-
1
-
-
84055200841
-
Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age
-
Pang, W.W. et al. 2011. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. U.S.A. 108: 20012–20017.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 20012-20017
-
-
Pang, W.W.1
-
2
-
-
84889568419
-
SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors
-
Oguro, H., L. Ding & S.J. Morrison. 2013. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13: 102–116.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 102-116
-
-
Oguro, H.1
Ding, L.2
Morrison, S.J.3
-
3
-
-
52049087829
-
Hematopoietic stem cells and the aging hematopoietic system
-
Gazit, R., I.L. Weissman & D.J. Rossi. 2008. Hematopoietic stem cells and the aging hematopoietic system. Semin. Hematol. 45: 218–224.
-
(2008)
Semin. Hematol.
, vol.45
, pp. 218-224
-
-
Gazit, R.1
Weissman, I.L.2
Rossi, D.J.3
-
5
-
-
43749110075
-
Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal
-
Zon, L.I. 2008. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453: 306–313.
-
(2008)
Nature
, vol.453
, pp. 306-313
-
-
Zon, L.I.1
-
6
-
-
84865348793
-
Molecular and functional characterization of early human hematopoiesis
-
Laurenti, E. & J.E. Dick. 2012. Molecular and functional characterization of early human hematopoiesis. Ann. N.Y. Acad. Sci. 1266: 68–71.
-
(2012)
Ann. N.Y. Acad. Sci.
, vol.1266
, pp. 68-71
-
-
Laurenti, E.1
Dick, J.E.2
-
7
-
-
0038148364
-
Hematopoietic stem cells engraft in mice with absolute efficiency
-
Benveniste, P. et al. 2003. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat. Immunol. 4: 708–713.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 708-713
-
-
Benveniste, P.1
-
8
-
-
84886680488
-
GATA-3 regulates the self-renewal of long-term hematopoietic stem cells
-
Frelin, C. et al. 2013. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat. Immunol. 14: 1037–1044.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 1037-1044
-
-
Frelin, C.1
-
9
-
-
84956427297
-
A direct measurement of the radiation sensitivity of normal mouse bone marrow cells
-
Till, J.E. & C.E. McCulloch. 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14: 213–222.
-
(1961)
Radiat. Res.
, vol.14
, pp. 213-222
-
-
Till, J.E.1
McCulloch, C.E.2
-
10
-
-
84928230863
-
Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis
-
Mirantes, C., E. Passegue & E.M. Pietras. 2014. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp. Cell Res. 329: 248–254.
-
(2014)
Exp. Cell Res.
, vol.329
, pp. 248-254
-
-
Mirantes, C.1
Passegue, E.2
Pietras, E.M.3
-
11
-
-
0000970496
-
Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy
-
Thomas, E.D. et al. 1957. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257: 491–496.
-
(1957)
N. Engl. J. Med.
, vol.257
, pp. 491-496
-
-
Thomas, E.D.1
-
12
-
-
84892610064
-
The bone marrow niche for haematopoietic stem cells
-
Morrison, S.J. & D.T. Scadden. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327–334.
-
(2014)
Nature
, vol.505
, pp. 327-334
-
-
Morrison, S.J.1
Scadden, D.T.2
-
13
-
-
84905756677
-
Hematopoietic stem cell niche maintenance during homeostasis and regeneration
-
Mendelson, A. & P.S. Frenette. 2014. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20: 833–846.
-
(2014)
Nat. Med.
, vol.20
, pp. 833-846
-
-
Mendelson, A.1
Frenette, P.S.2
-
14
-
-
0018102359
-
The relationship between the spleen colony-forming cell and the haemopoietic stem cell
-
Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7–25.
-
(1978)
Blood Cells
, vol.4
, pp. 7-25
-
-
Schofield, R.1
-
15
-
-
84903999646
-
In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells
-
Rashidi, N.M. et al. 2014. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood 124: 79–83.
-
(2014)
Blood
, vol.124
, pp. 79-83
-
-
Rashidi, N.M.1
-
16
-
-
39349096526
-
Hematopoiesis: an evolving paradigm for stem cell biology
-
Orkin, S.H. & L.I. Zon. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132: 631–644.
-
(2008)
Cell
, vol.132
, pp. 631-644
-
-
Orkin, S.H.1
Zon, L.I.2
-
17
-
-
0035228050
-
Distinct classes of human stem cells that differ in proliferative and self-renewal potential
-
Guenechea, G. et al. 2001. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. 2: 75–82.
-
(2001)
Nat. Immunol.
, vol.2
, pp. 75-82
-
-
Guenechea, G.1
-
18
-
-
19944400789
-
Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice
-
Ema, H. et al. 2005. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev. Cell 8: 907–914.
-
(2005)
Dev. Cell
, vol.8
, pp. 907-914
-
-
Ema, H.1
-
19
-
-
0029796633
-
Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell
-
Osawa, M. et al. 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245.
-
(1996)
Science
, vol.273
, pp. 242-245
-
-
Osawa, M.1
-
20
-
-
0030987304
-
Identification of a lineage of multipotent hematopoietic progenitors
-
Morrison, S.J. et al. 1997. Identification of a lineage of multipotent hematopoietic progenitors. Development 124: 1929–1939.
-
(1997)
Development
, vol.124
, pp. 1929-1939
-
-
Morrison, S.J.1
-
21
-
-
15944363056
-
− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients
-
− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105: 2717–2723.
-
(2005)
Blood
, vol.105
, pp. 2717-2723
-
-
Yang, L.1
-
22
-
-
84860343741
-
Stem cell heterogeneity: implications for aging and regenerative medicine
-
Muller-Sieburg, C.E. et al. 2012. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood 119: 3900–3907.
-
(2012)
Blood
, vol.119
, pp. 3900-3907
-
-
Muller-Sieburg, C.E.1
-
23
-
-
84883428326
-
Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells
-
Yamamoto, R. et al. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154: 1112–1126.
-
(2013)
Cell
, vol.154
, pp. 1112-1126
-
-
Yamamoto, R.1
-
24
-
-
34548417118
-
Limiting factors in murine hematopoietic stem cell assays
-
Purton, L.E. & D.T. Scadden. 2007. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1: 263–270.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 263-270
-
-
Purton, L.E.1
Scadden, D.T.2
-
25
-
-
21244463426
-
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
-
Kiel, M.J. et al. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121.
-
(2005)
Cell
, vol.121
, pp. 1109-1121
-
-
Kiel, M.J.1
-
26
-
-
67650587142
-
Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential
-
Kent, D.G. et al. 2009. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113: 6342–6350.
-
(2009)
Blood
, vol.113
, pp. 6342-6350
-
-
Kent, D.G.1
-
27
-
-
73049110615
-
Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential
-
Benveniste, P. et al. 2010. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6: 48–58.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 48-58
-
-
Benveniste, P.1
-
28
-
-
84880790360
-
CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age
-
Gekas, C. & T. Graf. 2013. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121: 4463–4472.
-
(2013)
Blood
, vol.121
, pp. 4463-4472
-
-
Gekas, C.1
Graf, T.2
-
29
-
-
2542473275
-
Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness
-
Muller-Sieburg, C.E. et al. 2004. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103: 4111–4118.
