856103786 scopus 로고    scopus 로고
    • Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae
    • Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, et al. (2012) Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148: 99-111.
    • (2012) Cell , vol.148 , pp. 99-111
    • Knott, S.R.1    Peace, J.M.2    Ostrow, A.Z.3    Gan, Y.4    Rex, A.E.5
  • 13
    • 84878877755 scopus 로고    scopus 로고
    • Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment
    • Natsume T, Muller CA, Katou Y, Retkute R, Gierlinski M, et al. (2013) Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell 50: 661-674.
    • (2013) Mol Cell , vol.50 , pp. 661-674
    • Natsume, T.1    Muller, C.A.2    Katou, Y.3    Retkute, R.4    Gierlinski, M.5
  • 14
    • 84866412836 scopus 로고    scopus 로고
    • Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells
    • Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, et al. (2012) Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31: 3678-3690.
    • (2012) EMBO J , vol.31 , pp. 3678-3690
    • Cornacchia, D.1    Dileep, V.2    Quivy, J.P.3    Foti, R.4    Tili, F.5
  • 15
    • 84856281556 scopus 로고    scopus 로고
    • Rif1 is a global regulator of timing of replication origin firing in fission yeast
    • Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, et al. (2012) Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26: 137-150.
    • (2012) Genes Dev , vol.26 , pp. 137-150
    • Hayano, M.1    Kanoh, Y.2    Matsumoto, S.3    Renard-Guillet, C.4    Shirahige, K.5
  • 16
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, et al. (2012) Rif1 regulates the replication timing domains on the human genome. EMBO J 31: 3667-3677.
    • (2012) EMBO J , vol.31 , pp. 3667-3677
    • Yamazaki, S.1    Ishii, A.2    Kanoh, Y.3    Oda, M.4    Nishito, Y.5
  • 17
    • 79955957615 scopus 로고    scopus 로고
    • The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
    • Lian HY, Robertson ED, Hiraga S, Alvino GM, Collingwood D, et al. (2011) The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell 22: 1753-1765.
    • (2011) Mol Biol Cell , vol.22 , pp. 1753-1765
    • Lian, H.Y.1    Robertson, E.D.2    Hiraga, S.3    Alvino, G.M.4    Collingwood, D.5
  • 18
    • 0026623241 scopus 로고
    • A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation
    • Hardy CF, Sussel L, Shore D (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6: 801-814.
    • (1992) Genes Dev , vol.6 , pp. 801-814
    • Hardy, C.F.1    Sussel, L.2    Shore, D.3
  • 19
    • 0035899938 scopus 로고    scopus 로고
    • spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast
    • DOI 10.1016/S0960-9822(01)00503-6
    • Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1624-1630. (Pubitemid 32978530)
    • (2001) Current Biology , vol.11 , Issue.20 , pp. 1624-1630
    • Kanoh, J.1    Ishikawa, F.2
  • 20
    • 84894274928 scopus 로고    scopus 로고
    • RIF1: A novel regulatory factor for DNA replication and DNA damage response signaling
    • Amst.
    • Kumar R, Cheok CF (2014) RIF1: A novel regulatory factor for DNA replication and DNA damage response signaling. DNA Repair (Amst).
    • (2014) DNA Repair
    • Kumar, R.1    Cheok, C.F.2
  • 21
    • 33947308706 scopus 로고    scopus 로고
    • Early Replication of Short Telomeres in Budding Yeast
    • DOI 10.1016/j.cell.2007.01.041, PII S0092867407002425
    • Bianchi A, Shore D (2007) Early replication of short telomeres in budding yeast. Cell 128: 1051-1062. (Pubitemid 46437258)
    • (2007) Cell , vol.128 , Issue.6 , pp. 1051-1062
    • Bianchi, A.1    Shore, D.2
  • 22
    • 0037326054 scopus 로고    scopus 로고
    • Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae
    • DOI 10.1091/mbc.E02-08-0457
    • Smith CD, Smith DL, DeRisi JL, Blackburn EH (2003) Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell 14: 556-570. (Pubitemid 36237016)
    • (2003) Molecular Biology of the Cell , vol.14 , Issue.2 , pp. 556-570
    • Smith, C.D.1    Smith, D.L.2    DeRisi, J.L.3    Blackburn, E.H.4
  • 23
    • 77956886919 scopus 로고    scopus 로고
    • Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication
    • Xu D, Muniandy P, Leo E, Yin J, Thangavel S, et al. (2010) Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J 29: 3140-3155.
