메뉴 건너뛰기




Volumn 1370, Issue 1, 2016, Pages 82-96

Niche heterogeneity in the bone marrow

Author keywords

BM; microenvironment; niche; stem cells

Indexed keywords

ADIPOCYTE; BONE MARROW; CELL HETEROGENEITY; ENDOTHELIUM CELL; HEMATOPOIETIC STEM CELL; HUMAN; LYMPHOCYTE; MACROPHAGE; MEGAKARYOCYTE; NERVE; NEUTROPHIL; OSTEOBLAST; OSTEOCLAST; REVIEW; SCHWANN CELL;

EID: 84976635421     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.13016     Document Type: Review
Times cited : (228)

References (219)
  • 1
    • 84055200841 scopus 로고    scopus 로고
    • Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age
    • Pang, W.W. et al. 2011. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. U.S.A. 108: 20012–20017.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20012-20017
    • Pang, W.W.1
  • 2
    • 84889568419 scopus 로고    scopus 로고
    • SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors
    • Oguro, H., L. Ding & S.J. Morrison. 2013. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13: 102–116.
    • (2013) Cell Stem Cell , vol.13 , pp. 102-116
    • Oguro, H.1    Ding, L.2    Morrison, S.J.3
  • 3
    • 52049087829 scopus 로고    scopus 로고
    • Hematopoietic stem cells and the aging hematopoietic system
    • Gazit, R., I.L. Weissman & D.J. Rossi. 2008. Hematopoietic stem cells and the aging hematopoietic system. Semin. Hematol. 45: 218–224.
    • (2008) Semin. Hematol. , vol.45 , pp. 218-224
    • Gazit, R.1    Weissman, I.L.2    Rossi, D.J.3
  • 5
    • 43749110075 scopus 로고    scopus 로고
    • Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal
    • Zon, L.I. 2008. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453: 306–313.
    • (2008) Nature , vol.453 , pp. 306-313
    • Zon, L.I.1
  • 6
    • 84865348793 scopus 로고    scopus 로고
    • Molecular and functional characterization of early human hematopoiesis
    • Laurenti, E. & J.E. Dick. 2012. Molecular and functional characterization of early human hematopoiesis. Ann. N.Y. Acad. Sci. 1266: 68–71.
    • (2012) Ann. N.Y. Acad. Sci. , vol.1266 , pp. 68-71
    • Laurenti, E.1    Dick, J.E.2
  • 7
    • 0038148364 scopus 로고    scopus 로고
    • Hematopoietic stem cells engraft in mice with absolute efficiency
    • Benveniste, P. et al. 2003. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat. Immunol. 4: 708–713.
    • (2003) Nat. Immunol. , vol.4 , pp. 708-713
    • Benveniste, P.1
  • 8
    • 84886680488 scopus 로고    scopus 로고
    • GATA-3 regulates the self-renewal of long-term hematopoietic stem cells
    • Frelin, C. et al. 2013. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat. Immunol. 14: 1037–1044.
    • (2013) Nat. Immunol. , vol.14 , pp. 1037-1044
    • Frelin, C.1
  • 9
    • 84956427297 scopus 로고
    • A direct measurement of the radiation sensitivity of normal mouse bone marrow cells
    • Till, J.E. & C.E. McCulloch. 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14: 213–222.
    • (1961) Radiat. Res. , vol.14 , pp. 213-222
    • Till, J.E.1    McCulloch, C.E.2
  • 10
    • 84928230863 scopus 로고    scopus 로고
    • Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis
    • Mirantes, C., E. Passegue & E.M. Pietras. 2014. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp. Cell Res. 329: 248–254.
    • (2014) Exp. Cell Res. , vol.329 , pp. 248-254
    • Mirantes, C.1    Passegue, E.2    Pietras, E.M.3
  • 11
    • 0000970496 scopus 로고
    • Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy
    • Thomas, E.D. et al. 1957. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257: 491–496.
    • (1957) N. Engl. J. Med. , vol.257 , pp. 491-496
    • Thomas, E.D.1
  • 12
    • 84892610064 scopus 로고    scopus 로고
    • The bone marrow niche for haematopoietic stem cells
    • Morrison, S.J. & D.T. Scadden. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327–334.
    • (2014) Nature , vol.505 , pp. 327-334
    • Morrison, S.J.1    Scadden, D.T.2
  • 13
    • 84905756677 scopus 로고    scopus 로고
    • Hematopoietic stem cell niche maintenance during homeostasis and regeneration
    • Mendelson, A. & P.S. Frenette. 2014. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20: 833–846.
    • (2014) Nat. Med. , vol.20 , pp. 833-846
    • Mendelson, A.1    Frenette, P.S.2
  • 14
    • 0018102359 scopus 로고
    • The relationship between the spleen colony-forming cell and the haemopoietic stem cell
    • Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7–25.
    • (1978) Blood Cells , vol.4 , pp. 7-25
    • Schofield, R.1
  • 15
    • 84903999646 scopus 로고    scopus 로고
    • In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells
    • Rashidi, N.M. et al. 2014. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood 124: 79–83.
    • (2014) Blood , vol.124 , pp. 79-83
    • Rashidi, N.M.1
  • 16
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: an evolving paradigm for stem cell biology
    • Orkin, S.H. & L.I. Zon. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132: 631–644.
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 17
    • 0035228050 scopus 로고    scopus 로고
    • Distinct classes of human stem cells that differ in proliferative and self-renewal potential
    • Guenechea, G. et al. 2001. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. 2: 75–82.
    • (2001) Nat. Immunol. , vol.2 , pp. 75-82
    • Guenechea, G.1
  • 18
    • 19944400789 scopus 로고    scopus 로고
    • Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice
    • Ema, H. et al. 2005. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev. Cell 8: 907–914.
    • (2005) Dev. Cell , vol.8 , pp. 907-914
    • Ema, H.1
  • 19
    • 0029796633 scopus 로고    scopus 로고
    • Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell
    • Osawa, M. et al. 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245.
    • (1996) Science , vol.273 , pp. 242-245
    • Osawa, M.1
  • 20
    • 0030987304 scopus 로고    scopus 로고
    • Identification of a lineage of multipotent hematopoietic progenitors
    • Morrison, S.J. et al. 1997. Identification of a lineage of multipotent hematopoietic progenitors. Development 124: 1929–1939.
    • (1997) Development , vol.124 , pp. 1929-1939
    • Morrison, S.J.1
  • 21
    • 15944363056 scopus 로고    scopus 로고
    • − short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients
    • − short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105: 2717–2723.
    • (2005) Blood , vol.105 , pp. 2717-2723
    • Yang, L.1
  • 22
    • 84860343741 scopus 로고    scopus 로고
    • Stem cell heterogeneity: implications for aging and regenerative medicine
    • Muller-Sieburg, C.E. et al. 2012. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood 119: 3900–3907.
    • (2012) Blood , vol.119 , pp. 3900-3907
    • Muller-Sieburg, C.E.1
  • 23
    • 84883428326 scopus 로고    scopus 로고
    • Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells
    • Yamamoto, R. et al. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154: 1112–1126.
    • (2013) Cell , vol.154 , pp. 1112-1126
    • Yamamoto, R.1
  • 24
    • 34548417118 scopus 로고    scopus 로고
    • Limiting factors in murine hematopoietic stem cell assays
    • Purton, L.E. & D.T. Scadden. 2007. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1: 263–270.
    • (2007) Cell Stem Cell , vol.1 , pp. 263-270
    • Purton, L.E.1    Scadden, D.T.2
  • 25
    • 21244463426 scopus 로고    scopus 로고
    • SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
    • Kiel, M.J. et al. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121.
    • (2005) Cell , vol.121 , pp. 1109-1121
    • Kiel, M.J.1
  • 26
    • 67650587142 scopus 로고    scopus 로고
    • Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential
    • Kent, D.G. et al. 2009. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113: 6342–6350.
    • (2009) Blood , vol.113 , pp. 6342-6350
    • Kent, D.G.1
  • 27
    • 73049110615 scopus 로고    scopus 로고
    • Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential
    • Benveniste, P. et al. 2010. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6: 48–58.
