메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 485-514

Radical S-Adenosylmethionine Enzymes in Human Health and Disease

Author keywords

Elongator; Iron sulfur cluster; Lipoic acid; Molybdenum cofactor; Radicals; S adenosylmethionine; TRNA modifications; Viperin

Indexed keywords

2 METHYLTHIO N 6 ISOPENTENYLADENOSINE; 5 METHOXYCARBONYLMETHYL URIDINE; 6 N (3,3 DIMETHYLALLYL)ADENOSINE; ADENOSINE DERIVATIVE; ALDEHYDE OXIDASE; COPROPORPHYRINOGEN OXIDASE; CYCLIC PYRANOPTERIN PHOSPHATE; CYCLIN DEPENDENT KINASE 5; ENZYME; GUANOSINE PHOSPHATE; IRON SULFUR PROTEIN; METHYLTHIO N 6 THREONYLCARBAMOYLADENOSINE; MITOCHONDRIAL DNA; MITOCHONDRIAL PROTEIN; MOLYBDENUM; MOLYBDENUM COFACTOR; MOLYBDOPTERIN; PROTEIN A; RADICAL; RADICAL S ADENOSYLMETHIONINE ENZYME; S ADENOSYLMETHIONINE; SMALL INTERFERING RNA; SULFITE OXIDASE; THIOCTIC ACID; TRANSFER RNA; TRIOSEPHOSPHATE ISOMERASE; UNCLASSIFIED DRUG; URIDINE DERIVATIVE; VIPERIN; WYBUTOSINE; XANTHINE DEHYDROGENASE; CDK5RAP1 PROTEIN, HUMAN; CDKAL1 PROTEIN, HUMAN; ELP3 PROTEIN, HUMAN; HISTONE ACETYLTRANSFERASE; MOCS1 PROTEIN, HUMAN; NERVE PROTEIN; NUCLEAR PROTEIN; OXIDOREDUCTASE; PROTEIN; RSAD2 PROTEIN, HUMAN; SIGNAL PEPTIDE; TRANSFER RNA METHYLTRANSFERASE;

EID: 84974736098     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060713-035504     Document Type: Article
Times cited : (184)

References (165)
  • 1
    • 84867706295 scopus 로고    scopus 로고
    • S-Adenosylmethionine in liver health, injury, and cancer
    • Lu SC, Mato JM. 2012. S-Adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 92:1515-42
    • (2012) Physiol. Rev. , vol.92 , pp. 1515-1542
    • Lu, S.C.1    Mato, J.M.2
  • 2
    • 33747186460 scopus 로고    scopus 로고
    • S-Adenosyl-L-methionine: Beyond the universalmethyl donor
    • Roje S. 2006. S-Adenosyl-L-methionine: beyond the universalmethyl donor. Phytochemistry 67:1686-98
    • (2006) Phytochemistry , vol.67 , pp. 1686-1698
    • Roje, S.1
  • 3
    • 70349493013 scopus 로고    scopus 로고
    • Marine-derived metabolites of S-adenosylmethionine as templates for new anti-infectives
    • Sufrin JR, Finckbeiner S, Oliver CM. 2009. Marine-derived metabolites of S-adenosylmethionine as templates for new anti-infectives. Mar. Drugs 7:401-34
    • (2009) Mar. Drugs , vol.7 , pp. 401-434
    • Sufrin, J.R.1    Finckbeiner, S.2    Oliver, C.M.3
  • 4
    • 0032035296 scopus 로고    scopus 로고
    • Self perception in bacteria: Quorum sensing with acylated homoserine lactones
    • Fuqua C, Greenberg EP. 1998. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1:183-89
    • (1998) Curr. Opin. Microbiol. , vol.1 , pp. 183-189
    • Fuqua, C.1    Greenberg, E.P.2
  • 5
    • 37249024344 scopus 로고    scopus 로고
    • Discovery and characterization of a marine bacterial SAM-dependent chlorinase
    • Eustáquio AS, Pojer F, Noel JP, Moore BS. 2008. Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat. Chem. Biol. 4:69-74
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 69-74
    • Eustáquio, A.S.1    Pojer, F.2    Noel, J.P.3    Moore, B.S.4
  • 6
    • 84878736509 scopus 로고    scopus 로고
    • Biochemistry: The ylide has landed
    • Landgraf BJ, Booker SJ. 2013. Biochemistry: The ylide has landed. Nature 498:45-47
    • (2013) Nature , vol.498 , pp. 45-47
    • Landgraf, B.J.1    Booker, S.J.2
  • 9
    • 84856367380 scopus 로고    scopus 로고
    • Radical S-adenosylmethionine enzymes: Mechanism, control and function
    • Challand MR, Driesener RC, Roach PL. 2011. Radical S-adenosylmethionine enzymes: mechanism, control and function. Nat. Prod. Rep. 28:1696-721
    • (2011) Nat. Prod. Rep. , vol.28 , pp. 1696-1721
    • Challand, M.R.1    Driesener, R.C.2    Roach, P.L.3
  • 10
    • 33847635732 scopus 로고    scopus 로고
    • S-adenosylmethionine as an oxidant: The radical SAM superfamily
    • Wang SC, Frey PA. 2007. S-adenosylmethionine as an oxidant: The radical SAM superfamily. Trends Biochem. Sci. 32:101-10
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 101-110
    • Wang, S.C.1    Frey, P.A.2
  • 11
    • 36048929198 scopus 로고    scopus 로고
    • Binding energy in the one-electron reductive cleavage of Sadenosylmethionine in lysine 2, 3-aminomutase, a radical SAM enzyme
    • Wang SC, Frey PA. 2007. Binding energy in the one-electron reductive cleavage of Sadenosylmethionine in lysine 2, 3-aminomutase, a radical SAM enzyme. Biochemistry 46:12889-95
    • (2007) Biochemistry , vol.46 , pp. 12889-12895
    • Wang, S.C.1    Frey, P.A.2
  • 12
    • 84866046539 scopus 로고    scopus 로고
    • Enzyme catalyzed formation of radicals from S-adenosylmethionine and inhibition of enzyme activity by the cleavage products
    • Hiscox MJ, Driesener RC, Roach PL. 2012. Enzyme catalyzed formation of radicals from S-adenosylmethionine and inhibition of enzyme activity by the cleavage products. Biochim. Biophys. Acta 1824:1165-77
    • (2012) Biochim. Biophys. Acta , vol.1824 , pp. 1165-1177
    • Hiscox, M.J.1    Driesener, R.C.2    Roach, P.L.3
  • 13
    • 0035282866 scopus 로고    scopus 로고
    • Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods
    • Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29:1097-106
    • (2001) Nucleic Acids Res. , vol.29 , pp. 1097-1106
    • Sofia, H.J.1    Chen, G.2    Hetzler, B.G.3    Reyes-Spindola, J.F.4    Miller, N.E.5
  • 14
    • 13844275460 scopus 로고    scopus 로고
    • Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-SAM" protein superfamily
    • Walsby CJ, Ortillo D, Yang J, Nnyepi MR, Broderick WE, et al. 2005. Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-SAM" protein superfamily. Inorg. Chem. 44:727-41
    • (2005) Inorg. Chem. , vol.44 , pp. 727-741
    • Walsby, C.J.1    Ortillo, D.2    Yang, J.3    Nnyepi, M.R.4    Broderick, W.E.5
  • 16
    • 84961978565 scopus 로고    scopus 로고
    • S K-edge XAS and DFT calculations on SAM-dependent pyruvate formate-lyase activating enzyme: Nature of interaction between the Fe4S4 cluster and SAM and its role in reactivity
    • Dey A, Peng Y, Broderick WE, Hedman B, Hodgson KO, et al. 2011. S K-edge XAS and DFT calculations on SAM-dependent pyruvate formate-lyase activating enzyme: Nature of interaction between the Fe4S4 cluster and SAM and its role in reactivity. J. Am. Chem. Soc. 133:18656-62