    • (2010) EMBO J , vol.29 , pp. 3140-3155
    • Xu, D.1    Muniandy, P.2    Leo, E.3    Yin, J.4    Thangavel, S.5
  • 24
    • 80052283925 scopus 로고    scopus 로고
    • Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1
    • Park S, Patterson EE, Cobb J, Audhya A, Gartenberg MR, et al. (2011) Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proc Natl Acad Sci U S A 108: 14572-14577.
    • (2011) Proc Natl Acad Sci U S a , vol.108 , pp. 14572-14577
    • Park, S.1    Patterson, E.E.2    Cobb, J.3    Audhya, A.4    Gartenberg, M.R.5
  • 25
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • DOI 10.1038/27001
    • Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395: 615-618. (Pubitemid 28475717)
    • (1998) Nature , vol.395 , Issue.6702 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.X.2
  • 26
    • 0038730929 scopus 로고    scopus 로고
    • A central role for DNA replication forks in checkpoint activation and response
    • DOI 10.1016/S1097-2765(03)00169-2
    • Tercero JA, Longhese MP, Diffley JF (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11: 1323-1336. (Pubitemid 36645150)
    • (2003) Molecular Cell , vol.11 , Issue.5 , pp. 1323-1336
    • Tercero, J.A.1    Longhese, M.P.2    Diffley, J.F.X.3
  • 28
    • 0029085781 scopus 로고
    • A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage
    • Paulovich AG, Hartwell LH (1995) A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82: 841-847.
    • (1995) Cell , vol.82 , pp. 841-847
    • Paulovich, A.G.1    Hartwell, L.H.2
  • 29
    • 0030593033 scopus 로고    scopus 로고
    • Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
    • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, et al. (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271: 357-360.
    • (1996) Science , vol.271 , pp. 357-360
    • Sanchez, Y.1    Desany, B.A.2    Jones, W.J.3    Liu, Q.4    Wang, B.5
  • 30
    • 0029928222 scopus 로고    scopus 로고
    • Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways
    • Sun Z, Fay DS, Marini F, Foiani M, Stern DF (1996) Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev 10: 395-406. (Pubitemid 26085995)
    • (1996) Genes and Development , vol.10 , Issue.4 , pp. 395-406
    • Sun, Z.1    Fay, D.S.2    Marini, F.3    Foiani, M.4    Stern, D.F.5
  • 31
    • 0033570894 scopus 로고    scopus 로고
    • Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase
    • DOI 10.1093/emboj/18.22.6561
    • Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, et al. (1999) Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. Embo J 18: 6561-6572. (Pubitemid 29533260)
    • (1999) EMBO Journal , vol.18 , Issue.22 , pp. 6561-6572
    • Pellicioli, A.1    Lucca, C.2    Liberi, G.3    Marini, F.4    Lopes, M.5    Plevani, P.6    Romano, A.7    Di, F.P.P.8    Foiani, M.9
  • 32
    • 84863643914 scopus 로고    scopus 로고
    • Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae
    • Pohl TJ, Brewer BJ, Raghuraman MK (2012) Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLoS Genet 8: e1002677.
    • (2012) PLoS Genet , vol.8
    • Pohl, T.J.1    Brewer, B.J.2    Raghuraman, M.K.3
  • 34
    • 0031303183 scopus 로고    scopus 로고
    • Rap1p and telomere length regulation in yeast
    • discussion 93-103
    • Marcand S, Wotton D, Gilson E, Shore D (1997) Rap1p and telomere length regulation in yeast. Ciba Found Symp 211: 76-93; discussion 93-103.
    • (1997) Ciba Found Symp , vol.211 , pp. 76-93
    • Marcand, S.1    Wotton, D.2    Gilson, E.3    Shore, D.4
  • 35
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H (2009) The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 11: 357-362.
    • (2009) Nat Cell Biol , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3    Nakayama, J.4    Masukata, H.5
  • 36
    • 79551547443 scopus 로고    scopus 로고
    • S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: Region specific effects and replication timing in the centromere
    • Li PC, Chretien L, Cote J, Kelly TJ, Forsburg SL (2011) S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle 10: 323-336.
    • (2011) Cell Cycle , vol.10 , pp. 323-336
    • Li, P.C.1    Chretien, L.2    Cote, J.3    Kelly, T.J.4    Forsburg, S.L.5
  • 37
    • 84898051697 scopus 로고    scopus 로고
    • Protein Phosphatase 1 Recruitment by Rif1 Regulates DNA Replication Origin Firing by Counteracting DDK Activity
    • Dave A, Cooley C, Garg M, Bianchi A (2014) Protein Phosphatase 1 Recruitment by Rif1 Regulates DNA Replication Origin Firing by Counteracting DDK Activity. Cell Rep 7: 53-61.