    • (2010) Cell Stem Cell , vol.6 , pp. 48-58
    • Benveniste, P.1
  • 28
    • 84880790360 scopus 로고    scopus 로고
    • CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age
    • Gekas, C. & T. Graf. 2013. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121: 4463–4472.
    • (2013) Blood , vol.121 , pp. 4463-4472
    • Gekas, C.1    Graf, T.2
  • 29
    • 2542473275 scopus 로고    scopus 로고
    • Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness
    • Muller-Sieburg, C.E. et al. 2004. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103: 4111–4118.
    • (2004) Blood , vol.103 , pp. 4111-4118
    • Muller-Sieburg, C.E.1
  • 30
    • 34547692981 scopus 로고    scopus 로고
    • Long-term propagation of distinct hematopoietic differentiation programs in vivo
    • Dykstra, B. et al. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1: 218–229.
    • (2007) Cell Stem Cell , vol.1 , pp. 218-229
    • Dykstra, B.1
  • 31
    • 84857873445 scopus 로고    scopus 로고
    • Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs
    • Benz, C. et al. 2012. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10: 273–283.
    • (2012) Cell Stem Cell , vol.10 , pp. 273-283
    • Benz, C.1
  • 32
    • 77449145533 scopus 로고    scopus 로고
    • Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1
    • Challen, G.A. et al. 2010. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6: 265–278.
    • (2010) Cell Stem Cell , vol.6 , pp. 265-278
    • Challen, G.A.1
  • 33
    • 84885634008 scopus 로고    scopus 로고
    • Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
    • Sanjuan-Pla, A. et al. 2013. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502: 232–236.
    • (2013) Nature , vol.502 , pp. 232-236
    • Sanjuan-Pla, A.1
  • 34
    • 84862532139 scopus 로고    scopus 로고
    • Hematopoietic stem cell heterogeneity takes center stage
    • Copley, M.R., P.A. Beer & C.J. Eaves. 2012. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 10: 690–697.
    • (2012) Cell Stem Cell , vol.10 , pp. 690-697
    • Copley, M.R.1    Beer, P.A.2    Eaves, C.J.3
  • 35
    • 84928342976 scopus 로고    scopus 로고
    • Hematopoietic stem cells: concepts, definitions, and the new reality
    • Eaves, C.J. 2015. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125: 2605–2613.
    • (2015) Blood , vol.125 , pp. 2605-2613
    • Eaves, C.J.1
  • 36
    • 84896727582 scopus 로고    scopus 로고
    • Heterogeneity and hierarchy of hematopoietic stem cells
    • e2
    • Ema, H., Y. Morita & T. Suda. 2014. Heterogeneity and hierarchy of hematopoietic stem cells. Exp. Hematol. 42: 74–82.e2.
    • (2014) Exp. Hematol. , vol.42 , pp. 74-82
    • Ema, H.1    Morita, Y.2    Suda, T.3
  • 37
    • 80051615042 scopus 로고    scopus 로고
    • The relationship between bone, hemopoietic stem cells, and vasculature
    • Ellis, S.L. et al. 2011. The relationship between bone, hemopoietic stem cells, and vasculature. Blood 118: 1516–1524.
    • (2011) Blood , vol.118 , pp. 1516-1524
    • Ellis, S.L.1
  • 38
    • 84877575509 scopus 로고    scopus 로고
    • Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
    • Nombela-Arrieta, C. et al. 2013. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 15: 533–543.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 533-543
    • Nombela-Arrieta, C.1
  • 39
    • 31844449374 scopus 로고    scopus 로고
    • Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor
    • Adams, G.B. et al. 2006. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439: 599–603.
    • (2006) Nature , vol.439 , pp. 599-603
    • Adams, G.B.1
  • 40
    • 84881173663 scopus 로고    scopus 로고
    • Regional localization within the bone marrow influences the functional capacity of human HSCs
    • Guezguez, B. et al. 2013. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13: 175–189.
    • (2013) Cell Stem Cell , vol.13 , pp. 175-189
    • Guezguez, B.1
  • 41
    • 84886947010 scopus 로고    scopus 로고
    • Arteriolar niches maintain haematopoietic stem cell quiescence
    • Kunisaki, Y. et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637–643.
    • (2013) Nature , vol.502 , pp. 637-643
    • Kunisaki, Y.1
  • 42
    • 34147097546 scopus 로고    scopus 로고
    • Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum
    • Haylock, D.N. et al. 2007. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25: 1062–1069.
    • (2007) Stem Cells , vol.25 , pp. 1062-1069
    • Haylock, D.N.1
  • 43
    • 84943154962 scopus 로고    scopus 로고
    • Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
    • Acar, M. et al. 2015. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526: 126–130.
    • (2015) Nature , vol.526 , pp. 126-130
    • Acar, M.1
  • 44
    • 67651098996 scopus 로고    scopus 로고
    • Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones
    • Kohler, A. et al. 2009. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114: 290–298.
    • (2009) Blood , vol.114 , pp. 290-298
    • Kohler, A.1
  • 45
    • 0014847508 scopus 로고
    • The microcirculation of the bone marrow
    • De Bruyn, P.P., P.C. Breen & T.B. Thomas. 1970. The microcirculation of the bone marrow. Anat. Rec. 168: 55–68.
    • (1970) Anat. Rec. , vol.168 , pp. 55-68
    • De Bruyn, P.P.1    Breen, P.C.2    Thomas, T.B.3
  • 47
    • 84255171086 scopus 로고    scopus 로고
    • Wall structures of myocardial precapillary arterioles and postcapillary venules reexamined and reconstructed in vitro for studies on barrier functions
    • Nees, S. et al. 2012. Wall structures of myocardial precapillary arterioles and postcapillary venules reexamined and reconstructed in vitro for studies on barrier functions. Am. J. Physiol. Heart Circ. Physiol. 302: H51–H68.
    • (2012) Am. J. Physiol. Heart Circ. Physiol. , vol.302 , pp. H51-H68
    • Nees, S.1
  • 48
    • 0020457544 scopus 로고
    • Quantitative morphology of arterioles from the hamster cheek pouch related to mechanical analysis
    • Walmsley, J.G. et al. 1982. Quantitative morphology of arterioles from the hamster cheek pouch related to mechanical analysis. Microvasc. Res. 24: 249–271.
    • (1982) Microvasc. Res. , vol.24 , pp. 249-271
    • Walmsley, J.G.1
  • 49
    • 31044450303 scopus 로고    scopus 로고
    • Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow
    • Katayama, Y. et al. 2006. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124: 407–421.
    • (2006) Cell , vol.124 , pp. 407-421
    • Katayama, Y.1
  • 50
    • 33845445939 scopus 로고    scopus 로고
    • Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches
    • Sugiyama, T. et al. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977–988.
    • (2006) Immunity , vol.25 , pp. 977-988
    • Sugiyama, T.1
  • 51
    • 0025938439 scopus 로고
    • Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow
    • Weiss, L. & U. Geduldig. 1991. Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78: 975–990.
    • (1991) Blood , vol.78 , pp. 975-990
    • Weiss, L.1    Geduldig, U.2
  • 52
    • 84878428014 scopus 로고    scopus 로고
    • Exploring the erythroblastic island
    • Socolovsky, M. 2013. Exploring the erythroblastic island. Nat. Med. 19: 399–401.
    • (2013) Nat. Med. , vol.19 , pp. 399-401
    • Socolovsky, M.1
  • 53
    • 84878439561 scopus 로고    scopus 로고
    • Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia
    • Ramos, P. et al. 2013. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nat. Med. 19: 437–445.
    • (2013) Nat. Med. , vol.19 , pp. 437-445
    • Ramos, P.1
  • 54
    • 84878444005 scopus 로고    scopus 로고
    • + macrophages provide a niche promoting erythropoiesis under homeostasis and stress
    • + macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 19: 429–436.
    • (2013) Nat. Med. , vol.19 , pp. 429-436
    • Chow, A.1
  • 55
    • 84964312389 scopus 로고    scopus 로고
    • Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
    • Bruns, I. et al. 2014. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20: 1315–1320.