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 18656-18662
    • Dey, A.1    Peng, Y.2    Broderick, W.E.3    Hedman, B.4    Hodgson, K.O.5
  • 17
    • 0034719099 scopus 로고    scopus 로고
    • Direct FeS cluster involvement in generation of a radical in lysine 2, 3-aminomutase
    • Cosper NJ, Booker SJ, Ruzicka F, FreyPA, ScottRA. 2000. Direct FeS cluster involvement in generation of a radical in lysine 2, 3-aminomutase. Biochemistry 39:15668-73
    • (2000) Biochemistry , vol.39 , pp. 15668-15673
    • Cosper, N.J.1    Booker, S.J.2    Ruzicka, F.3    Frey, P.A.4    Scott, R.A.5
  • 18
    • 70349381588 scopus 로고    scopus 로고
    • Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins
    • Nicolet Y, Amara P, Mouesca J-M, Fontecilla-Camps JC. 2009. Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins. PNAS 106:14867-71
    • (2009) PNAS , vol.106 , pp. 14867-14871
    • Nicolet, Y.1    Amara, P.2    Mouesca, J.-M.3    Fontecilla-Camps, J.C.4
  • 19
    • 84922901929 scopus 로고    scopus 로고
    • SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes
    • Grell TA, Goldman PJ, Drennan CL. 2015. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290:3964-71
    • (2015) J. Biol. Chem. , vol.290 , pp. 3964-3971
    • Grell, T.A.1    Goldman, P.J.2    Drennan, C.L.3
  • 20
    • 84974732569 scopus 로고    scopus 로고
    • Deleted in proof
    • Deleted in proof
  • 23
    • 68949107281 scopus 로고    scopus 로고
    • Molybdenum cofactors, enzymes and pathways
    • Schwarz G, Mendel RR, Ribbe MW. 2009. Molybdenum cofactors, enzymes and pathways. Nature 460:839-47
    • (2009) Nature , vol.460 , pp. 839-847
    • Schwarz, G.1    Mendel, R.R.2    Ribbe, M.W.3
  • 25
    • 33745933654 scopus 로고    scopus 로고
    • Molybdenum cofactor biosynthesis and molybdenum enzymes
    • Schwarz G, Mendel RR. 2006. Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu. Rev. Plant Biol. 57:623-47
    • (2006) Annu. Rev. Plant Biol. , vol.57 , pp. 623-647
    • Schwarz, G.1    Mendel, R.R.2
  • 26
    • 0032126771 scopus 로고    scopus 로고
    • Rearrangement reactions in the biosynthesis of molybdopterin: An NMR study with multiply 13C/15N labelled precursors
    • Rieder C, Eisenreich W, O'Brien J, Richter G, Gotze E, et al. 1998. Rearrangement reactions in the biosynthesis of molybdopterin: An NMR study with multiply 13C/15N labelled precursors. Eur. J. Biochem. 255:24-36
    • (1998) Eur. J. Biochem. , vol.255 , pp. 24-36
    • Rieder, C.1    Eisenreich, W.2    O'Brien, J.3    Richter, G.4    Gotze, E.5
  • 27
    • 0028819468 scopus 로고
    • Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies
    • Wuebbens MM, Rajagopalan KV. 1995. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J. Biol. Chem. 270:1082-87
    • (1995) J. Biol. Chem. , vol.270 , pp. 1082-1087
    • Wuebbens, M.M.1    Rajagopalan, K.V.2
  • 28
    • 0037166328 scopus 로고    scopus 로고
    • Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis
    • Hänzelmann P, Schwartz G, Mendel RR. 2002. Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 277:18303-12
    • (2002) J. Biol. Chem. , vol.277 , pp. 18303-18312
    • Hänzelmann, P.1    Schwartz, G.2    Mendel, R.R.3
  • 29
    • 4444346402 scopus 로고    scopus 로고
    • Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans
    • Hänzelmann P, Schindelin H. 2004. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. PNAS 101:12870-75
    • (2004) PNAS , vol.101 , pp. 12870-12875
    • Hänzelmann, P.1    Schindelin, H.2
  • 30
    • 33646468635 scopus 로고    scopus 로고
    • Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism
    • Hänzelmann P, Schindelin H. 2006. Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. PNAS 103:6829-34
    • (2006) PNAS , vol.103 , pp. 6829-6834
    • Hänzelmann, P.1    Schindelin, H.2
  • 31
    • 67649976798 scopus 로고    scopus 로고
    • ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: Mechanistic implications
    • Lees NS, Hänzelmann P, Hernandez HL, Subramanian S, Schindelin H, et al. 2009. ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: mechanistic implications. J. Am. Chem. Soc. 131:9184-85
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 9184-9185
    • Lees, N.S.1    Hänzelmann, P.2    Hernandez, H.L.3    Subramanian, S.4    Schindelin, H.5
  • 32
    • 84877262019 scopus 로고    scopus 로고
    • Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis
    • Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K. 2013. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J. Am. Chem. Soc. 135:7019-32
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 7019-7032
    • Hover, B.M.1    Loksztejn, A.2    Ribeiro, A.A.3    Yokoyama, K.4
  • 33
    • 84929441317 scopus 로고    scopus 로고
    • Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis
    • Hover BM, Tonthat NK, Schumacher MA, Yokoyama K. 2015. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. PNAS 112:6347-52
    • (2015) PNAS , vol.112 , pp. 6347-6352
    • Hover, B.M.1    Tonthat, N.K.2    Schumacher, M.A.3    Yokoyama, K.4
  • 34
    • 84874066127 scopus 로고    scopus 로고
    • Catalysis of a new ribose carbon-insertion reaction by the molybdenum cofactor biosynthetic enzyme MoaA
    • Mehta AP, Hanes JW, Abdelwahed SH, Hilmey DG, Hänzelmann P, Begley TP. 2013. Catalysis of a new ribose carbon-insertion reaction by the molybdenum cofactor biosynthetic enzyme MoaA. Biochemistry 52:1134-36
    • (2013) Biochemistry , vol.52 , pp. 1134-1136
    • Mehta, A.P.1    Hanes, J.W.2    Abdelwahed, S.H.3    Hilmey, D.G.4    Hänzelmann, P.5    Begley, T.P.6
  • 35
    • 84881067917 scopus 로고    scopus 로고
    • Molybdopterin biosynthesis: Trapping an unusual purine ribose adduct in the MoaA-catalyzed reaction
    • Mehta AP, Abdelwahed SH, Begley TP. 2013. Molybdopterin biosynthesis: Trapping an unusual purine ribose adduct in the MoaA-catalyzed reaction. J. Am. Chem. Soc. 135:10883-85
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 10883-10885
    • Mehta, A.P.1    Abdelwahed, S.H.2    Begley, T.P.3
  • 36
    • 84905269965 scopus 로고    scopus 로고
    • Molybdopterin biosynthesis: Trapping of intermediates for the MoaA-catalyzed reaction using 2-deoxyGTP and 2-chloroGTP as substrate analogues