-
(2004)
Blood
, vol.103
, pp. 4111-4118
-
-
Muller-Sieburg, C.E.1
-
30
-
-
34547692981
-
Long-term propagation of distinct hematopoietic differentiation programs in vivo
-
Dykstra, B. et al. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1: 218–229.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 218-229
-
-
Dykstra, B.1
-
31
-
-
84857873445
-
Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs
-
Benz, C. et al. 2012. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10: 273–283.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 273-283
-
-
Benz, C.1
-
32
-
-
77449145533
-
Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1
-
Challen, G.A. et al. 2010. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6: 265–278.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 265-278
-
-
Challen, G.A.1
-
33
-
-
84885634008
-
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
-
Sanjuan-Pla, A. et al. 2013. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502: 232–236.
-
(2013)
Nature
, vol.502
, pp. 232-236
-
-
Sanjuan-Pla, A.1
-
34
-
-
84862532139
-
Hematopoietic stem cell heterogeneity takes center stage
-
Copley, M.R., P.A. Beer & C.J. Eaves. 2012. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 10: 690–697.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 690-697
-
-
Copley, M.R.1
Beer, P.A.2
Eaves, C.J.3
-
35
-
-
84928342976
-
Hematopoietic stem cells: concepts, definitions, and the new reality
-
Eaves, C.J. 2015. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125: 2605–2613.
-
(2015)
Blood
, vol.125
, pp. 2605-2613
-
-
Eaves, C.J.1
-
36
-
-
84896727582
-
Heterogeneity and hierarchy of hematopoietic stem cells
-
e2
-
Ema, H., Y. Morita & T. Suda. 2014. Heterogeneity and hierarchy of hematopoietic stem cells. Exp. Hematol. 42: 74–82.e2.
-
(2014)
Exp. Hematol.
, vol.42
, pp. 74-82
-
-
Ema, H.1
Morita, Y.2
Suda, T.3
-
37
-
-
80051615042
-
The relationship between bone, hemopoietic stem cells, and vasculature
-
Ellis, S.L. et al. 2011. The relationship between bone, hemopoietic stem cells, and vasculature. Blood 118: 1516–1524.
-
(2011)
Blood
, vol.118
, pp. 1516-1524
-
-
Ellis, S.L.1
-
38
-
-
84877575509
-
Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
-
Nombela-Arrieta, C. et al. 2013. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 15: 533–543.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 533-543
-
-
Nombela-Arrieta, C.1
-
39
-
-
31844449374
-
Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor
-
Adams, G.B. et al. 2006. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439: 599–603.
-
(2006)
Nature
, vol.439
, pp. 599-603
-
-
Adams, G.B.1
-
40
-
-
84881173663
-
Regional localization within the bone marrow influences the functional capacity of human HSCs
-
Guezguez, B. et al. 2013. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13: 175–189.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 175-189
-
-
Guezguez, B.1
-
41
-
-
84886947010
-
Arteriolar niches maintain haematopoietic stem cell quiescence
-
Kunisaki, Y. et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637–643.
-
(2013)
Nature
, vol.502
, pp. 637-643
-
-
Kunisaki, Y.1
-
42
-
-
34147097546
-
Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum
-
Haylock, D.N. et al. 2007. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25: 1062–1069.
-
(2007)
Stem Cells
, vol.25
, pp. 1062-1069
-
-
Haylock, D.N.1
-
43
-
-
84943154962
-
Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
-
Acar, M. et al. 2015. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526: 126–130.
-
(2015)
Nature
, vol.526
, pp. 126-130
-
-
Acar, M.1
-
44
-
-
67651098996
-
Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones
-
Kohler, A. et al. 2009. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114: 290–298.
-
(2009)
Blood
, vol.114
, pp. 290-298
-
-
Kohler, A.1
-
47
-
-
84255171086
-
Wall structures of myocardial precapillary arterioles and postcapillary venules reexamined and reconstructed in vitro for studies on barrier functions
-
Nees, S. et al. 2012. Wall structures of myocardial precapillary arterioles and postcapillary venules reexamined and reconstructed in vitro for studies on barrier functions. Am. J. Physiol. Heart Circ. Physiol. 302: H51–H68.
-
(2012)
Am. J. Physiol. Heart Circ. Physiol.
, vol.302
, pp. H51-H68
-
-
Nees, S.1
-
48
-
-
0020457544
-
Quantitative morphology of arterioles from the hamster cheek pouch related to mechanical analysis
-
Walmsley, J.G. et al. 1982. Quantitative morphology of arterioles from the hamster cheek pouch related to mechanical analysis. Microvasc. Res. 24: 249–271.
-
(1982)
Microvasc. Res.
, vol.24
, pp. 249-271
-
-
Walmsley, J.G.1
-
49
-
-
31044450303
-
Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow
-
Katayama, Y. et al. 2006. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124: 407–421.
-
(2006)
Cell
, vol.124
, pp. 407-421
-
-
Katayama, Y.1
-
50
-
-
33845445939
-
Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches
-
Sugiyama, T. et al. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977–988.
-
(2006)
Immunity
, vol.25
, pp. 977-988
-
-
Sugiyama, T.1
-
51
-
-
0025938439
-
Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow
-
Weiss, L. & U. Geduldig. 1991. Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78: 975–990.
-
(1991)
Blood
, vol.78
, pp. 975-990
-
-
Weiss, L.1
Geduldig, U.2
-
52
-
-
84878428014
-
Exploring the erythroblastic island
-
Socolovsky, M. 2013. Exploring the erythroblastic island. Nat. Med. 19: 399–401.
-
(2013)
Nat. Med.
, vol.19
, pp. 399-401
-
-
Socolovsky, M.1
-
53
-
-
84878439561
-
Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia
-
Ramos, P. et al. 2013. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nat. Med. 19: 437–445.
-
(2013)
Nat. Med.
, vol.19
, pp. 437-445
-
-
Ramos, P.1
-
54
-
-
84878444005
-
+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress
-
+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 19: 429–436.
-
(2013)
Nat. Med.
, vol.19
, pp. 429-436
-
-
Chow, A.1
-
55
-
-
84964312389
-
Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
-
Bruns, I. et al. 2014. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20: 1315–1320.
-
(2014)
Nat. Med.
, vol.20
, pp. 1315-1320
-
-
Bruns, I.1
-
56
-
-
84920448202
-
Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
-
Zhao, M. et al. 2014. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20: 1321–1326.
-
(2014)
Nat. Med.
, vol.20
, pp. 1321-1326
-
-
Zhao, M.1
-
57
-
-
39149100564
-
The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation
-
Rhodes, K.E. et al. 2008. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2: 252–263.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 252-263
-
-
Rhodes, K.E.1
-
58
-
-
84994310890
-
Fetal liver hematopoietic stem cell niches associate with portal vessels
-
Khan, J.A. et al. 2016. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351: 176–180.
-
(2016)
Science
, vol.351
, pp. 176-180
-
-
Khan, J.A.1
-
59
-
-
0031883380
-
The role of osteoblasts in the hematopoietic microenvironment
-
Taichman, R.S. & S.G. Emerson. 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7–15.