    • (2014) Nat. Med. , vol.20 , pp. 1315-1320
    • Bruns, I.1
  • 56
    • 84920448202 scopus 로고    scopus 로고
    • Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
    • Zhao, M. et al. 2014. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20: 1321–1326.
    • (2014) Nat. Med. , vol.20 , pp. 1321-1326
    • Zhao, M.1
  • 57
    • 39149100564 scopus 로고    scopus 로고
    • The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation
    • Rhodes, K.E. et al. 2008. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2: 252–263.
    • (2008) Cell Stem Cell , vol.2 , pp. 252-263
    • Rhodes, K.E.1
  • 58
    • 84994310890 scopus 로고    scopus 로고
    • Fetal liver hematopoietic stem cell niches associate with portal vessels
    • Khan, J.A. et al. 2016. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351: 176–180.
    • (2016) Science , vol.351 , pp. 176-180
    • Khan, J.A.1
  • 59
    • 0031883380 scopus 로고    scopus 로고
    • The role of osteoblasts in the hematopoietic microenvironment
    • Taichman, R.S. & S.G. Emerson. 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7–15.
    • (1998) Stem Cells , vol.16 , pp. 7-15
    • Taichman, R.S.1    Emerson, S.G.2
  • 60
    • 0033964121 scopus 로고    scopus 로고
    • The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment
    • Taichman, R.S., M.J. Reilly & S.G. Emerson. 2000. The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment. Hematology 4: 421–426.
    • (2000) Hematology , vol.4 , pp. 421-426
    • Taichman, R.S.1    Reilly, M.J.2    Emerson, S.G.3
  • 61
    • 0031889095 scopus 로고    scopus 로고
    • Osteoblasts promote engraftment of allogeneic hematopoietic stem cells
    • El-Badri, N.S. et al. 1998. Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp. Hematol. 26: 110–116.
    • (1998) Exp. Hematol. , vol.26 , pp. 110-116
    • El-Badri, N.S.1
  • 62
    • 0028274877 scopus 로고
    • Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor
    • Taichman, R.S. & S.G. Emerson. 1994. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med. 179: 1677–1682.
    • (1994) J. Exp. Med. , vol.179 , pp. 1677-1682
    • Taichman, R.S.1    Emerson, S.G.2
  • 63
    • 21344474104 scopus 로고    scopus 로고
    • Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells
    • Nilsson, S.K. et al. 2005. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106: 1232–1239.
    • (2005) Blood , vol.106 , pp. 1232-1239
    • Nilsson, S.K.1
  • 64
    • 21244472780 scopus 로고    scopus 로고
    • Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size
    • Stier, S. et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201: 1781–1791.
    • (2005) J. Exp. Med. , vol.201 , pp. 1781-1791
    • Stier, S.1
  • 65
    • 3242669145 scopus 로고    scopus 로고
    • Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
    • Arai, F. et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161.
    • (2004) Cell , vol.118 , pp. 149-161
    • Arai, F.1
  • 66
    • 0242268524 scopus 로고    scopus 로고
    • Osteoblastic cells regulate the haematopoietic stem cell niche
    • Calvi, L.M. et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841–846.
    • (2003) Nature , vol.425 , pp. 841-846
    • Calvi, L.M.1
  • 67
    • 1942457308 scopus 로고    scopus 로고
    • Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
    • Visnjic, D. et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258–3264.
    • (2004) Blood , vol.103 , pp. 3258-3264
    • Visnjic, D.1
  • 68
    • 84900309835 scopus 로고    scopus 로고
    • Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development
    • Mizoguchi, T. et al. 2014. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29: 340–349.
    • (2014) Dev. Cell , vol.29 , pp. 340-349
    • Mizoguchi, T.1
  • 69
    • 77957020167 scopus 로고    scopus 로고
    • The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche
    • Omatsu, Y. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387–399.
    • (2010) Immunity , vol.33 , pp. 387-399
    • Omatsu, Y.1
  • 70
    • 77955646193 scopus 로고    scopus 로고
    • Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
    • Mendez-Ferrer, S. et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829–834.
    • (2010) Nature , vol.466 , pp. 829-834
    • Mendez-Ferrer, S.1
  • 71
    • 38949140223 scopus 로고    scopus 로고
    • Strontium can increase some osteoblasts without increasing hematopoietic stem cells
    • Lymperi, S. et al. 2008. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111: 1173–1181.
    • (2008) Blood , vol.111 , pp. 1173-1181
    • Lymperi, S.1
  • 72
    • 27744583923 scopus 로고    scopus 로고
    • Strontium as therapy for osteoporosis
    • Marie, P.J. 2005. Strontium as therapy for osteoporosis. Curr. Opin. Pharmacol. 5: 633–636.
    • (2005) Curr. Opin. Pharmacol. , vol.5 , pp. 633-636
    • Marie, P.J.1
  • 73
    • 84863338552 scopus 로고    scopus 로고
    • Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells
    • Calvi, L.M. et al. 2012. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119: 2489–2499.
    • (2012) Blood , vol.119 , pp. 2489-2499
    • Calvi, L.M.1
  • 74
    • 34247332650 scopus 로고    scopus 로고
    • Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells
    • Zhu, J. et al. 2007. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109: 3706–3712.
    • (2007) Blood , vol.109 , pp. 3706-3712
    • Zhu, J.1
  • 75
    • 84928485157 scopus 로고    scopus 로고
    • Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development
    • Bowers, M. et al. 2015. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125: 2678–2688.
    • (2015) Blood , vol.125 , pp. 2678-2688
    • Bowers, M.1
  • 76
    • 84875000886 scopus 로고    scopus 로고
    • Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
    • Ding, L. & S.J. Morrison. 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231–235.
    • (2013) Nature , vol.495 , pp. 231-235
    • Ding, L.1    Morrison, S.J.2
  • 77
    • 0036168051 scopus 로고    scopus 로고
    • Endothelial cell heterogeneity and organ specificity
    • Ribatti, D. et al. 2002. Endothelial cell heterogeneity and organ specificity. J. Hematother. Stem Cell Res. 11: 81–90.
    • (2002) J. Hematother. Stem Cell Res. , vol.11 , pp. 81-90
    • Ribatti, D.1
  • 78
    • 21244463426 scopus 로고    scopus 로고
    • SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
    • Kiel, M.J. et al. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121.
    • (2005) Cell , vol.121 , pp. 1109-1121
    • Kiel, M.J.1
  • 79
    • 60849138787 scopus 로고    scopus 로고
    • Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells
    • Hooper, A.T. et al. 2009. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4: 263–274.
    • (2009) Cell Stem Cell , vol.4 , pp. 263-274
    • Hooper, A.T.1
  • 80
    • 78149280740 scopus 로고    scopus 로고
    • Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells
    • Kobayashi, H. et al. 2010. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12: 1046–1056.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1046-1056
    • Kobayashi, H.1
  • 81
    • 61849092556 scopus 로고    scopus 로고
    • Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo
    • Salter, A.B. et al. 2009. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113: 2104–2107.
    • (2009) Blood , vol.113 , pp. 2104-2107
    • Salter, A.B.1
  • 82
    • 77449121923 scopus 로고    scopus 로고
    • Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells
    • Butler, J.M. et al. 2010. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251–264.
    • (2010) Cell Stem Cell , vol.6 , pp. 251-264
    • Butler, J.M.1
  • 83
    • 33747725221 scopus 로고    scopus 로고
    • + PBPC through IL-6 secretion
    • + PBPC through IL-6 secretion. Cytotherapy 8: 335–342.
    • (2006) Cytotherapy , vol.8 , pp. 335-342
    • Li, N.1
  • 84
    • 21744443464 scopus 로고    scopus 로고
    • + hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture
    • + hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transplant. 36: 71–79.
    • (2005) Bone Marrow Transplant. , vol.36 , pp. 71-79
    • Yildirim, S.1
  • 85
    • 0037114623 scopus 로고    scopus 로고
    • Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow
    • Chute, J.P. et al. 2002. Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood 100: 4433–4439.
    • (2002) Blood , vol.100 , pp. 4433-4439
    • Chute, J.P.1
  • 86
    • 11244252126 scopus 로고    scopus 로고
    • − cells and SCID-repopulating cells
    • − cells and SCID-repopulating cells. Blood 105: 576–583.