    • Mehta AP, Abdelwahed SH, XuH, Begley TP. 2014. Molybdopterin biosynthesis: Trapping of intermediates for the MoaA-catalyzed reaction using 2-deoxyGTP and 2-chloroGTP as substrate analogues. J. Am. Chem. Soc. 136:10609-14
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 10609-10614
    • Mehta, A.P.1    Abdelwahed, S.H.2    Xu, H.3    Begley, T.P.4
  • 37
    • 3042777530 scopus 로고    scopus 로고
    • Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli
    • Schwarz G, Santamaria-Araujo JA, Wolf S, Lee H-J, Adham IM, et al. 2004. Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli. Hum. Mol. Genet. 13:1249-55
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 1249-1255
    • Schwarz, G.1    Santamaria-Araujo, J.A.2    Wolf, S.3    Lee, H.-J.4    Adham, I.M.5
  • 38
    • 0038579490 scopus 로고    scopus 로고
    • Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH
    • Reiss J, Johnson JL. 2003. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH. Hum. Mutat. 21:569-76
    • (2003) Hum. Mutat. , vol.21 , pp. 569-576
    • Reiss, J.1    Johnson, J.L.2
  • 39
    • 0037238787 scopus 로고    scopus 로고
    • Prenatal diagnosis of molybdenum cofactor deficiency and isolated sulfite oxidase deficiency
    • Johnson JL. 2003. Prenatal diagnosis of molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. Prenat. Diagn. 23:6-8
    • (2003) Prenat. Diagn. , vol.23 , pp. 6-8
    • Johnson, J.L.1
  • 40
    • 0037115493 scopus 로고    scopus 로고
    • Molybdenum cofactor-deficient mice resemble the phenotype of human patients
    • Lee H-J, Adham IM, Schwarz G, Kneussel M, Sass JO, et al. 2002. Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum. Mol. Genet. 11:3309-17
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 3309-3317
    • Lee, H.-J.1    Adham, I.M.2    Schwarz, G.3    Kneussel, M.4    Sass, J.O.5
  • 41
    • 0018051652 scopus 로고
    • Combined deficiency of xanthine oxidase and sulphite oxidase: A defect of molybdenum metabolism or transport?
    • Duran M, Beemer FA, van de Heiden C, Korteland J, de Bree PK, et al. 1978. Combined deficiency of xanthine oxidase and sulphite oxidase: A defect of molybdenum metabolism or transport? J. Inherit. Metab. Dis. 1:175-78
    • (1978) J. Inherit. Metab. Dis. , vol.1 , pp. 175-178
    • Duran, M.1    Beemer, F.A.2    Van De Heiden, C.3    Korteland, J.4    De Bree, P.K.5
  • 42
    • 0032436716 scopus 로고    scopus 로고
    • Genomic structure andmutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A
    • Reiss J, Christensen E, KurlemannG, Zabot M-T, Dorche C. 1998. Genomic structure andmutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A. Hum. Genet. 103:639-44
    • (1998) Hum. Genet. , vol.103 , pp. 639-644
    • Reiss, J.1    Christensen, E.2    Kurlemann, G.3    Zabot, M.-T.4    Dorche, C.5
  • 43
    • 27544453316 scopus 로고    scopus 로고
    • Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase
    • Leimkuhler S, Charcosset M, Latour P, Dorche C, Kleppe S, et al. 2005. Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase. Hum. Genet. 117:565-70
    • (2005) Hum. Genet. , vol.117 , pp. 565-570
    • Leimkuhler, S.1    Charcosset, M.2    Latour, P.3    Dorche, C.4    Kleppe, S.5
  • 44
    • 33646468635 scopus 로고    scopus 로고
    • Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism
    • Hänzelmann P, Schindelin H. 2006. Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. PNAS 103:6829-34
    • (2006) PNAS , vol.103 , pp. 6829-6834
    • Hänzelmann, P.1    Schindelin, H.2
  • 45
    • 84974682043 scopus 로고    scopus 로고
    • Deleted in proof
    • Deleted in proof
  • 47
    • 2642644904 scopus 로고
    • Multienzyme complexes
    • Reed L. 1974. Multienzyme complexes. Acc. Chem. Res. 7:40-46
    • (1974) Acc. Chem. Res. , vol.7 , pp. 40-46
    • Reed, L.1
  • 48
    • 0034773628 scopus 로고    scopus 로고
    • Molecular aspects of lipoic acid in the prevention of diabetes complications
    • Packer L, Kraemer K, Rimbach G. 2001. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17:888-95
    • (2001) Nutrition , vol.17 , pp. 888-895
    • Packer, L.1    Kraemer, K.2    Rimbach, G.3
  • 49
    • 84862937339 scopus 로고    scopus 로고
    • Reduced expression of lipoic acid synthase accelerates diabetic nephropathy
    • Yi X, Xu L, Hiller S, Kim HS, Nickeleit V, et al. 2012. Reduced expression of lipoic acid synthase accelerates diabetic nephropathy. J. Am. Soc. Nephrol. 23:103-11
    • (2012) J. Am. Soc. Nephrol. , vol.23 , pp. 103-111
    • Yi, X.1    Xu, L.2    Hiller, S.3    Kim, H.S.4    Nickeleit, V.5
  • 50
    • 62749126684 scopus 로고    scopus 로고
    • Lipoic acid synthase (LASY): A novel role in inflammation, mitochondrial function, and insulin resistance
    • Padmalayam I, Hasham S, Saxena U, Pillarisetti S. 2009. Lipoic acid synthase (LASY): A novel role in inflammation, mitochondrial function, and insulin resistance. Diabetes 58:600-608
    • (2009) Diabetes , vol.58 , pp. 600-608
    • Padmalayam, I.1    Hasham, S.2    Saxena, U.3    Pillarisetti, S.4
  • 51
    • 26444504579 scopus 로고    scopus 로고
    • Function, attachment and synthesis of lipoic acid in Escherichia coli
    • Cronan JE, Zhao X, Jiang Y. 2005. Function, attachment and synthesis of lipoic acid in Escherichia coli. Adv. Microb. Physiol. 50:103-46
    • (2005) Adv. Microb. Physiol. , vol.50 , pp. 103-146
    • Cronan, J.E.1    Zhao, X.2    Jiang, Y.3
  • 52
    • 0031026270 scopus 로고    scopus 로고
    • Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production
    • Wada H, Shintani D, Ohlrogge J. 1997. Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. PNAS 94:1591-96
    • (1997) PNAS , vol.94 , pp. 1591-1596
    • Wada, H.1    Shintani, D.2    Ohlrogge, J.3
  • 53
    • 0035800735 scopus 로고    scopus 로고
    • Purification, characterization, and cDNA cloning of lipoate-activating enzyme from bovine liver
    • Fujiwara K, Takeuchi S, Okamura-Ikeda K, Motokawa Y. 2001. Purification, characterization, and cDNA cloning of lipoate-activating enzyme from bovine liver. J. Biol. Chem. 276:28819-23
    • (2001) J. Biol. Chem. , vol.276 , pp. 28819-28823
    • Fujiwara, K.1    Takeuchi, S.2    Okamura-Ikeda, K.3    Motokawa, Y.4
  • 54