    • (2014) Cell Rep , vol.7 , pp. 53-61
    • Dave, A.1    Cooley, C.2    Garg, M.3    Bianchi, A.4
  • 38
    • 84893920696 scopus 로고    scopus 로고
    • Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex
    • Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, et al. (2014) Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 28: 372-383.
    • (2014) Genes Dev , vol.28 , pp. 372-383
    • Hiraga, S.1    Alvino, G.M.2    Chang, F.3    Lian, H.Y.4    Sridhar, A.5
  • 39
    • 84898041281 scopus 로고    scopus 로고
    • Rif1 Controls DNA Replication Timing in Yeast through the PP1 Phosphatase Glc7
    • Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, et al. (2014) Rif1 Controls DNA Replication Timing in Yeast through the PP1 Phosphatase Glc7. Cell Rep 7: 62-69.
    • (2014) Cell Rep , vol.7 , pp. 62-69
    • Mattarocci, S.1    Shyian, M.2    Lemmens, L.3    Damay, P.4    Altintas, D.M.5
  • 40
    • 84855279235 scopus 로고    scopus 로고
    • A novel checkpoint and RPA inhibitory pathway regulated by Rif1
    • Xue Y, Rushton MD, Maringele L (2011) A novel checkpoint and RPA inhibitory pathway regulated by Rif1. PLoS Genet 7: e1002417.
    • (2011) PLoS Genet , vol.7
    • Xue, Y.1    Rushton, M.D.2    Maringele, L.3
  • 41
    • 59649083955 scopus 로고    scopus 로고
    • Rif1 and rif2 inhibit localization of tel1 to DNA ends
    • Hirano Y, Fukunaga K, Sugimoto K (2009) Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol Cell 33: 312-322.
    • (2009) Mol Cell , vol.33 , pp. 312-322
    • Hirano, Y.1    Fukunaga, K.2    Sugimoto, K.3
  • 42
  • 43
    • 77956272541 scopus 로고    scopus 로고
    • Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae
    • pdb prot5385
    • Viggiani CJ, Knott SR, Aparicio OM (2010) Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2010: pdb prot5385.
    • (2010) Cold Spring Harb Protoc , vol.2010
    • Viggiani, C.J.1    Knott, S.R.2    Aparicio, O.M.3
  • 44
    • 84878662645 scopus 로고    scopus 로고
    • The level of origin firing inversely affects the rate of replication fork progression
    • Zhong Y, Nellimoottil T, Peace JM, Knott SR, Villwock SK, et al. (2013) The level of origin firing inversely affects the rate of replication fork progression. J Cell Biol 201: 373-383.
    • (2013) J Cell Biol , vol.201 , pp. 373-383
    • Zhong, Y.1    Nellimoottil, T.2    Peace, J.M.3    Knott, S.R.4    Villwock, S.K.5
  • 45
    • 8644238124 scopus 로고    scopus 로고
    • Diminished S-phase cyclin-dependent kinase function elicits vital Rad53-dependent checkpoint responses in Saccharomyces cerevisiae
    • DOI 10.1128/MCB.24.23.10208-10222.2004
    • Gibson DG, Aparicio JG, Hu F, Aparicio OM (2004) Diminished S-phase cyclin-dependent kinase function elicits vital Rad53-dependent checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol 24: 10208-10222. (Pubitemid 39507860)
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.23 , pp. 10208-10222
    • Gibson, D.G.1    Aparicio, J.G.2    Hu, F.3    Aparicio, O.M.4
  • 47
    • 84883474046 scopus 로고    scopus 로고
    • A cost-effective method for high-throughput construction of illumina sequencing libraries
    • Dunham JP, Friesen ML (2013) A cost-effective method for high-throughput construction of illumina sequencing libraries. Cold Spring Harb Protoc 2013: 820-834.
    • (2013) Cold Spring Harb Protoc , vol.2013 , pp. 820-834
    • Dunham, J.P.1    Friesen, M.L.2
  • 48
    • 84902351031 scopus 로고    scopus 로고
    • Available: Accessed 2014 February 18
    • Hannon Lab CSH Barcode Splitter. Available: http://hannonlab.cshl.edu/ fastx-toolkit/index.html. Accessed 2014 February 18.
    • Hannon Lab CSH Barcode Splitter
  • 49
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 51
    • 77951770756 scopus 로고    scopus 로고
    • BEDTools: A flexible suite of utilities for comparing genomic features
    • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841-842.
    • (2010) Bioinformatics , vol.26 , pp. 841-842
    • Quinlan, A.R.1    Hall, I.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.