    • (2005) Blood , vol.105 , pp. 576-583
    • Chute, J.P.1
  • 87
    • 73149094299 scopus 로고    scopus 로고
    • Endothelial cells mediate the regeneration of hematopoietic stem cells
    • Li, B. et al. 2010. Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res. 4: 17–24.
    • (2010) Stem Cell Res. , vol.4 , pp. 17-24
    • Li, B.1
  • 88
    • 77950543499 scopus 로고    scopus 로고
    • Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells
    • Himburg, H.A. et al. 2010. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat. Med. 16: 475–482.
    • (2010) Nat. Med. , vol.16 , pp. 475-482
    • Himburg, H.A.1
  • 89
    • 84875228640 scopus 로고    scopus 로고
    • Epidermal growth factor regulates hematopoietic regeneration after radiation injury
    • Doan, P.L. et al. 2013. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat. Med. 19: 295–304.
    • (2013) Nat. Med. , vol.19 , pp. 295-304
    • Doan, P.L.1
  • 90
    • 84961292224 scopus 로고    scopus 로고
    • Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1
    • Zhou, B.O., L. Ding & S.J. Morrison. 2015. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. EeLife 4: e05521.
    • (2015) EeLife , vol.4
    • Zhou, B.O.1    Ding, L.2    Morrison, S.J.3
  • 91
    • 0345167906 scopus 로고    scopus 로고
    • Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro
    • Li, W. et al. 2003. Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102: 4345–4353.
    • (2003) Blood , vol.102 , pp. 4345-4353
    • Li, W.1
  • 92
    • 0032147092 scopus 로고    scopus 로고
    • Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium
    • Ohneda, O. et al. 1998. Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92: 908–919.
    • (1998) Blood , vol.92 , pp. 908-919
    • Ohneda, O.1
  • 93
    • 10044223409 scopus 로고    scopus 로고
    • Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells
    • Li, W. et al. 2004. Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp. Hematol. 32: 1226–1237.
    • (2004) Exp. Hematol. , vol.32 , pp. 1226-1237
    • Li, W.1
  • 94
    • 28844476756 scopus 로고    scopus 로고
    • Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells
    • Yao, L. et al. 2005. Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 106: 4093–4101.
    • (2005) Blood , vol.106 , pp. 4093-4101
    • Yao, L.1
  • 95
    • 84856147560 scopus 로고    scopus 로고
    • Endothelial and perivascular cells maintain haematopoietic stem cells
    • Ding, L. et al. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457–462.
    • (2012) Nature , vol.481 , pp. 457-462
    • Ding, L.1
  • 96
    • 84874997081 scopus 로고    scopus 로고
    • CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
    • Greenbaum, A. et al. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495: 227–230.
    • (2013) Nature , vol.495 , pp. 227-230
    • Greenbaum, A.1
  • 97
    • 33846849237 scopus 로고    scopus 로고
    • Phenotypic heterogeneity of the endothelium: II. Representative vascular beds
    • Aird, W.C. 2007. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100: 174–190.
    • (2007) Circ. Res. , vol.100 , pp. 174-190
    • Aird, W.C.1
  • 98
    • 33846798106 scopus 로고    scopus 로고
    • Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms
    • Aird, W.C. 2007. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100: 158–173.
    • (2007) Circ. Res. , vol.100 , pp. 158-173
    • Aird, W.C.1
  • 99
    • 84943581891 scopus 로고    scopus 로고
    • Pericytes are essential for skeletal muscle formation
    • Birbrair, A. & O. Delbono. 2015. Pericytes are essential for skeletal muscle formation. Stem Cell Rev. 11: 547–548.
    • (2015) Stem Cell Rev , vol.11 , pp. 547-548
    • Birbrair, A.1    Delbono, O.2
  • 100
    • 84927943104 scopus 로고    scopus 로고
    • Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner
    • Birbrair, A. et al. 2014. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res. Ther. 5: 122.
    • (2014) Stem Cell Res. Ther. , vol.5 , pp. 122
    • Birbrair, A.1
  • 101
    • 84907144810 scopus 로고    scopus 로고
    • Pericytes at the intersection between tissue regeneration and pathology
    • Birbrair, A. et al. 2015. Pericytes at the intersection between tissue regeneration and pathology. Clin. Sci. (Lond.) 128: 81–93.
    • (2015) Clin. Sci. (Lond.) , vol.128 , pp. 81-93
    • Birbrair, A.1
  • 102
    • 84903591996 scopus 로고    scopus 로고
    • Type-2 pericytes participate in normal and tumoral angiogenesis
    • Birbrair, A. et al. 2014. Type-2 pericytes participate in normal and tumoral angiogenesis. Am. J. Physiol. Cell Physiol. 307: C25–C38.
    • (2014) Am. J. Physiol. Cell Physiol. , vol.307 , pp. C25-C38
    • Birbrair, A.1
  • 103
    • 84881183042 scopus 로고    scopus 로고
    • Role of pericytes in skeletal muscle regeneration and fat accumulation
    • Birbrair, A. et al. 2013. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 22: 2298–2314.
    • (2013) Stem Cells Dev , vol.22 , pp. 2298-2314
    • Birbrair, A.1
  • 104
    • 84888797233 scopus 로고    scopus 로고
    • Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle
    • Birbrair, A. et al. 2013. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am. J. Physiol. Cell Physiol. 305: C1098–C1113.
    • (2013) Am. J. Physiol. Cell Physiol. , vol.305 , pp. C1098-C1113
    • Birbrair, A.1
  • 105
    • 84868221535 scopus 로고    scopus 로고
    • Skeletal muscle pericyte subtypes differ in their differentiation potential
    • Birbrair, A. et al. 2013. Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res. 10: 67–84.
    • (2013) Stem Cell Res. , vol.10 , pp. 67-84
    • Birbrair, A.1
  • 106
    • 84907147584 scopus 로고    scopus 로고
    • Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle
    • Birbrair, A. et al. 2014. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front. Aging Neurosci. 6: 245.
    • (2014) Front. Aging Neurosci. , vol.6 , pp. 245
    • Birbrair, A.1
  • 107
    • 35348921682 scopus 로고    scopus 로고
    • Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
    • Sacchetti, B. et al. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324–336.
    • (2007) Cell , vol.131 , pp. 324-336
    • Sacchetti, B.1
  • 108
    • 84880652108 scopus 로고    scopus 로고
    • + sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion
    • + sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210: 1351–1367.
    • (2013) J. Exp. Med. , vol.210 , pp. 1351-1367
    • Pinho, S.1
  • 109
    • 84899587273 scopus 로고    scopus 로고
    • Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation
    • Omatsu, Y. et al. 2014. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508: 536–540.
    • (2014) Nature , vol.508 , pp. 536-540
    • Omatsu, Y.1
  • 110
    • 58949099180 scopus 로고    scopus 로고
    • Development of mesenchymal stem cells partially originate from the neural crest
    • Morikawa, S. et al. 2009. Development of mesenchymal stem cells partially originate from the neural crest. Biochem. Biophys. Res. Commun. 379: 1114–1119.
    • (2009) Biochem. Biophys. Res. Commun. , vol.379 , pp. 1114-1119
    • Morikawa, S.1
  • 111
    • 70449701931 scopus 로고    scopus 로고
    • Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
    • Morikawa, S. et al. 2009. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206: 2483–2496.
    • (2009) J. Exp. Med. , vol.206 , pp. 2483-2496
    • Morikawa, S.1
  • 112
    • 26844520899 scopus 로고    scopus 로고
    • The bone marrow vascular niche: home of HSC differentiation and mobilization
    • Kopp, H.G. et al. 2005. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20: 349–356.
    • (2005) Physiology , vol.20 , pp. 349-356
    • Kopp, H.G.1
  • 113
    • 4243137398 scopus 로고    scopus 로고
    • Bone and fat: old questions, new insights
    • Gimble, J.M. & M.E. Nuttall. 2004. Bone and fat: old questions, new insights. Endocrine 23: 183–188.