    • 0028244665 scopus 로고
    • Purification and characterization of lipoyl-AMP: N epsilon-lysine lipoyltransferase from bovine liver mitochondria
    • Fujiwara K, Okamura-Ikeda K, Motokawa Y. 1994. Purification and characterization of lipoyl-AMP:N epsilon-lysine lipoyltransferase from bovine liver mitochondria. J. Biol. Chem. 269:16605-9
    • (1994) J. Biol. Chem. , vol.269 , pp. 16605-16609
    • Fujiwara, K.1    Okamura-Ikeda, K.2    Motokawa, Y.3
  • 55
    • 17544383938 scopus 로고    scopus 로고
    • Lipoylation of acyltransferase components of ketoacid dehydrogenase complexes
    • Fujiwara K, Okamura-Ikeda K, Motokawa Y. 1996. Lipoylation of acyltransferase components of ketoacid dehydrogenase complexes. J. Biol. Chem. 271:12932-36
    • (1996) J. Biol. Chem. , vol.271 , pp. 12932-12936
    • Fujiwara, K.1    Okamura-Ikeda, K.2    Motokawa, Y.3
  • 57
    • 84927166656 scopus 로고    scopus 로고
    • The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor
    • ed. TA Rouault. Berlin: Walter de Gruyter
    • Lanz ND, Booker SJ. 2014. The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor. In Iron-Sulfur Clusters in Chemistry and Biology, ed. TA Rouault, pp. 211-31. Berlin:Walter de Gruyter
    • (2014) Iron-Sulfur Clusters in Chemistry and Biology , pp. 211-231
    • Lanz, N.D.1    Booker, S.J.2
  • 59
    • 84908387322 scopus 로고    scopus 로고
    • Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions
    • Harmer JE, Hiscox MJ, Dinis PC, Fox SJ, Lliopoulos A, et al. 2014. Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions. Biochem. J. 464:123-33
    • (2014) Biochem. J. , vol.464 , pp. 123-133
    • Harmer, J.E.1    Hiscox, M.J.2    Dinis, P.C.3    Fox, S.J.4    Lliopoulos, A.5
  • 60
    • 14844317304 scopus 로고    scopus 로고
    • Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: Both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide
    • Cicchillo RM, Booker SJ. 2005. Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: Both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J. Am. Chem. Soc. 127:2860-61
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 2860-2861
    • Cicchillo, R.M.1    Booker, S.J.2
  • 61
    • 84904628766 scopus 로고    scopus 로고
    • Evidence for a catalytically and kinetically competent enzyme-substrate cross-linked intermediate in catalysis by lipoyl synthase
    • Lanz ND, Pandelia ME, Kakar ES, Lee K-H, Krebs C, Booker SJ. 2014. Evidence for a catalytically and kinetically competent enzyme-substrate cross-linked intermediate in catalysis by lipoyl synthase. Biochemistry 53:4557-72
    • (2014) Biochemistry , vol.53 , pp. 4557-4572
    • Lanz, N.D.1    Pandelia, M.E.2    Kakar, E.S.3    Lee, K.-H.4    Krebs, C.5    Booker, S.J.6
  • 62
    • 35348886232 scopus 로고    scopus 로고
    • Lipoyl synthase inserts sulfur atoms into an octanoyl substrate in a stepwise manner
    • Douglas P, Kriek M, Bryant P, Roach PL. 2006. Lipoyl synthase inserts sulfur atoms into an octanoyl substrate in a stepwise manner. Angew. Chem. 118:5321-23
    • (2006) Angew. Chem. , vol.118 , pp. 5321-5323
    • Douglas, P.1    Kriek, M.2    Bryant, P.3    Roach, P.L.4
  • 63
    • 0001179909 scopus 로고
    • Biosynthesis of lipoic acid. 2. Stereochemistry of sulfur introduction at C-6 of octanoic acid
    • Parry RJ, Trainor DA. 1978. Biosynthesis of lipoic acid. 2. Stereochemistry of sulfur introduction at C-6 of octanoic acid. J. Am. Chem. Soc. 100:5243-44
    • (1978) J. Am. Chem. Soc. , vol.100 , pp. 5243-5244
    • Parry, R.J.1    Trainor, D.A.2
  • 65
    • 2542641045 scopus 로고    scopus 로고
    • Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid
    • Cicchillo RM, Iwig DF, Jones AD, Nesbitt NM, Baleanu-Gogonea C, et al. 2004. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43:6378-86
    • (2004) Biochemistry , vol.43 , pp. 6378-6386
    • Cicchillo, R.M.1    Iwig, D.F.2    Jones, A.D.3    Nesbitt, N.M.4    Baleanu-Gogonea, C.5
  • 66
    • 84893819382 scopus 로고    scopus 로고
    • Variant nonketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5
    • Baker PR 2nd, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K, et al. 2014. Variant nonketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137:366-79
    • (2014) Brain , vol.137 , pp. 366-379
    • Baker, I.I.P.R.1    Friederich, M.W.2    Swanson, M.A.3    Shaikh, T.4    Bhattacharya, K.5
  • 68
    • 84945272423 scopus 로고    scopus 로고
    • Novel compound heterozygous LIAS mutations cause glycine encephalopathy
    • Tsurusaki Y, Tanaka R, Shimada S, Shimojima K, ShiinaM, et al. 2015. Novel compound heterozygous LIAS mutations cause glycine encephalopathy. J. Hum. Genet. 60:631-35
    • (2015) J. Hum. Genet. , vol.60 , pp. 631-635
    • Tsurusaki, Y.1    Tanaka, R.2    Shimada, S.3    Shimojima, K.4    Shiina, M.5
  • 70
    • 83455253737 scopus 로고    scopus 로고
    • Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation
    • Mayr JA, Zimmermann FA, Fauth C, Bergheim C, Meierhofer D, et al. 2011. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am. J. Hum. Genet. 89:792-97
    • (2011) Am. J. Hum. Genet. , vol.89 , pp. 792-797
    • Mayr, J.A.1    Zimmermann, F.A.2    Fauth, C.3    Bergheim, C.4    Meierhofer, D.5
  • 71
    • 47249142777 scopus 로고    scopus 로고
    • Iron-sulfur cluster biogenesis and human disease
    • Rouault TA, Tong WH. 2008. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24:398-407
    • (2008) Trends Genet. , vol.24 , pp. 398-407
    • Rouault, T.A.1    Tong, W.H.2
  • 72
    • 84897000909 scopus 로고    scopus 로고
    • Mitochondrial iron-sulfur protein biogenesis and human disease
    • StehlingO, WilbrechtC, Lill R. 2014. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61-77
    • (2014) Biochimie , vol.100 , pp. 61-77
    • Stehling, O.1    Wilbrecht, C.2    Lill, R.3
  • 73
    • 80053898097 scopus 로고    scopus 로고
    • Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes
    • Cameron JM, Janer A, Levandovskiy V, Mackay N, Rouault TA, et al. 2011. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am. J. Hum. Genet. 89:486-95
    • (2011) Am. J. Hum. Genet. , vol.89 , pp. 486-495
    • Cameron, J.M.1    Janer, A.2    Levandovskiy, V.3    Mackay, N.4    Rouault, T.A.5