-
(1998)
Stem Cells
, vol.16
, pp. 7-15
-
-
Taichman, R.S.1
Emerson, S.G.2
-
60
-
-
0033964121
-
The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment
-
Taichman, R.S., M.J. Reilly & S.G. Emerson. 2000. The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment. Hematology 4: 421–426.
-
(2000)
Hematology
, vol.4
, pp. 421-426
-
-
Taichman, R.S.1
Reilly, M.J.2
Emerson, S.G.3
-
61
-
-
0031889095
-
Osteoblasts promote engraftment of allogeneic hematopoietic stem cells
-
El-Badri, N.S. et al. 1998. Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp. Hematol. 26: 110–116.
-
(1998)
Exp. Hematol.
, vol.26
, pp. 110-116
-
-
El-Badri, N.S.1
-
62
-
-
0028274877
-
Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor
-
Taichman, R.S. & S.G. Emerson. 1994. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med. 179: 1677–1682.
-
(1994)
J. Exp. Med.
, vol.179
, pp. 1677-1682
-
-
Taichman, R.S.1
Emerson, S.G.2
-
63
-
-
21344474104
-
Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells
-
Nilsson, S.K. et al. 2005. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106: 1232–1239.
-
(2005)
Blood
, vol.106
, pp. 1232-1239
-
-
Nilsson, S.K.1
-
64
-
-
21244472780
-
Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size
-
Stier, S. et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201: 1781–1791.
-
(2005)
J. Exp. Med.
, vol.201
, pp. 1781-1791
-
-
Stier, S.1
-
65
-
-
3242669145
-
Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
-
Arai, F. et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161.
-
(2004)
Cell
, vol.118
, pp. 149-161
-
-
Arai, F.1
-
66
-
-
0242268524
-
Osteoblastic cells regulate the haematopoietic stem cell niche
-
Calvi, L.M. et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841–846.
-
(2003)
Nature
, vol.425
, pp. 841-846
-
-
Calvi, L.M.1
-
67
-
-
1942457308
-
Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
-
Visnjic, D. et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258–3264.
-
(2004)
Blood
, vol.103
, pp. 3258-3264
-
-
Visnjic, D.1
-
68
-
-
84900309835
-
Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development
-
Mizoguchi, T. et al. 2014. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29: 340–349.
-
(2014)
Dev. Cell
, vol.29
, pp. 340-349
-
-
Mizoguchi, T.1
-
69
-
-
77957020167
-
The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche
-
Omatsu, Y. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387–399.
-
(2010)
Immunity
, vol.33
, pp. 387-399
-
-
Omatsu, Y.1
-
70
-
-
77955646193
-
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
-
Mendez-Ferrer, S. et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829–834.
-
(2010)
Nature
, vol.466
, pp. 829-834
-
-
Mendez-Ferrer, S.1
-
71
-
-
38949140223
-
Strontium can increase some osteoblasts without increasing hematopoietic stem cells
-
Lymperi, S. et al. 2008. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111: 1173–1181.
-
(2008)
Blood
, vol.111
, pp. 1173-1181
-
-
Lymperi, S.1
-
72
-
-
27744583923
-
Strontium as therapy for osteoporosis
-
Marie, P.J. 2005. Strontium as therapy for osteoporosis. Curr. Opin. Pharmacol. 5: 633–636.
-
(2005)
Curr. Opin. Pharmacol.
, vol.5
, pp. 633-636
-
-
Marie, P.J.1
-
73
-
-
84863338552
-
Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells
-
Calvi, L.M. et al. 2012. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119: 2489–2499.
-
(2012)
Blood
, vol.119
, pp. 2489-2499
-
-
Calvi, L.M.1
-
74
-
-
34247332650
-
Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells
-
Zhu, J. et al. 2007. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109: 3706–3712.
-
(2007)
Blood
, vol.109
, pp. 3706-3712
-
-
Zhu, J.1
-
75
-
-
84928485157
-
Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development
-
Bowers, M. et al. 2015. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125: 2678–2688.
-
(2015)
Blood
, vol.125
, pp. 2678-2688
-
-
Bowers, M.1
-
76
-
-
84875000886
-
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
-
Ding, L. & S.J. Morrison. 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231–235.
-
(2013)
Nature
, vol.495
, pp. 231-235
-
-
Ding, L.1
Morrison, S.J.2
-
77
-
-
0036168051
-
Endothelial cell heterogeneity and organ specificity
-
Ribatti, D. et al. 2002. Endothelial cell heterogeneity and organ specificity. J. Hematother. Stem Cell Res. 11: 81–90.
-
(2002)
J. Hematother. Stem Cell Res.
, vol.11
, pp. 81-90
-
-
Ribatti, D.1
-
78
-
-
21244463426
-
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
-
Kiel, M.J. et al. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121.
-
(2005)
Cell
, vol.121
, pp. 1109-1121
-
-
Kiel, M.J.1
-
79
-
-
60849138787
-
Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells
-
Hooper, A.T. et al. 2009. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4: 263–274.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 263-274
-
-
Hooper, A.T.1
-
80
-
-
78149280740
-
Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells
-
Kobayashi, H. et al. 2010. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12: 1046–1056.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1046-1056
-
-
Kobayashi, H.1
-
81
-
-
61849092556
-
Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo
-
Salter, A.B. et al. 2009. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113: 2104–2107.
-
(2009)
Blood
, vol.113
, pp. 2104-2107
-
-
Salter, A.B.1
-
82
-
-
77449121923
-
Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells
-
Butler, J.M. et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251–264.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 251-264
-
-
Butler, J.M.1
-
83
-
-
33747725221
-
+ PBPC through IL-6 secretion
-
+ PBPC through IL-6 secretion. Cytotherapy 8: 335–342.
-
(2006)
Cytotherapy
, vol.8
, pp. 335-342
-
-
Li, N.1
-
84
-
-
21744443464
-
+ hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture
-
+ hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transplant. 36: 71–79.
-
(2005)
Bone Marrow Transplant.
, vol.36
, pp. 71-79
-
-
Yildirim, S.1
-
85
-
-
0037114623
-
Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow
-
Chute, J.P. et al. 2002. Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood 100: 4433–4439.
-
(2002)
Blood
, vol.100
, pp. 4433-4439
-
-
Chute, J.P.1
-
86
-
-
11244252126
-
− cells and SCID-repopulating cells
-
− cells and SCID-repopulating cells. Blood 105: 576–583.
-
(2005)
Blood
, vol.105
, pp. 576-583
-
-
Chute, J.P.1
-
87
-
-
73149094299
-
Endothelial cells mediate the regeneration of hematopoietic stem cells
-
Li, B. et al. 2010. Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res. 4: 17–24.
-
(2010)
Stem Cell Res.
, vol.4
, pp. 17-24
-
-
Li, B.1
-
88
-
-
77950543499
-
Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells
-
Himburg, H.A. et al. 2010. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat. Med. 16: 475–482.
-
(2010)
Nat. Med.