    • (2004) Endocrine , vol.23 , pp. 183-188
    • Gimble, J.M.1    Nuttall, M.E.2
  • 114
    • 84855877835 scopus 로고    scopus 로고
    • Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes
    • Krings, A. et al. 2012. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50: 546–552.
    • (2012) Bone , vol.50 , pp. 546-552
    • Krings, A.1
  • 115
    • 84874817050 scopus 로고    scopus 로고
    • Marrow fat and bone—new perspectives
    • Fazeli, P.K. et al. 2013. Marrow fat and bone—new perspectives. J. Clin. Endocrinol. Metab. 98: 935–945.
    • (2013) J. Clin. Endocrinol. Metab. , vol.98 , pp. 935-945
    • Fazeli, P.K.1
  • 116
    • 19044377826 scopus 로고    scopus 로고
    • Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings
    • Abella, E. et al. 2002. Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. Am. J. Clin. Pathol. 118: 582–588.
    • (2002) Am. J. Clin. Pathol. , vol.118 , pp. 582-588
    • Abella, E.1
  • 117
    • 84864797142 scopus 로고    scopus 로고
    • Increased marrow adiposity in premenopausal women with idiopathic osteoporosis
    • Cohen, A. et al. 2012. Increased marrow adiposity in premenopausal women with idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 97: 2782–2791.
    • (2012) J. Clin. Endocrinol. Metab. , vol.97 , pp. 2782-2791
    • Cohen, A.1
  • 118
    • 0025039125 scopus 로고
    • The function of adipocytes in the bone marrow stroma
    • Gimble, J.M. 1990. The function of adipocytes in the bone marrow stroma. New Biol. 2: 304–312.
    • (1990) New Biol. , vol.2 , pp. 304-312
    • Gimble, J.M.1
  • 119
    • 84866325660 scopus 로고    scopus 로고
    • New insights into osteoporosis: the bone–fat connection
    • Kawai, M., F.J. de Paula & C.J. Rosen. 2012. New insights into osteoporosis: the bone–fat connection. J. Intern. Med. 272: 317–329.
    • (2012) J. Intern. Med. , vol.272 , pp. 317-329
    • Kawai, M.1    de Paula, F.J.2    Rosen, C.J.3
  • 120
    • 84878205335 scopus 로고    scopus 로고
    • Molecular and functional characterization of human bone marrow adipocytes
    • e2
    • Poloni, A. et al. 2013. Molecular and functional characterization of human bone marrow adipocytes. Exp. Hematol. 41: 558–566.e2.
    • (2013) Exp. Hematol. , vol.41 , pp. 558-566
    • Poloni, A.1
  • 121
    • 79955556956 scopus 로고    scopus 로고
    • Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes
    • Liu, L.F. et al. 2011. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12: 212.
    • (2011) BMC Genomics , vol.12 , pp. 212
    • Liu, L.F.1
  • 122
    • 77955845727 scopus 로고    scopus 로고
    • Caloric restriction leads to high marrow adiposity and low bone mass in growing mice
    • Devlin, M.J. et al. 2010. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 25: 2078–2088.
    • (2010) J. Bone Miner. Res , vol.25 , pp. 2078-2088
    • Devlin, M.J.1
  • 123
    • 84862736247 scopus 로고    scopus 로고
    • Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects
    • Griffith, J.F. et al. 2012. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J. Magn. Reson. Imaging 36: 225–230.
    • (2012) J. Magn. Reson. Imaging , vol.36 , pp. 225-230
    • Griffith, J.F.1
  • 124
    • 65949113378 scopus 로고    scopus 로고
    • Marrow fat and the bone microenvironment: developmental, functional, and pathological implications
    • Rosen, C.J. et al. 2009. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. 19: 109–124.
    • (2009) Crit. Rev. Eukaryot. Gene Expr. , vol.19 , pp. 109-124
    • Rosen, C.J.1
  • 125
    • 77956985003 scopus 로고    scopus 로고
    • Skeletal aging and the adipocyte program: new insights from an “old” molecule
    • Lecka-Czernik, B., C.J. Rosen & M. Kawai. 2010. Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle 9: 3648–3654.
    • (2010) Cell Cycle , vol.9 , pp. 3648-3654
    • Lecka-Czernik, B.1    Rosen, C.J.2    Kawai, M.3
  • 126
    • 0034663420 scopus 로고    scopus 로고
    • Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages
    • Ogawa, T., M. Kitagawa & K. Hirokawa. 2000. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech. Ageing Dev. 117: 57–68.
    • (2000) Mech. Ageing Dev. , vol.117 , pp. 57-68
    • Ogawa, T.1    Kitagawa, M.2    Hirokawa, K.3
  • 127
    • 77950650638 scopus 로고    scopus 로고
    • Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice
    • Cao, J.J., L. Sun & H. Gao. 2010. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann. N.Y. Acad. Sci. 1192: 292–297.
    • (2010) Ann. N.Y. Acad. Sci. , vol.1192 , pp. 292-297
    • Cao, J.J.1    Sun, L.2    Gao, H.3
  • 128
    • 78249259079 scopus 로고    scopus 로고
    • High fat diet-induced animal model of age-associated obesity and osteoporosis
    • Halade, G.V. et al. 2010. High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem. 21: 1162–1169.
    • (2010) J. Nutr. Biochem. , vol.21 , pp. 1162-1169
    • Halade, G.V.1
  • 129
    • 78649828932 scopus 로고    scopus 로고
    • Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice
    • Halade, G.V. et al. 2011. Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp. Gerontol. 46: 43–52.
    • (2011) Exp. Gerontol. , vol.46 , pp. 43-52
    • Halade, G.V.1
  • 130
    • 84861218323 scopus 로고    scopus 로고
    • Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice
    • Trottier, M.D. et al. 2012. Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc. Natl. Acad. Sci. U.S.A. 109: 7622–7629.
    • (2012) Proc. Natl. Acad. Sci. U.S.A , vol.109 , pp. 7622-7629
    • Trottier, M.D.1
  • 131
    • 0034520023 scopus 로고    scopus 로고
    • Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes
    • Laharrague, P. et al. 2000. Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes. Eur. Cytokine Netw. 11: 634–639.
    • (2000) Eur. Cytokine Netw. , vol.11 , pp. 634-639
    • Laharrague, P.1
  • 132
    • 41149162617 scopus 로고    scopus 로고
    • A role for leptin in sustaining lymphopoiesis and myelopoiesis
    • Claycombe, K., L.E. King & P.J. Fraker. 2008. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl. Acad. Sci. U. S. A. 105: 2017–2021.
    • (2008) Proc. Natl. Acad. Sci. U. S. A , vol.105 , pp. 2017-2021
    • Claycombe, K.1    King, L.E.2    Fraker, P.J.3
  • 133
    • 77951455778 scopus 로고    scopus 로고
    • Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function
    • Chitteti, B.R. et al. 2010. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115: 3239–3248.
    • (2010) Blood , vol.115 , pp. 3239-3248
    • Chitteti, B.R.1
  • 134
    • 84893666478 scopus 로고    scopus 로고
    • Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions
    • Spindler, T.J. et al. 2014. Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev. 23: 434–441.
    • (2014) Stem Cells Dev. , vol.23 , pp. 434-441
    • Spindler, T.J.1
  • 135
    • 7944220158 scopus 로고    scopus 로고
    • Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells
    • Corre, J. et al. 2004. Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells. Br. J. Haematol. 127: 344–347.
    • (2004) Br. J. Haematol. , vol.127 , pp. 344-347
    • Corre, J.1
  • 136
    • 67650504733 scopus 로고    scopus 로고
    • Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment
    • Naveiras, O. et al. 2009. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460: 259–263.
    • (2009) Nature , vol.460 , pp. 259-263
    • Naveiras, O.1
  • 137
    • 0034284038 scopus 로고    scopus 로고
    • Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages
    • Yokota, T. et al. 2000. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96: 1723–1732.
    • (2000) Blood , vol.96 , pp. 1723-1732
    • Yokota, T.1
  • 138
    • 0020540346 scopus 로고
    • No stimulative effect of adipocytes on hematopoiesis in long-term human bone marrow cultures
    • Touw, I. & B. Lowenberg. 1983. No stimulative effect of adipocytes on hematopoiesis in long-term human bone marrow cultures. Blood 61: 770–774.