  • 74
    • 84917736963 scopus 로고    scopus 로고
    • Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations
    • Invernizzi F, Ardissone A, Lamantea E, Garavaglia B, Zeviani M, et al. 2014. Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations. Front. Genet. 5:412
    • (2014) Front. Genet. , vol.5 , pp. 412
    • Invernizzi, F.1    Ardissone, A.2    Lamantea, E.3    Garavaglia, B.4    Zeviani, M.5
  • 75
    • 80955133245 scopus 로고    scopus 로고
    • A fatal mitochondrial disease is associated with defectiveNFU1 function in the maturation of a subset of mitochondrial Fe-S proteins
    • Navarro-Sastre A, Tort F, StehlingO, UzarskaMA, Arranz JA, et al. 2011. A fatal mitochondrial disease is associated with defectiveNFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am. J. Hum. Genet. 89:656-67
    • (2011) Am. J. Hum. Genet. , vol.89 , pp. 656-667
    • Navarro-Sastre, A.1    Tort, F.2    Stehling, O.3    Uzarska, M.A.4    Arranz, J.A.5
  • 76
    • 84899971298 scopus 로고    scopus 로고
    • Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency
    • Nizon M, Boutron A, Boddaert N, Slama A, Delpech H, et al. 2014. Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency. Mitochondrion 15:59-64
    • (2014) Mitochondrion , vol.15 , pp. 59-64
    • Nizon, M.1    Boutron, A.2    Boddaert, N.3    Slama, A.4    Delpech, H.5
  • 77
    • 0035121867 scopus 로고    scopus 로고
    • A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13
    • Seyda A, Newbold RF, Hudson TJ, Verner A, MacKay N, et al. 2001. A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13. Am. J. Hum. Genet. 68:386-96
    • (2001) Am. J. Hum. Genet. , vol.68 , pp. 386-396
    • Seyda, A.1    Newbold, R.F.2    Hudson, T.J.3    Verner, A.4    MacKay, N.5
  • 78
    • 84870152928 scopus 로고    scopus 로고
    • Biosynthesis and function of posttranscriptional modifications of transfer RNAs
    • El Yacoubi B, Bailly M, de Crécy-Lagard V. 2012. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46:69-95
    • (2012) Annu. Rev. Genet. , vol.46 , pp. 69-95
    • El Yacoubi, B.1    Bailly, M.2    De Crécy-Lagard, V.3
  • 81
    • 78049430605 scopus 로고    scopus 로고
    • Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis
    • Anton BP, Russell SP, Vertrees J, Kasif S, Raleigh EA, et al. 2010. Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis. Nucleic Acids Res. 38:6195-205
    • (2010) Nucleic Acids Res. , vol.38 , pp. 6195-6205
    • Anton, B.P.1    Russell, S.P.2    Vertrees, J.3    Kasif, S.4    Raleigh, E.A.5
  • 82
    • 77949332141 scopus 로고    scopus 로고
    • Post-translational modification of ribosomal proteins: Structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase
    • Arragain S, Garcá-Serres R, Blondin G, Douki T, Clemancey M, et al. 2010. Post-translational modification of ribosomal proteins: structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase. J. Biol. Chem. 285:5792-801 82a.
    • (2010) J. Biol. Chem. , vol.285 , pp. 5792-80182
    • Arragain, S.1    Garcá-Serres, R.2    Blondin, G.3    Douki, T.4    Clemancey, M.5
  • 83
    • 84960403933 scopus 로고    scopus 로고
    • Stereochemical course of the reaction catalyzed by RimO, a radical SAM methylthiotransferase
    • Landgraf BJ, Booker SJ. 2016. Stereochemical course of the reaction catalyzed by RimO, a radical SAM methylthiotransferase. J. Am. Chem. Soc. 138:2889-92
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 2889-2892
    • Landgraf, B.J.1    Booker, S.J.2
  • 84
    • 40849111520 scopus 로고    scopus 로고
    • RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli
    • Anton BP, Saleh L, Benner JS, Raleigh EA, Kasif S, Roberts RJ. 2008. RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. PNAS 105:1826-31
    • (2008) PNAS , vol.105 , pp. 1826-1831
    • Anton, B.P.1    Saleh, L.2    Benner, J.S.3    Raleigh, E.A.4    Kasif, S.5    Roberts, R.J.6
  • 85
    • 77956514978 scopus 로고    scopus 로고
    • Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA
    • Arragain S, Handelman SK, Forouhar F, Wei FY, Tomizawa K, et al. 2010. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem. 285:28425-33
    • (2010) J. Biol. Chem. , vol.285 , pp. 28425-28433
    • Arragain, S.1    Handelman, S.K.2    Forouhar, F.3    Wei, F.Y.4    Tomizawa, K.5
  • 86
    • 0037134469 scopus 로고    scopus 로고
    • Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein
    • Pierrel F, Björk GR, Fontecave M, Atta M. 2002. Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein. J. Biol. Chem. 277:13367-70
    • (2002) J. Biol. Chem. , vol.277 , pp. 13367-13370
    • Pierrel, F.1    Björk, G.R.2    Fontecave, M.3    Atta, M.4
  • 87
    • 9144220291 scopus 로고    scopus 로고
    • MiaB protein is a bifunctional radical-Sadenosylmethionine enzyme involved in thiolation and methylation of tRNA
    • Pierrel F, Douki T, Fontecave M, Atta M. 2004. MiaB protein is a bifunctional radical-Sadenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem. 279:47555-653
    • (2004) J. Biol. Chem. , vol.279 , pp. 47555-47653
    • Pierrel, F.1    Douki, T.2    Fontecave, M.3    Atta, M.4
  • 88
    • 84946074739 scopus 로고    scopus 로고
    • The InterPro protein families database: The classification resource after 15 years
    • Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, et al. 2015. The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res. 43:D213-21
    • (2015) Nucleic Acids Res. , vol.43 , pp. D213-D221
    • Mitchell, A.1    Chang, H.Y.2    Daugherty, L.3    Fraser, M.4    Hunter, S.5
  • 89
    • 0014968396 scopus 로고
    • N6-(2-isopentenyl)adenosine: Biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli
    • Bartz JK, Kline LK, Soll D. 1970. N6-(2-isopentenyl)adenosine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli. Biochem. Biophys. Res. Commun. 40:1481-87
    • (1970) Biochem. Biophys. Res. Commun. , vol.40 , pp. 1481-1487
    • Bartz, J.K.1    Kline, L.K.2    Soll, D.3
  • 90
    • 0015523674 scopus 로고
    • -2-Isopentenylpyrophosphate: Transfer ribonucleic acid -2-isopentenyltransferase from Escherichia coli. Purification and properties of the enzyme