, vol.16
, pp. 475-482
-
-
Himburg, H.A.1
-
89
-
-
84875228640
-
Epidermal growth factor regulates hematopoietic regeneration after radiation injury
-
Doan, P.L. et al. 2013. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat. Med. 19: 295–304.
-
(2013)
Nat. Med.
, vol.19
, pp. 295-304
-
-
Doan, P.L.1
-
90
-
-
84961292224
-
Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1
-
Zhou, B.O., L. Ding & S.J. Morrison. 2015. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. EeLife 4: e05521.
-
(2015)
EeLife
, vol.4
-
-
Zhou, B.O.1
Ding, L.2
Morrison, S.J.3
-
91
-
-
0345167906
-
Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro
-
Li, W. et al. 2003. Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102: 4345–4353.
-
(2003)
Blood
, vol.102
, pp. 4345-4353
-
-
Li, W.1
-
92
-
-
0032147092
-
Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium
-
Ohneda, O. et al. 1998. Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92: 908–919.
-
(1998)
Blood
, vol.92
, pp. 908-919
-
-
Ohneda, O.1
-
93
-
-
10044223409
-
Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells
-
Li, W. et al. 2004. Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp. Hematol. 32: 1226–1237.
-
(2004)
Exp. Hematol.
, vol.32
, pp. 1226-1237
-
-
Li, W.1
-
94
-
-
28844476756
-
Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells
-
Yao, L. et al. 2005. Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 106: 4093–4101.
-
(2005)
Blood
, vol.106
, pp. 4093-4101
-
-
Yao, L.1
-
95
-
-
84856147560
-
Endothelial and perivascular cells maintain haematopoietic stem cells
-
Ding, L. et al. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457–462.
-
(2012)
Nature
, vol.481
, pp. 457-462
-
-
Ding, L.1
-
96
-
-
84874997081
-
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
-
Greenbaum, A. et al. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495: 227–230.
-
(2013)
Nature
, vol.495
, pp. 227-230
-
-
Greenbaum, A.1
-
97
-
-
33846849237
-
Phenotypic heterogeneity of the endothelium: II. Representative vascular beds
-
Aird, W.C. 2007. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100: 174–190.
-
(2007)
Circ. Res.
, vol.100
, pp. 174-190
-
-
Aird, W.C.1
-
98
-
-
33846798106
-
Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms
-
Aird, W.C. 2007. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100: 158–173.
-
(2007)
Circ. Res.
, vol.100
, pp. 158-173
-
-
Aird, W.C.1
-
99
-
-
84943581891
-
Pericytes are essential for skeletal muscle formation
-
Birbrair, A. & O. Delbono. 2015. Pericytes are essential for skeletal muscle formation. Stem Cell Rev. 11: 547–548.
-
(2015)
Stem Cell Rev
, vol.11
, pp. 547-548
-
-
Birbrair, A.1
Delbono, O.2
-
100
-
-
84927943104
-
Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner
-
Birbrair, A. et al. 2014. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res. Ther. 5: 122.
-
(2014)
Stem Cell Res. Ther.
, vol.5
, pp. 122
-
-
Birbrair, A.1
-
101
-
-
84907144810
-
Pericytes at the intersection between tissue regeneration and pathology
-
Birbrair, A. et al. 2015. Pericytes at the intersection between tissue regeneration and pathology. Clin. Sci. (Lond.) 128: 81–93.
-
(2015)
Clin. Sci. (Lond.)
, vol.128
, pp. 81-93
-
-
Birbrair, A.1
-
102
-
-
84903591996
-
Type-2 pericytes participate in normal and tumoral angiogenesis
-
Birbrair, A. et al. 2014. Type-2 pericytes participate in normal and tumoral angiogenesis. Am. J. Physiol. Cell Physiol. 307: C25–C38.
-
(2014)
Am. J. Physiol. Cell Physiol.
, vol.307
, pp. C25-C38
-
-
Birbrair, A.1
-
103
-
-
84881183042
-
Role of pericytes in skeletal muscle regeneration and fat accumulation
-
Birbrair, A. et al. 2013. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 22: 2298–2314.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 2298-2314
-
-
Birbrair, A.1
-
104
-
-
84888797233
-
Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle
-
Birbrair, A. et al. 2013. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am. J. Physiol. Cell Physiol. 305: C1098–C1113.
-
(2013)
Am. J. Physiol. Cell Physiol.
, vol.305
, pp. C1098-C1113
-
-
Birbrair, A.1
-
105
-
-
84868221535
-
Skeletal muscle pericyte subtypes differ in their differentiation potential
-
Birbrair, A. et al. 2013. Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res. 10: 67–84.
-
(2013)
Stem Cell Res.
, vol.10
, pp. 67-84
-
-
Birbrair, A.1
-
106
-
-
84907147584
-
Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle
-
Birbrair, A. et al. 2014. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front. Aging Neurosci. 6: 245.
-
(2014)
Front. Aging Neurosci.
, vol.6
, pp. 245
-
-
Birbrair, A.1
-
107
-
-
35348921682
-
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
-
Sacchetti, B. et al. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324–336.
-
(2007)
Cell
, vol.131
, pp. 324-336
-
-
Sacchetti, B.1
-
108
-
-
84880652108
-
+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion
-
+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210: 1351–1367.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 1351-1367
-
-
Pinho, S.1
-
109
-
-
84899587273
-
Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation
-
Omatsu, Y. et al. 2014. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508: 536–540.
-
(2014)
Nature
, vol.508
, pp. 536-540
-
-
Omatsu, Y.1
-
110
-
-
58949099180
-
Development of mesenchymal stem cells partially originate from the neural crest
-
Morikawa, S. et al. 2009. Development of mesenchymal stem cells partially originate from the neural crest. Biochem. Biophys. Res. Commun. 379: 1114–1119.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.379
, pp. 1114-1119
-
-
Morikawa, S.1
-
111
-
-
70449701931
-
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
-
Morikawa, S. et al. 2009. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206: 2483–2496.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 2483-2496
-
-
Morikawa, S.1
-
112
-
-
26844520899
-
The bone marrow vascular niche: home of HSC differentiation and mobilization
-
Kopp, H.G. et al. 2005. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20: 349–356.
-
(2005)
Physiology
, vol.20
, pp. 349-356
-
-
Kopp, H.G.1
-
113
-
-
4243137398
-
Bone and fat: old questions, new insights
-
Gimble, J.M. & M.E. Nuttall. 2004. Bone and fat: old questions, new insights. Endocrine 23: 183–188.
-
(2004)
Endocrine
, vol.23
, pp. 183-188
-
-
Gimble, J.M.1
Nuttall, M.E.2
-
114
-
-
84855877835
-
Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes
-
Krings, A. et al. 2012. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50: 546–552.
-
(2012)
Bone
, vol.50
, pp. 546-552
-
-
Krings, A.1
-
115
-
-
84874817050
-
Marrow fat and bone—new perspectives
-
Fazeli, P.K. et al. 2013. Marrow fat and bone—new perspectives. J. Clin. Endocrinol. Metab. 98: 935–945.