    • (1983) Blood , vol.61 , pp. 770-774
    • Touw, I.1    Lowenberg, B.2
  • 139
    • 84863863767 scopus 로고    scopus 로고
    • The relationship between adipose tissue and bone metabolism
    • Gimble, J.M. & M.E. Nuttall. 2012. The relationship between adipose tissue and bone metabolism. Clin. Biochem. 45: 874–879.
    • (2012) Clin. Biochem. , vol.45 , pp. 874-879
    • Gimble, J.M.1    Nuttall, M.E.2
  • 140
    • 84855874132 scopus 로고    scopus 로고
    • Marrow fat metabolism is linked to the systemic energy metabolism
    • Lecka-Czernik, B. 2012. Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50: 534–539.
    • (2012) Bone , vol.50 , pp. 534-539
    • Lecka-Czernik, B.1
  • 141
    • 84872932136 scopus 로고    scopus 로고
    • Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis
    • Zhu, R.J. et al. 2013. Hematopoietic recovery following chemotherapy is improved by BADGE-induced inhibition of adipogenesis. Int. J. Hematol. 97: 58–72.
    • (2013) Int. J. Hematol. , vol.97 , pp. 58-72
    • Zhu, R.J.1
  • 142
    • 48649106521 scopus 로고    scopus 로고
    • Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition
    • Belaid-Choucair, Z. et al. 2008. Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells 26: 1556–1564.
    • (2008) Stem Cells , vol.26 , pp. 1556-1564
    • Belaid-Choucair, Z.1
  • 143
    • 40949119413 scopus 로고    scopus 로고
    • Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells
    • Miharada, K. et al. 2008. Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. J. Cell. Physiol. 215: 526–537.
    • (2008) J. Cell. Physiol , vol.215 , pp. 526-537
    • Miharada, K.1
  • 144
    • 33947250691 scopus 로고    scopus 로고
    • Identification of adiponectin as a novel hemopoietic stem cell growth factor
    • DiMascio, L. et al. 2007. Identification of adiponectin as a novel hemopoietic stem cell growth factor. J. Immunol. 178: 3511–3520.
    • (2007) J. Immunol. , vol.178 , pp. 3511-3520
    • DiMascio, L.1
  • 145
    • 0027459878 scopus 로고
    • Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance
    • Hotamisligil, G.S., N.S. Shargill & B.M. Spiegelman. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259: 87–91.
    • (1993) Science , vol.259 , pp. 87-91
    • Hotamisligil, G.S.1    Shargill, N.S.2    Spiegelman, B.M.3
  • 146
    • 0014835795 scopus 로고
    • Schwann cells of the bone marrow
    • Calvo, W. & J. Forteza-Vila. 1970. Schwann cells of the bone marrow. Blood 36: 180–188.
    • (1970) Blood , vol.36 , pp. 180-188
    • Calvo, W.1    Forteza-Vila, J.2
  • 147
    • 79952007258 scopus 로고    scopus 로고
    • The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A
    • Castaneda-Corral, G. et al. 2011. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178: 196–207.
    • (2011) Neuroscience , vol.178 , pp. 196-207
    • Castaneda-Corral, G.1
  • 148
    • 0028796488 scopus 로고
    • Schwann cell processes guide regeneration of peripheral axons
    • Son, Y.J. & W.J. Thompson. 1995. Schwann cell processes guide regeneration of peripheral axons. Neuron 14: 125–132.
    • (1995) Neuron , vol.14 , pp. 125-132
    • Son, Y.J.1    Thompson, W.J.2
  • 149
    • 33746520700 scopus 로고    scopus 로고
    • Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans?
    • Hoke, A. 2006. Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat. Clin. Pract. Neurol. 2: 448–454.
    • (2006) Nat. Clin. Pract. Neurol. , vol.2 , pp. 448-454
    • Hoke, A.1
  • 150
    • 84893603609 scopus 로고    scopus 로고
    • Neurotrophic factor expression in denervated motor and sensory Schwann cells: relevance to specificity of peripheral nerve regeneration
    • Gordon, T. 2014. Neurotrophic factor expression in denervated motor and sensory Schwann cells: relevance to specificity of peripheral nerve regeneration. Exp. Neurol. 254: 99–108.
    • (2014) Exp. Neurol , vol.254 , pp. 99-108
    • Gordon, T.1
  • 151
    • 40349091487 scopus 로고    scopus 로고
    • Expression of cytokines and cytokine receptors in human Schwann cells
    • Ozaki, A. et al. 2008. Expression of cytokines and cytokine receptors in human Schwann cells. Neuroreport 19: 31–35.
    • (2008) Neuroreport , vol.19 , pp. 31-35
    • Ozaki, A.1
  • 152
    • 81855183667 scopus 로고    scopus 로고
    • Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
    • Yamazaki, S. et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146–1158.
    • (2011) Cell , vol.147 , pp. 1146-1158
    • Yamazaki, S.1
  • 153
    • 39749164920 scopus 로고    scopus 로고
    • Haematopoietic stem cell release is regulated by circadian oscillations
    • Mendez-Ferrer, S. et al. 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452: 442–447.
    • (2008) Nature , vol.452 , pp. 442-447
    • Mendez-Ferrer, S.1
  • 154
    • 34547946425 scopus 로고    scopus 로고
    • Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis
    • Ciurea, S.O. et al. 2007. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood 110: 986–993.
    • (2007) Blood , vol.110 , pp. 986-993
    • Ciurea, S.O.1
  • 155
    • 0025217169 scopus 로고
    • Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex
    • Yamazaki, K. & T.D. Allen. 1990. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex.” Am. J. Anat. 187: 261–276.
    • (1990) Am. J. Anat. , vol.187 , pp. 261-276
    • Yamazaki, K.1    Allen, T.D.2
  • 156
    • 84905861462 scopus 로고    scopus 로고
    • Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
    • Zhou, B.O. et al. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15: 154–168.
    • (2014) Cell Stem Cell , vol.15 , pp. 154-168
    • Zhou, B.O.1
  • 157
    • 84929178412 scopus 로고    scopus 로고
    • Neural regulation of hematopoiesis, inflammation, and cancer
    • Hanoun, M. et al. 2015. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86: 360–373.
    • (2015) Neuron , vol.86 , pp. 360-373
    • Hanoun, M.1
  • 158
    • 84928923099 scopus 로고    scopus 로고
    • Making sense of hematopoietic stem cell niches
    • Boulais, P.E. & P.S. Frenette. 2015. Making sense of hematopoietic stem cell niches. Blood 125: 2621–2629.
    • (2015) Blood , vol.125 , pp. 2621-2629
    • Boulais, P.E.1    Frenette, P.S.2
  • 159
    • 72649092184 scopus 로고    scopus 로고
    • + cells by the nervous system
    • + cells by the nervous system. Brain Behav. Immun. 23: 1059–1065.
    • (2009) Brain Behav. Immun. , vol.23 , pp. 1059-1065
    • Kalinkovich, A.1
  • 160
    • 0030961055 scopus 로고    scopus 로고
    • Bone marrow innervation regulates cellular retention in the murine haemopoietic system
    • Afan, A.M. et al. 1997. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br. J. Haematol. 98: 569–577.
    • (1997) Br. J. Haematol. , vol.98 , pp. 569-577
    • Afan, A.M.1
  • 161
    • 84880301799 scopus 로고    scopus 로고
    • Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration
    • Lucas, D. et al. 2013. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med. 19: 695–703.
    • (2013) Nat. Med. , vol.19 , pp. 695-703
    • Lucas, D.1
  • 162
    • 84865367519 scopus 로고    scopus 로고
    • Adrenergic nerves govern circadian leukocyte recruitment to tissues
    • Scheiermann, C. et al. 2012. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37: 290–301.
    • (2012) Immunity , vol.37 , pp. 290-301
    • Scheiermann, C.1
  • 164
    • 0021053507 scopus 로고
    • Chronobiology in hematology and immunology
    • Haus, E. et al. 1983. Chronobiology in hematology and immunology. Am. J. Anat. 168: 467–517.