    • Rosenbaum N, Gefter ML. 1972. -2-Isopentenylpyrophosphate: Transfer ribonucleic acid -2-isopentenyltransferase from Escherichia coli. Purification and properties of the enzyme. J. Biol. Chem. 247:5675-80
    • (1972) J. Biol. Chem. , vol.247 , pp. 5675-5680
    • Rosenbaum, N.1    Gefter, M.L.2
  • 91
    • 84859994582 scopus 로고    scopus 로고
    • Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside
    • Deutsch C, El Yacoubi B, de Crecy-Lagard V, Iwata-ReuylD. 2012. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J. Biol. Chem. 287:13666-73
    • (2012) J. Biol. Chem. , vol.287 , pp. 13666-13673
    • Deutsch, C.1    El Yacoubi, B.2    De Crecy-Lagard, V.3    Iwata-Reuyl, D.4
  • 92
    • 0025974215 scopus 로고
    • Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations
    • Connolly DM, Winkler ME. 1991. Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J. Bacteriol. 173:1711-21
    • (1991) J. Bacteriol. , vol.173 , pp. 1711-1721
    • Connolly, D.M.1    Winkler, M.E.2
  • 93
    • 0028986353 scopus 로고
    • The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA
    • Esberg B, Björk GR. 1995. The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J. Bacteriol. 177:1967-75
    • (1995) J. Bacteriol. , vol.177 , pp. 1967-1975
    • Esberg, B.1    Björk, G.R.2
  • 94
    • 0035801515 scopus 로고    scopus 로고
    • Improvement of reading frame maintenance is a common function for several tRNA modifications
    • Urbonavicius J, Qian Q, Durand JMB, Hagervall TG, Björk GR. 2001. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20:4863-73
    • (2001) EMBO J. , vol.20 , pp. 4863-4873
    • Urbonavicius, J.1    Qian, Q.2    Durand, J.M.B.3    Hagervall, T.G.4    Björk, G.R.5
  • 95
    • 84879097741 scopus 로고    scopus 로고
    • Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases
    • Forouhar F, Arragain S, Atta M, Gambarelli S, Mouesca J-M, et al. 2013. Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat. Chem. Biol. 9:333-38
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 333-338
    • Forouhar, F.1    Arragain, S.2    Atta, M.3    Gambarelli, S.4    Mouesca, J.-M.5
  • 96
    • 70350215875 scopus 로고    scopus 로고
    • Characterization of RimO, a new member of themethylthiotransferase subclass of the radicalSAMsuperfamily
    • Lee K-H, Saleh L, Anton BP, Madinger CL, Benner JS, et al. 2009. Characterization of RimO, a new member of themethylthiotransferase subclass of the radicalSAMsuperfamily. Biochemistry 48:10162-74
    • (2009) Biochemistry , vol.48 , pp. 10162-10174
    • Lee, K.-H.1    Saleh, L.2    Anton, B.P.3    Madinger, C.L.4    Benner, J.S.5
  • 98
    • 84886888360 scopus 로고    scopus 로고
    • Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB
    • Landgraf BJ, Arcinas AJ, Lee K-H, Booker SJ. 2013. Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. J. Am. Chem. Soc. 135:15404-16
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 15404-15416
    • Landgraf, B.J.1    Arcinas, A.J.2    Lee, K.-H.3    Booker, S.J.4
  • 100
    • 4544241684 scopus 로고    scopus 로고
    • Cloning, characterization and expression of CDK5RAP1-v3 and CDK5RAP1-v4, two novel splice variants of human CDK5RAP1
    • Zou X, Ji C, Jin F, Liu J, WuM, et al. 2004. Cloning, characterization and expression of CDK5RAP1-v3 and CDK5RAP1-v4, two novel splice variants of human CDK5RAP1. Genes Genet. Syst. 79:177-82
    • (2004) Genes Genet. Syst. , vol.79 , pp. 177-182
    • Zou, X.1    Ji, C.2    Jin, F.3    Liu, J.4    Wu, M.5
  • 101
    • 0037013311 scopus 로고    scopus 로고
    • Identification of a neuronal Cdk5 activatorbinding protein as Cdk5 inhibitor
    • Ching Y-P, Pang ASH, Lam W-H, Qi RZ, Wang JH. 2002. Identification of a neuronal Cdk5 activatorbinding protein as Cdk5 inhibitor. J. Biol. Chem. 277:15237-40
    • (2002) J. Biol. Chem. , vol.277 , pp. 15237-15240
    • Ching, Y.-P.1    Pang, A.S.H.2    Lam, W.-H.3    Qi, R.Z.4    Wang, J.H.5
  • 103
    • 84864450117 scopus 로고    scopus 로고
    • The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA
    • Reiter V, Matschkal DMS, WagnerM, Globisch D, Kneuttinger AC, et al. 2012. The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA. Nucleic Acids Res. 40:6235-40
    • (2012) Nucleic Acids Res. , vol.40 , pp. 6235-6240
    • Reiter, V.1    Matschkal, D.M.S.2    Wagner, M.3    Globisch, D.4    Kneuttinger, A.C.5
  • 104
    • 84924408965 scopus 로고    scopus 로고
    • Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans
    • Wei FY, Zhou B, Suzuki T, Miyata K, Ujihara Y, et al. 2015. Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans. Cell Metab. 21:428-42
    • (2015) Cell Metab. , vol.21 , pp. 428-442
    • Wei, F.Y.1    Zhou, B.2    Suzuki, T.3    Miyata, K.4    Ujihara, Y.5
  • 105
    • 19444386899 scopus 로고    scopus 로고
    • Unusual usage of wobble modifications in mitochondrial tRNAs of the nematode Ascaris suum
    • Sakurai M, Ohtsuki T, Suzuki T, Watanabe K. 2005. Unusual usage of wobble modifications in mitochondrial tRNAs of the nematode Ascaris suum. FEBS Lett. 579:2767-72
    • (2005) FEBS Lett. , vol.579 , pp. 2767-2772
    • Sakurai, M.1    Ohtsuki, T.2    Suzuki, T.3    Watanabe, K.4
  • 106
    • 34249888775 scopus 로고    scopus 로고
    • Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels
    • Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. 2007. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331-36
    • (2007) Science , vol.316 , pp. 1331-1336
    • Saxena, R.1    Voight, B.F.2    Lyssenko, V.3    Burtt, N.P.4    De Bakker, P.I.5
  • 107
    • 34249885875 scopus 로고    scopus 로고
    • A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants
    • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. 2007. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341-45
    • (2007) Science , vol.316 , pp. 1341-1345
    • Scott, L.J.1    Mohlke, K.L.2    Bonnycastle, L.L.3    Willer, C.J.4    Li, Y.5
  • 109
    • 34249895023 scopus 로고    scopus 로고
    • Replication of genomewide association signals in UK samples reveals risk loci for type 2 diabetes
    • Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. 2007. Replication of genomewide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336-41
    • (2007) Science , vol.316 , pp. 1336-1341
    • Zeggini, E.1    Weedon, M.N.2    Lindgren, C.M.3    Frayling, T.M.4    Elliott, K.S.5