-
(2013)
J. Clin. Endocrinol. Metab.
, vol.98
, pp. 935-945
-
-
Fazeli, P.K.1
-
116
-
-
19044377826
-
Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings
-
Abella, E. et al. 2002. Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. Am. J. Clin. Pathol. 118: 582–588.
-
(2002)
Am. J. Clin. Pathol.
, vol.118
, pp. 582-588
-
-
Abella, E.1
-
117
-
-
84864797142
-
Increased marrow adiposity in premenopausal women with idiopathic osteoporosis
-
Cohen, A. et al. 2012. Increased marrow adiposity in premenopausal women with idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 97: 2782–2791.
-
(2012)
J. Clin. Endocrinol. Metab.
, vol.97
, pp. 2782-2791
-
-
Cohen, A.1
-
118
-
-
0025039125
-
The function of adipocytes in the bone marrow stroma
-
Gimble, J.M. 1990. The function of adipocytes in the bone marrow stroma. New Biol. 2: 304–312.
-
(1990)
New Biol.
, vol.2
, pp. 304-312
-
-
Gimble, J.M.1
-
119
-
-
84866325660
-
New insights into osteoporosis: the bone–fat connection
-
Kawai, M., F.J. de Paula & C.J. Rosen. 2012. New insights into osteoporosis: the bone–fat connection. J. Intern. Med. 272: 317–329.
-
(2012)
J. Intern. Med.
, vol.272
, pp. 317-329
-
-
Kawai, M.1
de Paula, F.J.2
Rosen, C.J.3
-
120
-
-
84878205335
-
Molecular and functional characterization of human bone marrow adipocytes
-
e2
-
Poloni, A. et al. 2013. Molecular and functional characterization of human bone marrow adipocytes. Exp. Hematol. 41: 558–566.e2.
-
(2013)
Exp. Hematol.
, vol.41
, pp. 558-566
-
-
Poloni, A.1
-
121
-
-
79955556956
-
Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes
-
Liu, L.F. et al. 2011. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12: 212.
-
(2011)
BMC Genomics
, vol.12
, pp. 212
-
-
Liu, L.F.1
-
122
-
-
77955845727
-
Caloric restriction leads to high marrow adiposity and low bone mass in growing mice
-
Devlin, M.J. et al. 2010. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 25: 2078–2088.
-
(2010)
J. Bone Miner. Res
, vol.25
, pp. 2078-2088
-
-
Devlin, M.J.1
-
123
-
-
84862736247
-
Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects
-
Griffith, J.F. et al. 2012. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J. Magn. Reson. Imaging 36: 225–230.
-
(2012)
J. Magn. Reson. Imaging
, vol.36
, pp. 225-230
-
-
Griffith, J.F.1
-
124
-
-
65949113378
-
Marrow fat and the bone microenvironment: developmental, functional, and pathological implications
-
Rosen, C.J. et al. 2009. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. 19: 109–124.
-
(2009)
Crit. Rev. Eukaryot. Gene Expr.
, vol.19
, pp. 109-124
-
-
Rosen, C.J.1
-
125
-
-
77956985003
-
Skeletal aging and the adipocyte program: new insights from an “old” molecule
-
Lecka-Czernik, B., C.J. Rosen & M. Kawai. 2010. Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle 9: 3648–3654.
-
(2010)
Cell Cycle
, vol.9
, pp. 3648-3654
-
-
Lecka-Czernik, B.1
Rosen, C.J.2
Kawai, M.3
-
126
-
-
0034663420
-
Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages
-
Ogawa, T., M. Kitagawa & K. Hirokawa. 2000. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech. Ageing Dev. 117: 57–68.
-
(2000)
Mech. Ageing Dev.
, vol.117
, pp. 57-68
-
-
Ogawa, T.1
Kitagawa, M.2
Hirokawa, K.3
-
127
-
-
77950650638
-
Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice
-
Cao, J.J., L. Sun & H. Gao. 2010. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann. N.Y. Acad. Sci. 1192: 292–297.
-
(2010)
Ann. N.Y. Acad. Sci.
, vol.1192
, pp. 292-297
-
-
Cao, J.J.1
Sun, L.2
Gao, H.3
-
128
-
-
78249259079
-
High fat diet-induced animal model of age-associated obesity and osteoporosis
-
Halade, G.V. et al. 2010. High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem. 21: 1162–1169.
-
(2010)
J. Nutr. Biochem.
, vol.21
, pp. 1162-1169
-
-
Halade, G.V.1
-
129
-
-
78649828932
-
Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice
-
Halade, G.V. et al. 2011. Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp. Gerontol. 46: 43–52.
-
(2011)
Exp. Gerontol.
, vol.46
, pp. 43-52
-
-
Halade, G.V.1
-
130
-
-
84861218323
-
Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice
-
Trottier, M.D. et al. 2012. Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc. Natl. Acad. Sci. U.S.A. 109: 7622–7629.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A
, vol.109
, pp. 7622-7629
-
-
Trottier, M.D.1
-
131
-
-
0034520023
-
Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes
-
Laharrague, P. et al. 2000. Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes. Eur. Cytokine Netw. 11: 634–639.
-
(2000)
Eur. Cytokine Netw.
, vol.11
, pp. 634-639
-
-
Laharrague, P.1
-
133
-
-
77951455778
-
Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function
-
Chitteti, B.R. et al. 2010. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115: 3239–3248.
-
(2010)
Blood
, vol.115
, pp. 3239-3248
-
-
Chitteti, B.R.1
-
134
-
-
84893666478
-
Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions
-
Spindler, T.J. et al. 2014. Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev. 23: 434–441.
-
(2014)
Stem Cells Dev.
, vol.23
, pp. 434-441
-
-
Spindler, T.J.1
-
135
-
-
7944220158
-
Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells
-
Corre, J. et al. 2004. Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells. Br. J. Haematol. 127: 344–347.
-
(2004)
Br. J. Haematol.
, vol.127
, pp. 344-347
-
-
Corre, J.1
-
136
-
-
67650504733
-
Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment
-
Naveiras, O. et al. 2009. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460: 259–263.
-
(2009)
Nature
, vol.460
, pp. 259-263
-
-
Naveiras, O.1
-
137
-
-
0034284038
-
Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages
-
Yokota, T. et al. 2000. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96: 1723–1732.
-
(2000)
Blood
, vol.96
, pp. 1723-1732
-
-
Yokota, T.1
-
138
-
-
0020540346
-
No stimulative effect of adipocytes on hematopoiesis in long-term human bone marrow cultures
-
Touw, I. & B. Lowenberg. 1983. No stimulative effect of adipocytes on hematopoiesis in long-term human bone marrow cultures. Blood 61: 770–774.
-
(1983)
Blood
, vol.61
, pp. 770-774
-
-
Touw, I.1
Lowenberg, B.2
-
139
-
-
84863863767
-
The relationship between adipose tissue and bone metabolism
-
Gimble, J.M. & M.E. Nuttall. 2012. The relationship between adipose tissue and bone metabolism. Clin. Biochem. 45: 874–879.
-
(2012)
Clin. Biochem.