    • (1983) Am. J. Anat. , vol.168 , pp. 467-517
    • Haus, E.1
  • 165
    • 0032863948 scopus 로고    scopus 로고
    • Biologic rhythms in the immune system
    • Haus, E. & M.H. Smolensky. 1999. Biologic rhythms in the immune system. Chronobiol. Int. 16: 581–622.
    • (1999) Chronobiol. Int. , vol.16 , pp. 581-622
    • Haus, E.1    Smolensky, M.H.2
  • 166
    • 52949116088 scopus 로고    scopus 로고
    • Mobilized hematopoietic stem cell yield depends on species-specific circadian timing
    • Lucas, D. et al. 2008. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3: 364–366.
    • (2008) Cell Stem Cell , vol.3 , pp. 364-366
    • Lucas, D.1
  • 167
    • 84905741878 scopus 로고    scopus 로고
    • Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche
    • Hanoun, M. et al. 2014. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15: 365–375.
    • (2014) Cell Stem Cell , vol.15 , pp. 365-375
    • Hanoun, M.1
  • 168
    • 84905005330 scopus 로고    scopus 로고
    • Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms
    • Arranz, L. et al. 2014. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512: 78–81.
    • (2014) Nature , vol.512 , pp. 78-81
    • Arranz, L.1
  • 169
    • 34548777583 scopus 로고    scopus 로고
    • + cells through Wnt signaling
    • + cells through Wnt signaling. Nat. Immunol. 8: 1123–1131.
    • (2007) Nat. Immunol. , vol.8 , pp. 1123-1131
    • Spiegel, A.1
  • 170
    • 84867353401 scopus 로고    scopus 로고
    • Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis
    • Fitch, S.R. et al. 2012. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11: 554–566.
    • (2012) Cell Stem Cell , vol.11 , pp. 554-566
    • Fitch, S.R.1
  • 171
    • 79959508609 scopus 로고    scopus 로고
    • Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model
    • Alexander, K.A. et al. 2011. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 26: 1517–1532.
    • (2011) J. Bone Miner. Res , vol.26 , pp. 1517-1532
    • Alexander, K.A.1
  • 172
    • 49049098143 scopus 로고    scopus 로고
    • Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo
    • Chang, M.K. et al. 2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181: 1232–1244.
    • (2008) J. Immunol. , vol.181 , pp. 1232-1244
    • Chang, M.K.1
  • 173
    • 57049093809 scopus 로고    scopus 로고
    • Osteal macrophages: a new twist on coupling during bone dynamics
    • Pettit, A.R. et al. 2008. Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43: 976–982.
    • (2008) Bone , vol.43 , pp. 976-982
    • Pettit, A.R.1
  • 174
    • 77958553682 scopus 로고    scopus 로고
    • Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs
    • Winkler, I.G. et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116: 4815–4828.
    • (2010) Blood , vol.116 , pp. 4815-4828
    • Winkler, I.G.1
  • 175
    • 79951694373 scopus 로고    scopus 로고
    • + macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
    • + macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208: 261–271.
    • (2011) J. Exp. Med. , vol.208 , pp. 261-271
    • Chow, A.1
  • 176
    • 79951689118 scopus 로고    scopus 로고
    • Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice
    • Christopher, M.J. et al. 2011. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208: 251–260.
    • (2011) J. Exp. Med. , vol.208 , pp. 251-260
    • Christopher, M.J.1
  • 177
    • 84941942986 scopus 로고    scopus 로고
    • Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M
    • Albiero, M. et al. 2015. Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M. Diabetes 64: 2957–2968.
    • (2015) Diabetes , vol.64 , pp. 2957-2968
    • Albiero, M.1
  • 178
    • 0025851410 scopus 로고
    • Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions
    • Williams, D.A. et al. 1991. Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions. Nature 352: 438–441.
    • (1991) Nature , vol.352 , pp. 438-441
    • Williams, D.A.1
  • 179
    • 0345491600 scopus 로고    scopus 로고
    • Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing
    • Scott, L.M., G.V. Priestley & T. Papayannopoulou. 2003. Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol. Cell. Biol. 23: 9349–9360.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 9349-9360
    • Scott, L.M.1    Priestley, G.V.2    Papayannopoulou, T.3
  • 180
    • 84863903383 scopus 로고    scopus 로고
    • Myocardial infarction accelerates atherosclerosis
    • Dutta, P. et al. 2012. Myocardial infarction accelerates atherosclerosis. Nature 487: 325–329.
    • (2012) Nature , vol.487 , pp. 325-329
    • Dutta, P.1
  • 181
    • 84928254121 scopus 로고    scopus 로고
    • Macrophages retain hematopoietic stem cells in the spleen via VCAM-1
    • Dutta, P. et al. 2015. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J. Exp. Med. 212: 497–512.
    • (2015) J. Exp. Med. , vol.212 , pp. 497-512
    • Dutta, P.1
  • 182
    • 84867747480 scopus 로고    scopus 로고
    • Monocytes–macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow
    • Ludin, A. et al. 2012. Monocytes–macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13: 1072–1082.
    • (2012) Nat. Immunol , vol.13 , pp. 1072-1082
    • Ludin, A.1
  • 183
    • 67049134758 scopus 로고    scopus 로고
    • Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation
    • Hoggatt, J. et al. 2009. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113: 5444–5455.
    • (2009) Blood , vol.113 , pp. 5444-5455
    • Hoggatt, J.1
  • 184
    • 84878299390 scopus 로고    scopus 로고
    • Rhythmic modulation of the hematopoietic niche through neutrophil clearance
    • Casanova-Acebes, M. et al. 2013. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153: 1025–1035.
    • (2013) Cell , vol.153 , pp. 1025-1035
    • Casanova-Acebes, M.1
  • 185
    • 28544446618 scopus 로고    scopus 로고
    • A fundamental bimodal role for neuropeptide Y1 receptor in the immune system
    • Wheway, J. et al. 2005. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med. 202: 1527–1538.
    • (2005) J. Exp. Med. , vol.202 , pp. 1527-1538
    • Wheway, J.1
  • 186
    • 34447116241 scopus 로고    scopus 로고
    • Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome
    • Kuo, L.E. et al. 2007. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13: 803–811.
    • (2007) Nat. Med. , vol.13 , pp. 803-811
    • Kuo, L.E.1
  • 187
    • 70350704676 scopus 로고    scopus 로고
    • NPY regulation of bone remodelling
    • Lee, N.J. & H. Herzog. 2009. NPY regulation of bone remodelling. Neuropeptides 43: 457–463.
    • (2009) Neuropeptides , vol.43 , pp. 457-463
    • Lee, N.J.1    Herzog, H.2
  • 188
    • 84930872362 scopus 로고    scopus 로고
    • Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow
    • Park, M.H. et al. 2015. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO J. 34: 1648–1660.
    • (2015) EMBO J. , vol.34 , pp. 1648-1660
    • Park, M.H.1
  • 190
    • 0037673945 scopus 로고    scopus 로고
    • Osteoclast differentiation and activation
    • Boyle, W.J., W.S. Simonet & D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423: 337–342.
    • (2003) Nature , vol.423 , pp. 337-342
    • Boyle, W.J.1    Simonet, W.S.2    Lacey, D.L.3
  • 191
    • 33744983304 scopus 로고    scopus 로고
    • Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
    • Kollet, O. et al. 2006. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12: 657–664.
    • (2006) Nat. Med. , vol.12 , pp. 657-664
    • Kollet, O.1
  • 192
    • 30044443293 scopus 로고    scopus 로고
    • TGF-β regulates the mechanical properties and composition of bone matrix
    • Balooch, G. et al. 2005. TGF-β regulates the mechanical properties and composition of bone matrix. Proc. Natl. Acad. Sci. U.S.A. 102: 18813–18818.
    • (2005) Proc. Natl. Acad. Sci. U.S.A , vol.102 , pp. 18813-18818
    • Balooch, G.1
  • 193
    • 79551620014 scopus 로고    scopus 로고
    • Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo
    • Lymperi, S. et al. 2011. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117: 1540–1549.