  • 110
    • 80052375980 scopus 로고    scopus 로고
    • Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice
    • Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, et al. 2011. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 121:3598-608
    • (2011) J. Clin. Invest. , vol.121 , pp. 3598-3608
    • Wei, F.Y.1    Suzuki, T.2    Watanabe, S.3    Kimura, S.4    Kaitsuka, T.5
  • 111
    • 0345304724 scopus 로고    scopus 로고
    • Naturally-occurring modification restricts the anticodon domain conformational space of tRNAPhe
    • Stuart JW, Koshlap KM, Guenther R, Agris PF. 2003. Naturally-occurring modification restricts the anticodon domain conformational space of tRNAPhe. J. Mol. Biol. 334:901-18
    • (2003) J. Mol. Biol. , vol.334 , pp. 901-918
    • Stuart, J.W.1    Koshlap, K.M.2    Guenther, R.3    Agris, P.F.4
  • 112
    • 33646778150 scopus 로고    scopus 로고
    • Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA
    • Noma A, Kirino Y, Ikeuchi Y, Suzuki T. 2006. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25:2142-54
    • (2006) EMBO J. , vol.25 , pp. 2142-2154
    • Noma, A.1    Kirino, Y.2    Ikeuchi, Y.3    Suzuki, T.4
  • 113
    • 34748889928 scopus 로고    scopus 로고
    • Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis
    • Goto-Ito S, Ishii R, Ito T, Shibata R, Fusatomi E, et al. 2007. Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis. Acta Crystallogr. Sect. D 63:1059-68
    • (2007) Acta Crystallogr. Sect. D , vol.63 , pp. 1059-1068
    • Goto-Ito, S.1    Ishii, R.2    Ito, T.3    Shibata, R.4    Fusatomi, E.5
  • 114
    • 34548504334 scopus 로고    scopus 로고
    • Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA
    • Suzuki Y, Noma A, Suzuki T, Senda M, Senda T, et al. 2007. Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA. J. Mol. Biol. 372:1204-14
    • (2007) J. Mol. Biol. , vol.372 , pp. 1204-1214
    • Suzuki, Y.1    Noma, A.2    Suzuki, T.3    Senda, M.4    Senda, T.5
  • 115
    • 82955169554 scopus 로고    scopus 로고
    • Pyruvate is the source of the two carbons that are required for formation of the imidazoline ring of 4-demethylwyosine
    • Young AP, Bandarian V. 2011. Pyruvate is the source of the two carbons that are required for formation of the imidazoline ring of 4-demethylwyosine. Biochemistry 50:10573-75
    • (2011) Biochemistry , vol.50 , pp. 10573-10575
    • Young, A.P.1    Bandarian, V.2
  • 116
    • 84934991057 scopus 로고    scopus 로고
    • Mechanistic studies of the radical S-adenosyl-L-methionine enzyme 4-demethylwyosine synthase reveal the site of hydrogen atom abstraction
    • Young AP, Bandarian V. 2015. Mechanistic studies of the radical S-adenosyl-L-methionine enzyme 4-demethylwyosine synthase reveal the site of hydrogen atom abstraction. Biochemistry 54:3569-72
    • (2015) Biochemistry , vol.54 , pp. 3569-3572
    • Young, A.P.1    Bandarian, V.2
  • 117
    • 84870350421 scopus 로고    scopus 로고
    • 4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S]+2 cluster that interacts with the pyruvate co-substrate
    • Perche-Letuvée P, Kathirvelu V, Berggren G, Clemancey M, Latour J-M, et al. 2012. 4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S]+2 cluster that interacts with the pyruvate co-substrate. J. Biol. Chem. 287:41174-85
    • (2012) J. Biol. Chem. , vol.287 , pp. 41174-41185
    • Perche-Letuvée, P.1    Kathirvelu, V.2    Berggren, G.3    Clemancey, M.4    Latour, J.-M.5
  • 118
    • 0029870925 scopus 로고    scopus 로고
    • Programmed translational frameshifting
    • Farabaugh PJ. 1996. Programmed translational frameshifting. Microbiol. Rev. 60:103-34
    • (1996) Microbiol. Rev. , vol.60 , pp. 103-134
    • Farabaugh, P.J.1
  • 119
    • 0024277965 scopus 로고
    • Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region
    • Jacks T, Madhani HD, Masiarz FR, Varmus HE. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447-58
    • (1988) Cell , vol.55 , pp. 447-458
    • Jacks, T.1    Madhani, H.D.2    Masiarz, F.R.3    Varmus, H.E.4
  • 120
    • 0024789601 scopus 로고
    • Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV
    • Hatfield D, Feng Y-X, Lee BJ, Rein A, Levin JG, Oroszlan S. 1989. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV. Virology 173:736-42
    • (1989) Virology , vol.173 , pp. 736-742
    • Hatfield, D.1    Feng, Y.-X.2    Lee, B.J.3    Rein, A.4    Levin, J.G.5    Oroszlan, S.6
  • 122
    • 0035916013 scopus 로고    scopus 로고
    • 1-Methylguanosine in place of y base at position 37 in phenylalanine tRNA is responsible for its shiftiness in retroviral ribosomal frameshifting
    • Carlson BA, Mushinski JF, Henderson DW, Kwon SY, Crain PF, et al. 2001. 1-Methylguanosine in place of Y base at position 37 in phenylalanine tRNA is responsible for its shiftiness in retroviral ribosomal frameshifting. Virology 279:130-35
    • (2001) Virology , vol.279 , pp. 130-135
    • Carlson, B.A.1    Mushinski, J.F.2    Henderson, D.W.3    Kwon, S.Y.4    Crain, P.F.5
  • 123
    • 0018421407 scopus 로고
    • Tumor-associated phenylalanyl transfer RNA found in a wide spectrum of rat and mouse tumors but absent in normal adult, fetal, and regenerating tissues
    • Mushinski JF, Marini M. 1979. Tumor-associated phenylalanyl transfer RNA found in a wide spectrum of rat and mouse tumors but absent in normal adult, fetal, and regenerating tissues. Cancer Res. 39:1253-58
    • (1979) Cancer Res. , vol.39 , pp. 1253-1258
    • Mushinski, J.F.1    Marini, M.2
  • 126
    • 0037133562 scopus 로고    scopus 로고
    • Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo
    • Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ. 2002. Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. PNAS 99:3517-22
    • (2002) PNAS , vol.99 , pp. 3517-3522
    • Winkler, G.S.1    Kristjuhan, A.2    Erdjument-Bromage, H.3    Tempst, P.4    Svejstrup, J.Q.5
  • 127
    • 43249104840 scopus 로고    scopus 로고
    • Eukaryotic wobble uridine modifications promote a functionally redundant decoding system
    • Johansson MJO, Esberg A, Huang B, Björk GR, Byström AS. 2008. Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol. Cell. Biol. 28:3301-12
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 3301-3312