, vol.45
, pp. 874-879
-
-
Gimble, J.M.1
Nuttall, M.E.2
-
140
-
-
84855874132
-
Marrow fat metabolism is linked to the systemic energy metabolism
-
Lecka-Czernik, B. 2012. Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50: 534–539.
-
(2012)
Bone
, vol.50
, pp. 534-539
-
-
Lecka-Czernik, B.1
-
141
-
-
84872932136
-
Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis
-
Zhu, R.J. et al. 2013. Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis. Int. J. Hematol. 97: 58–72.
-
(2013)
Int. J. Hematol.
, vol.97
, pp. 58-72
-
-
Zhu, R.J.1
-
142
-
-
48649106521
-
Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition
-
Belaid-Choucair, Z. et al. 2008. Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells 26: 1556–1564.
-
(2008)
Stem Cells
, vol.26
, pp. 1556-1564
-
-
Belaid-Choucair, Z.1
-
143
-
-
40949119413
-
Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells
-
Miharada, K. et al. 2008. Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. J. Cell. Physiol. 215: 526–537.
-
(2008)
J. Cell. Physiol
, vol.215
, pp. 526-537
-
-
Miharada, K.1
-
144
-
-
33947250691
-
Identification of adiponectin as a novel hemopoietic stem cell growth factor
-
DiMascio, L. et al. 2007. Identification of adiponectin as a novel hemopoietic stem cell growth factor. J. Immunol. 178: 3511–3520.
-
(2007)
J. Immunol.
, vol.178
, pp. 3511-3520
-
-
DiMascio, L.1
-
145
-
-
0027459878
-
Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance
-
Hotamisligil, G.S., N.S. Shargill & B.M. Spiegelman. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259: 87–91.
-
(1993)
Science
, vol.259
, pp. 87-91
-
-
Hotamisligil, G.S.1
Shargill, N.S.2
Spiegelman, B.M.3
-
146
-
-
0014835795
-
Schwann cells of the bone marrow
-
Calvo, W. & J. Forteza-Vila. 1970. Schwann cells of the bone marrow. Blood 36: 180–188.
-
(1970)
Blood
, vol.36
, pp. 180-188
-
-
Calvo, W.1
Forteza-Vila, J.2
-
147
-
-
79952007258
-
The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A
-
Castaneda-Corral, G. et al. 2011. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178: 196–207.
-
(2011)
Neuroscience
, vol.178
, pp. 196-207
-
-
Castaneda-Corral, G.1
-
148
-
-
0028796488
-
Schwann cell processes guide regeneration of peripheral axons
-
Son, Y.J. & W.J. Thompson. 1995. Schwann cell processes guide regeneration of peripheral axons. Neuron 14: 125–132.
-
(1995)
Neuron
, vol.14
, pp. 125-132
-
-
Son, Y.J.1
Thompson, W.J.2
-
149
-
-
33746520700
-
Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans?
-
Hoke, A. 2006. Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat. Clin. Pract. Neurol. 2: 448–454.
-
(2006)
Nat. Clin. Pract. Neurol.
, vol.2
, pp. 448-454
-
-
Hoke, A.1
-
150
-
-
84893603609
-
Neurotrophic factor expression in denervated motor and sensory Schwann cells: relevance to specificity of peripheral nerve regeneration
-
Gordon, T. 2014. Neurotrophic factor expression in denervated motor and sensory Schwann cells: relevance to specificity of peripheral nerve regeneration. Exp. Neurol. 254: 99–108.
-
(2014)
Exp. Neurol
, vol.254
, pp. 99-108
-
-
Gordon, T.1
-
151
-
-
40349091487
-
Expression of cytokines and cytokine receptors in human Schwann cells
-
Ozaki, A. et al. 2008. Expression of cytokines and cytokine receptors in human Schwann cells. Neuroreport 19: 31–35.
-
(2008)
Neuroreport
, vol.19
, pp. 31-35
-
-
Ozaki, A.1
-
152
-
-
81855183667
-
Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
-
Yamazaki, S. et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146–1158.
-
(2011)
Cell
, vol.147
, pp. 1146-1158
-
-
Yamazaki, S.1
-
153
-
-
39749164920
-
Haematopoietic stem cell release is regulated by circadian oscillations
-
Mendez-Ferrer, S. et al. 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452: 442–447.
-
(2008)
Nature
, vol.452
, pp. 442-447
-
-
Mendez-Ferrer, S.1
-
154
-
-
34547946425
-
Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis
-
Ciurea, S.O. et al. 2007. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood 110: 986–993.
-
(2007)
Blood
, vol.110
, pp. 986-993
-
-
Ciurea, S.O.1
-
155
-
-
0025217169
-
Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex
-
Yamazaki, K. & T.D. Allen. 1990. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex.” Am. J. Anat. 187: 261–276.
-
(1990)
Am. J. Anat.
, vol.187
, pp. 261-276
-
-
Yamazaki, K.1
Allen, T.D.2
-
156
-
-
84905861462
-
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
-
Zhou, B.O. et al. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15: 154–168.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 154-168
-
-
Zhou, B.O.1
-
157
-
-
84929178412
-
Neural regulation of hematopoiesis, inflammation, and cancer
-
Hanoun, M. et al. 2015. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86: 360–373.
-
(2015)
Neuron
, vol.86
, pp. 360-373
-
-
Hanoun, M.1
-
158
-
-
84928923099
-
Making sense of hematopoietic stem cell niches
-
Boulais, P.E. & P.S. Frenette. 2015. Making sense of hematopoietic stem cell niches. Blood 125: 2621–2629.
-
(2015)
Blood
, vol.125
, pp. 2621-2629
-
-
Boulais, P.E.1
Frenette, P.S.2
-
159
-
-
72649092184
-
+ cells by the nervous system
-
+ cells by the nervous system. Brain Behav. Immun. 23: 1059–1065.
-
(2009)
Brain Behav. Immun.
, vol.23
, pp. 1059-1065
-
-
Kalinkovich, A.1
-
160
-
-
0030961055
-
Bone marrow innervation regulates cellular retention in the murine haemopoietic system
-
Afan, A.M. et al. 1997. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br. J. Haematol. 98: 569–577.
-
(1997)
Br. J. Haematol.
, vol.98
, pp. 569-577
-
-
Afan, A.M.1
-
161
-
-
84880301799
-
Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration
-
Lucas, D. et al. 2013. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med. 19: 695–703.
-
(2013)
Nat. Med.
, vol.19
, pp. 695-703
-
-
Lucas, D.1
-
162
-
-
84865367519
-
Adrenergic nerves govern circadian leukocyte recruitment to tissues
-
Scheiermann, C. et al. 2012. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37: 290–301.
-
(2012)
Immunity
, vol.37
, pp. 290-301
-
-
Scheiermann, C.1
-
164
-
-
0021053507
-
Chronobiology in hematology and immunology
-
Haus, E. et al. 1983. Chronobiology in hematology and immunology. Am. J. Anat. 168: 467–517.
-
(1983)
Am. J. Anat.
, vol.168
, pp. 467-517
-
-
Haus, E.1
-
165
-
-
0032863948
-
Biologic rhythms in the immune system
-
Haus, E. & M.H. Smolensky. 1999. Biologic rhythms in the immune system. Chronobiol. Int. 16: 581–622.