    • (2011) Blood , vol.117 , pp. 1540-1549
    • Lymperi, S.1
  • 194
    • 84860378826 scopus 로고    scopus 로고
    • Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow
    • Mansour, A. et al. 2012. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209: 537–549.
    • (2012) J. Exp. Med. , vol.209 , pp. 537-549
    • Mansour, A.1
  • 195
    • 84909999815 scopus 로고    scopus 로고
    • Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin
    • Nakamura-Ishizu, A. et al. 2014. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem. Biophys. Res. Commun. 454: 353–357.
    • (2014) Biochem. Biophys. Res. Commun. , vol.454 , pp. 353-357
    • Nakamura-Ishizu, A.1
  • 196
    • 84879490265 scopus 로고    scopus 로고
    • Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation
    • Heazlewood, S.Y. et al. 2013. Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 11: 782–792.
    • (2013) Stem Cell Res , vol.11 , pp. 782-792
    • Heazlewood, S.Y.1
  • 197
    • 33749529089 scopus 로고    scopus 로고
    • A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells
    • Kacena, M.A., C.M. Gundberg & M.C. Horowitz. 2006. A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 39: 978–984.
    • (2006) Bone , vol.39 , pp. 978-984
    • Kacena, M.A.1    Gundberg, C.M.2    Horowitz, M.C.3
  • 198
    • 84883571576 scopus 로고    scopus 로고
    • Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning
    • Olson, T.S. et al. 2013. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121: 5238–5249.
    • (2013) Blood , vol.121 , pp. 5238-5249
    • Olson, T.S.1
  • 199
    • 70349833632 scopus 로고    scopus 로고
    • Complex and context dependent regulation of hematopoiesis by TGF-β superfamily signaling
    • Soderberg, S.S., G. Karlsson & S. Karlsson. 2009. Complex and context dependent regulation of hematopoiesis by TGF-β superfamily signaling. Ann. N.Y. Acad. Sci. 1176: 55–69.
    • (2009) Ann. N.Y. Acad. Sci. , vol.1176 , pp. 55-69
    • Soderberg, S.S.1    Karlsson, G.2    Karlsson, S.3
  • 200
    • 84555189736 scopus 로고    scopus 로고
    • The bone marrow at the crossroads of blood and immunity
    • Mercier, F.E., C. Ragu & D.T. Scadden. 2012. The bone marrow at the crossroads of blood and immunity. Nat. Rev. Immunol. 12: 49–60.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 49-60
    • Mercier, F.E.1    Ragu, C.2    Scadden, D.T.3
  • 201
    • 1842305101 scopus 로고
    • Inhibition of pluripotent hematopoietic stem cells of bone marrow by large granular lymphocytes
    • Barlozzari, T., R.B. Herberman & C.W. Reynolds. 1987. Inhibition of pluripotent hematopoietic stem cells of bone marrow by large granular lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 84: 7691–7695.
    • (1987) Proc. Natl. Acad. Sci. U.S.A , vol.84 , pp. 7691-7695
    • Barlozzari, T.1    Herberman, R.B.2    Reynolds, C.W.3
  • 202
    • 0022407506 scopus 로고
    • Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon
    • Degliantoni, G. et al. 1985. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J. Exp. Med. 162: 1512–1530.
    • (1985) J. Exp. Med. , vol.162 , pp. 1512-1530
    • Degliantoni, G.1
  • 203
    • 0031002732 scopus 로고    scopus 로고
    • Deregulated TCR alpha beta T cell population provokes extramedullary hematopoiesis in mice deficient in the common gamma chain
    • Sharara, L.I. et al. 1997. Deregulated TCR alpha beta T cell population provokes extramedullary hematopoiesis in mice deficient in the common gamma chain. Eur. J. Immunol. 27: 990–998.
    • (1997) Eur. J. Immunol. , vol.27 , pp. 990-998
    • Sharara, L.I.1
  • 204
    • 13544261413 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Blood 105: 1484–1491.
    • (2005) Blood , vol.105 , pp. 1484-1491
    • Monteiro, J.P.1
  • 205
    • 0037082506 scopus 로고    scopus 로고
    • Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation
    • Zeng, D. et al. 2002. Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation. Blood 99: 1449–1457.
    • (2002) Blood , vol.99 , pp. 1449-1457
    • Zeng, D.1
  • 206
    • 0033018145 scopus 로고    scopus 로고
    • + T cells in mouse bone marrow. I. Increased activated/memory phenotype and altered TCR Vbeta repertoire
    • + T cells in mouse bone marrow. I. Increased activated/memory phenotype and altered TCR Vbeta repertoire. Eur. J. Immunol. 29: 1051–1056.
    • (1999) Eur. J. Immunol. , vol.29 , pp. 1051-1056
    • Price, P.W.1    Cerny, J.2
  • 207
    • 77954717369 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Blood 115: 4934–4943.
    • (2010) Blood , vol.115 , pp. 4934-4943
    • Urbieta, M.1
  • 208
    • 79958279325 scopus 로고    scopus 로고
    • reg cells providing immune privilege to the haematopoietic stem-cell niche
    • reg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474: 216–219.
    • (2011) Nature , vol.474 , pp. 216-219
    • Fujisaki, J.1
  • 209
    • 77955269807 scopus 로고    scopus 로고
    • Neutrophil kinetics in health and disease
    • Summers, C. et al. 2010. Neutrophil kinetics in health and disease. Trends Immunol. 31: 318–324.
    • (2010) Trends Immunol , vol.31 , pp. 318-324
    • Summers, C.1
  • 210
    • 53549133371 scopus 로고    scopus 로고
    • Neutrophil mobilization and clearance in the bone marrow
    • Furze, R.C. & S.M. Rankin. 2008. Neutrophil mobilization and clearance in the bone marrow. Immunology 125: 281–288.
    • (2008) Immunology , vol.125 , pp. 281-288
    • Furze, R.C.1    Rankin, S.M.2
  • 211
    • 0036302147 scopus 로고    scopus 로고
    • G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4
    • Petit, I. et al. 2002. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3: 687–694.
    • (2002) Nat. Immunol. , vol.3 , pp. 687-694
    • Petit, I.1
  • 212
    • 0037013221 scopus 로고    scopus 로고
    • Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4
    • Valenzuela-Fernandez, A. et al. 2002. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J. Biol. Chem. 277: 15677–15689.
    • (2002) J. Biol. Chem. , vol.277 , pp. 15677-15689
    • Valenzuela-Fernandez, A.1
  • 213
    • 0035469853 scopus 로고    scopus 로고
    • Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor
    • Levesque, J.P. et al. 2001. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98: 1289–1297.
    • (2001) Blood , vol.98 , pp. 1289-1297
    • Levesque, J.P.1
  • 214
    • 0037317025 scopus 로고    scopus 로고
    • Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells
    • Levesque, J.P. et al. 2003. Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp. Hematol. 31: 109–117.
    • (2003) Exp. Hematol. , vol.31 , pp. 109-117
    • Levesque, J.P.1
  • 215
    • 18444389451 scopus 로고    scopus 로고
    • Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand
    • Heissig, B. et al. 2002. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637.
    • (2002) Cell , vol.109 , pp. 625-637
    • Heissig, B.1
  • 216
    • 3042753829 scopus 로고    scopus 로고
    • Characterization of hematopoietic progenitor mobilization in protease-deficient mice
    • Levesque, J.P. et al. 2004. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104: 65–72.
    • (2004) Blood , vol.104 , pp. 65-72
    • Levesque, J.P.1
  • 217
    • 84869084616 scopus 로고    scopus 로고
    • Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells
    • Singh, P. et al. 2012. Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia 26: 2375–2383.
    • (2012) Leukemia , vol.26 , pp. 2375-2383
    • Singh, P.1
  • 218
    • 66549108083 scopus 로고    scopus 로고
    • CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions
    • Eash, K.J. et al. 2009. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113: 4711–4719.
    • (2009) Blood , vol.113 , pp. 4711-4719
    • Eash, K.J.1
  • 219
    • 84884157062 scopus 로고    scopus 로고
    • Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis
    • Poulos, M.G. et al. 2013. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4: 1022–1034.
    • (2013) Cell Rep , vol.4 , pp. 1022-1034
    • Poulos, M.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.