-
(1999)
Chronobiol. Int.
, vol.16
, pp. 581-622
-
-
Haus, E.1
Smolensky, M.H.2
-
166
-
-
52949116088
-
Mobilized hematopoietic stem cell yield depends on species-specific circadian timing
-
Lucas, D. et al. 2008. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3: 364–366.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 364-366
-
-
Lucas, D.1
-
167
-
-
84905741878
-
Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche
-
Hanoun, M. et al. 2014. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15: 365–375.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 365-375
-
-
Hanoun, M.1
-
168
-
-
84905005330
-
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms
-
Arranz, L. et al. 2014. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512: 78–81.
-
(2014)
Nature
, vol.512
, pp. 78-81
-
-
Arranz, L.1
-
169
-
-
34548777583
-
+ cells through Wnt signaling
-
+ cells through Wnt signaling. Nat. Immunol. 8: 1123–1131.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1123-1131
-
-
Spiegel, A.1
-
170
-
-
84867353401
-
Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis
-
Fitch, S.R. et al. 2012. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11: 554–566.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 554-566
-
-
Fitch, S.R.1
-
171
-
-
79959508609
-
Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model
-
Alexander, K.A. et al. 2011. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 26: 1517–1532.
-
(2011)
J. Bone Miner. Res
, vol.26
, pp. 1517-1532
-
-
Alexander, K.A.1
-
172
-
-
49049098143
-
Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo
-
Chang, M.K. et al. 2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181: 1232–1244.
-
(2008)
J. Immunol.
, vol.181
, pp. 1232-1244
-
-
Chang, M.K.1
-
173
-
-
57049093809
-
Osteal macrophages: a new twist on coupling during bone dynamics
-
Pettit, A.R. et al. 2008. Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43: 976–982.
-
(2008)
Bone
, vol.43
, pp. 976-982
-
-
Pettit, A.R.1
-
174
-
-
77958553682
-
Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs
-
Winkler, I.G. et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116: 4815–4828.
-
(2010)
Blood
, vol.116
, pp. 4815-4828
-
-
Winkler, I.G.1
-
175
-
-
79951694373
-
+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
-
+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208: 261–271.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 261-271
-
-
Chow, A.1
-
176
-
-
79951689118
-
Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice
-
Christopher, M.J. et al. 2011. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208: 251–260.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 251-260
-
-
Christopher, M.J.1
-
177
-
-
84941942986
-
Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M
-
Albiero, M. et al. 2015. Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M. Diabetes 64: 2957–2968.
-
(2015)
Diabetes
, vol.64
, pp. 2957-2968
-
-
Albiero, M.1
-
178
-
-
0025851410
-
Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions
-
Williams, D.A. et al. 1991. Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions. Nature 352: 438–441.
-
(1991)
Nature
, vol.352
, pp. 438-441
-
-
Williams, D.A.1
-
179
-
-
0345491600
-
Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing
-
Scott, L.M., G.V. Priestley & T. Papayannopoulou. 2003. Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol. Cell. Biol. 23: 9349–9360.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 9349-9360
-
-
Scott, L.M.1
Priestley, G.V.2
Papayannopoulou, T.3
-
180
-
-
84863903383
-
Myocardial infarction accelerates atherosclerosis
-
Dutta, P. et al. 2012. Myocardial infarction accelerates atherosclerosis. Nature 487: 325–329.
-
(2012)
Nature
, vol.487
, pp. 325-329
-
-
Dutta, P.1
-
181
-
-
84928254121
-
Macrophages retain hematopoietic stem cells in the spleen via VCAM-1
-
Dutta, P. et al. 2015. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J. Exp. Med. 212: 497–512.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 497-512
-
-
Dutta, P.1
-
182
-
-
84867747480
-
Monocytes–macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow
-
Ludin, A. et al. 2012. Monocytes–macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13: 1072–1082.
-
(2012)
Nat. Immunol
, vol.13
, pp. 1072-1082
-
-
Ludin, A.1
-
183
-
-
67049134758
-
Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation
-
Hoggatt, J. et al. 2009. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113: 5444–5455.
-
(2009)
Blood
, vol.113
, pp. 5444-5455
-
-
Hoggatt, J.1
-
184
-
-
84878299390
-
Rhythmic modulation of the hematopoietic niche through neutrophil clearance
-
Casanova-Acebes, M. et al. 2013. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153: 1025–1035.
-
(2013)
Cell
, vol.153
, pp. 1025-1035
-
-
Casanova-Acebes, M.1
-
185
-
-
28544446618
-
A fundamental bimodal role for neuropeptide Y1 receptor in the immune system
-
Wheway, J. et al. 2005. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med. 202: 1527–1538.
-
(2005)
J. Exp. Med.
, vol.202
, pp. 1527-1538
-
-
Wheway, J.1
-
186
-
-
34447116241
-
Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome
-
Kuo, L.E. et al. 2007. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13: 803–811.
-
(2007)
Nat. Med.
, vol.13
, pp. 803-811
-
-
Kuo, L.E.1
-
187
-
-
70350704676
-
NPY regulation of bone remodelling
-
Lee, N.J. & H. Herzog. 2009. NPY regulation of bone remodelling. Neuropeptides 43: 457–463.
-
(2009)
Neuropeptides
, vol.43
, pp. 457-463
-
-
Lee, N.J.1
Herzog, H.2
-
188
-
-
84930872362
-
Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow
-
Park, M.H. et al. 2015. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO J. 34: 1648–1660.
-
(2015)
EMBO J.
, vol.34
, pp. 1648-1660
-
-
Park, M.H.1
-
190
-
-
0037673945
-
Osteoclast differentiation and activation
-
Boyle, W.J., W.S. Simonet & D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423: 337–342.
-
(2003)
Nature
, vol.423
, pp. 337-342
-
-
Boyle, W.J.1
Simonet, W.S.2
Lacey, D.L.3
-
191
-
-
33744983304
-
Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
-
Kollet, O. et al. 2006. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12: 657–664.
-
(2006)
Nat. Med.
, vol.12
, pp. 657-664
-
-
Kollet, O.1
-
192
-
-
30044443293
-
TGF-β regulates the mechanical properties and composition of bone matrix
-
Balooch, G. et al. 2005. TGF-β regulates the mechanical properties and composition of bone matrix. Proc. Natl. Acad. Sci. U.S.A. 102: 18813–18818.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 18813-18818
-
-
Balooch, G.1
-
193
-
-
79551620014
-
Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo
-
Lymperi, S. et al. 2011. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117: 1540–1549.
-
(2011)
Blood
, vol.117
, pp. 1540-1549
-
-
Lymperi, S.1
-
194
-
-
84860378826
-
Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow
-
Mansour, A. et al. 2012. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209: 537–549.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 537-549
-
-
Mansour, A.1
-
195
-
-
84909999815
-
Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin
-
Nakamura-Ishizu, A. et al. 2014. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem. Biophys. Res. Commun. 454: 353–357.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.454
, pp. 353-357
-
-
Nakamura-Ishizu, A.1
-
196
-
-
84879490265
-
Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation
-
Heazlewood, S.Y. et al. 2013. Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 11: 782–792.
-
(2013)
Stem Cell Res
, vol.11
, pp. 782-792
-
-
Heazlewood, S.Y.1
-
197
-
-
33749529089
-
A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells
-
Kacena, M.A., C.M. Gundberg & M.C. Horowitz. 2006. A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 39: 978–984.
-
(2006)
Bone
, vol.39
, pp. 978-984
-
-
Kacena, M.A.1
Gundberg, C.M.2
Horowitz, M.C.3
-
198
-
-
84883571576
-
Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning
-
Olson, T.S. et al. 2013. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121: 5238–5249.
-
(2013)
Blood
, vol.121
, pp. 5238-5249
-
-
Olson, T.S.1
-
199
-
-
70349833632
-
Complex and context dependent regulation of hematopoiesis by TGF-β superfamily signaling
-
Soderberg, S.S., G. Karlsson & S. Karlsson. 2009. Complex and context dependent regulation of hematopoiesis by TGF-β superfamily signaling. Ann. N.Y. Acad. Sci. 1176: 55–69.
-
(2009)
Ann. N.Y. Acad. Sci.
, vol.1176
, pp. 55-69
-
-
Soderberg, S.S.1
Karlsson, G.2
Karlsson, S.3
-
200
-
-
84555189736
-
The bone marrow at the crossroads of blood and immunity
-
Mercier, F.E., C. Ragu & D.T. Scadden. 2012. The bone marrow at the crossroads of blood and immunity. Nat. Rev. Immunol. 12: 49–60.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 49-60
-
-
Mercier, F.E.1
Ragu, C.2
Scadden, D.T.3
-
201
-
-
1842305101
-
Inhibition of pluripotent hematopoietic stem cells of bone marrow by large granular lymphocytes
-
Barlozzari, T., R.B. Herberman & C.W. Reynolds. 1987. Inhibition of pluripotent hematopoietic stem cells of bone marrow by large granular lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 84: 7691–7695.
-
(1987)
Proc. Natl. Acad. Sci. U.S.A
, vol.84
, pp. 7691-7695
-
-
Barlozzari, T.1
Herberman, R.B.2
Reynolds, C.W.3
-
202
-
-
0022407506
-
Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon
-
Degliantoni, G. et al. 1985. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J. Exp. Med. 162: 1512–1530.
-
(1985)
J. Exp. Med.
, vol.162
, pp. 1512-1530
-
-
Degliantoni, G.1
-
203
-
-
0031002732
-
Deregulated TCR alpha beta T cell population provokes extramedullary hematopoiesis in mice deficient in the common gamma chain
-
Sharara, L.I. et al. 1997. Deregulated TCR alpha beta T cell population provokes extramedullary hematopoiesis in mice deficient in the common gamma chain. Eur. J. Immunol. 27: 990–998.
-
(1997)
Eur. J. Immunol.
, vol.27
, pp. 990-998
-
-
Sharara, L.I.1
-
204
-
-
13544261413
-
+ T cells
-
+ T cells. Blood 105: 1484–1491.
-
(2005)
Blood
, vol.105
, pp. 1484-1491
-
-
Monteiro, J.P.1
-
205
-
-
0037082506
-
Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation
-
Zeng, D. et al. 2002. Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation. Blood 99: 1449–1457.
-
(2002)
Blood
, vol.99
, pp. 1449-1457
-
-
Zeng, D.1
-
206
-
-
0033018145
-
+ T cells in mouse bone marrow. I. Increased activated/memory phenotype and altered TCR Vbeta repertoire
-
+ T cells in mouse bone marrow. I. Increased activated/memory phenotype and altered TCR Vbeta repertoire. Eur. J. Immunol. 29: 1051–1056.
-
(1999)
Eur. J. Immunol.
, vol.29
, pp. 1051-1056
-
-
Price, P.W.1
Cerny, J.2
-
207
-
-
77954717369
-
+ T cells
-
+ T cells. Blood 115: 4934–4943.
-
(2010)
Blood
, vol.115
, pp. 4934-4943
-
-
Urbieta, M.1
-
208
-
-
79958279325
-
reg cells providing immune privilege to the haematopoietic stem-cell niche
-
reg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474: 216–219.
-
(2011)
Nature
, vol.474
, pp. 216-219
-
-
Fujisaki, J.1
-
209
-
-
77955269807
-
Neutrophil kinetics in health and disease
-
Summers, C. et al. 2010. Neutrophil kinetics in health and disease. Trends Immunol. 31: 318–324.
-
(2010)
Trends Immunol
, vol.31
, pp. 318-324
-
-
Summers, C.1
-
210
-
-
53549133371
-
Neutrophil mobilization and clearance in the bone marrow
-
Furze, R.C. & S.M. Rankin. 2008. Neutrophil mobilization and clearance in the bone marrow. Immunology 125: 281–288.
-
(2008)
Immunology
, vol.125
, pp. 281-288
-
-
Furze, R.C.1
Rankin, S.M.2
-
211
-
-
0036302147
-
G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4
-
Petit, I. et al. 2002. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3: 687–694.
-
(2002)
Nat. Immunol.
, vol.3
, pp. 687-694
-
-
Petit, I.1
-
212
-
-
0037013221
-
Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4
-
Valenzuela-Fernandez, A. et al. 2002. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J. Biol. Chem. 277: 15677–15689.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 15677-15689
-
-
Valenzuela-Fernandez, A.1
-
213
-
-
0035469853
-
Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor
-
Levesque, J.P. et al. 2001. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98: 1289–1297.
-
(2001)
Blood
, vol.98
, pp. 1289-1297
-
-
Levesque, J.P.1
-
214
-
-
0037317025
-
Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells
-
Levesque, J.P. et al. 2003. Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp. Hematol. 31: 109–117.
-
(2003)
Exp. Hematol.
, vol.31
, pp. 109-117
-
-
Levesque, J.P.1
-
215
-
-
18444389451
-
Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand
-
Heissig, B. et al. 2002. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637.
-
(2002)
Cell
, vol.109
, pp. 625-637
-
-
Heissig, B.1
-
216
-
-
3042753829
-
Characterization of hematopoietic progenitor mobilization in protease-deficient mice
-
Levesque, J.P. et al. 2004. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104: 65–72.
-
(2004)
Blood
, vol.104
, pp. 65-72
-
-
Levesque, J.P.1
-
217
-
-
84869084616
-
Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells
-
Singh, P. et al. 2012. Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia 26: 2375–2383.
-
(2012)
Leukemia
, vol.26
, pp. 2375-2383
-
-
Singh, P.1
-
218
-
-
66549108083
-
CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions
-
Eash, K.J. et al. 2009. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113: 4711–4719.
-
(2009)
Blood
, vol.113
, pp. 4711-4719
-
-
Eash, K.J.1
-
219
-
-
84884157062
-
Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis
-
Poulos, M.G. et al. 2013. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4: 1022–1034.
-
(2013)
Cell Rep
, vol.4
, pp. 1022-1034
-
-
Poulos, M.G.1
|