    • Johansson, M.J.O.1    Esberg, A.2    Huang, B.3    Björk, G.R.4    Byström, A.S.5
  • 128
    • 84878526158 scopus 로고    scopus 로고
    • Structural insights into Elongator function
    • Glatt S, Muller CW. 2013. Structural insights into Elongator function. Curr. Opin. Struct. Biol. 23:235-42
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 235-242
    • Glatt, S.1    Muller, C.W.2
  • 129
    • 0033166761 scopus 로고    scopus 로고
    • A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme
    • Wittschieben BØ, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, et al. 1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4:123-28
    • (1999) Mol. Cell , vol.4 , pp. 123-128
    • Wittschieben, B.Ø.1    Otero, G.2    De Bizemont, T.3    Fellows, J.4    Erdjument-Bromage, H.5
  • 131
    • 15444371415 scopus 로고    scopus 로고
    • An early step inwobble uridine tRNA modification requires the Elongator complex
    • Huang B, JohanssonMJ, Bystrom AS. 2005. An early step inwobble uridine tRNA modification requires the Elongator complex. RNA 11:424-36
    • (2005) RNA , vol.11 , pp. 424-436
    • Huang, B.1    Johansson, M.J.2    Bystrom, A.S.3
  • 133
    • 58649104923 scopus 로고    scopus 로고
    • An iron-sulfur cluster domain in Elp3 important for the structural integrity of elongator
    • Greenwood C, Selth LA, Dirac-Svejstrup AB, Svejstrup JQ. 2009. An iron-sulfur cluster domain in Elp3 important for the structural integrity of elongator. J. Biol. Chem. 284:141-49
    • (2009) J. Biol. Chem. , vol.284 , pp. 141-149
    • Greenwood, C.1    Selth, L.A.2    Dirac-Svejstrup, A.B.3    Svejstrup, J.Q.4
  • 134
    • 75749142980 scopus 로고    scopus 로고
    • A role for the elongator complex in zygotic paternal genome demethylation
    • Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y. 2010. A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554-58
    • (2010) Nature , vol.463 , pp. 554-558
    • Okada, Y.1    Yamagata, K.2    Hong, K.3    Wakayama, T.4    Zhang, Y.5
  • 135
    • 84922060886 scopus 로고    scopus 로고
    • Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism
    • Selvadurai K, Wang P, Seimetz J, Huang RH. 2014. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat. Chem. Biol. 10:810-12
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 810-812
    • Selvadurai, K.1    Wang, P.2    Seimetz, J.3    Huang, R.H.4
  • 137
    • 0021809173 scopus 로고
    • Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management
    • Tandan R, Bradley WG. 1985. Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann. Neurol. 18:271-80
    • (1985) Ann. Neurol. , vol.18 , pp. 271-280
    • Tandan, R.1    Bradley, W.G.2
  • 138
    • 58749097964 scopus 로고    scopus 로고
    • Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration
    • Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, et al. 2009. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet. 18:472-81
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 472-481
    • Simpson, C.L.1    Lemmens, R.2    Miskiewicz, K.3    Broom, W.J.4    Hansen, V.K.5
  • 139
    • 33644870049 scopus 로고    scopus 로고
    • Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila
    • Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, et al. 2006. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833-44
    • (2006) Neuron , vol.49 , pp. 833-844
    • Wagh, D.A.1    Rasse, T.M.2    Asan, E.3    Hofbauer, A.4    Schwenkert, I.5
  • 140
    • 83355177262 scopus 로고    scopus 로고
    • ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot
    • Mískiewicz K, Jose Liya E, Bento-Abreu A, Fislage M, Taes I, et al. 2011. ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron 72:776-88
    • (2011) Neuron , vol.72 , pp. 776-788
    • Mískiewicz, K.1    Jose Liya, E.2    Bento-Abreu, A.3    Fislage, M.4    Taes, I.5
  • 141
    • 0037072870 scopus 로고    scopus 로고
    • Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli
    • Layer G, Verfurth K, Mahlitz E, Jahn D. 2002. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J. Biol. Chem. 277:34136-42
    • (2002) J. Biol. Chem. , vol.277 , pp. 34136-34142
    • Layer, G.1    Verfurth, K.2    Mahlitz, E.3    Jahn, D.4
  • 142
    • 17844394673 scopus 로고    scopus 로고
    • HemZ is essential for heme biosynthesis in Mycobacterium tuberculosis
    • Parish T, Schaeffer M, Roberts G, Duncan K. 2005. HemZ is essential for heme biosynthesis in Mycobacterium tuberculosis. Tuberculosis 85:197-204
    • (2005) Tuberculosis , vol.85 , pp. 197-204
    • Parish, T.1    Schaeffer, M.2    Roberts, G.3    Duncan, K.4
  • 143
    • 84974720706 scopus 로고    scopus 로고
    • Deleted in proof
    • Deleted in proof
  • 144
    • 0032844453 scopus 로고    scopus 로고
    • Transcriptional control of Bacillus subtilis hemN and hemZ
    • Homuth G, Rompf A, Schumann W, Jahn D. 1999. Transcriptional control of Bacillus subtilis hemN and hemZ. J. Bacteriol. 181:5922-29
    • (1999) J. Bacteriol. , vol.181 , pp. 5922-5929
    • Homuth, G.1    Rompf, A.2    Schumann, W.3    Jahn, D.4
  • 146
    • 33744457328 scopus 로고    scopus 로고
    • A deficiency in the region homologous to human 17q21. 33-q23. 2 causes heart defects in mice
    • Yu YE, MorishimaM, Pao A, Wang D-Y, Wen X-Y, et al. 2006. A deficiency in the region homologous to human 17q21. 33-q23. 2 causes heart defects in mice. Genetics 173:297-307
    • (2006) Genetics , vol.173 , pp. 297-307
    • Yu, Y.E.1    Morishima, M.2    Pao, A.3    Wang, D.-Y.4    Wen, X.-Y.5
  • 148
    • 38849194747 scopus 로고    scopus 로고
    • Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus
    • Jiang D, Guo H, Xu C, Chang J, Gu B, et al. 2008. Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J. Virol. 82:1665-78
    • (2008) J. Virol. , vol.82 , pp. 1665-1678
    • Jiang, D.1    Guo, H.2    Xu, C.3    Chang, J.4    Gu, B.5
  • 149
    • 84864491073 scopus 로고    scopus 로고
    • HIV-1 infection of human macrophages directly induces viperin which inhibits viral production
    • Nasr N, Maddocks S, Turville SG, Harman AN, Woolger N, et al. 2012. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood 120:778-88
    • (2012) Blood , vol.120 , pp. 778-788
    • Nasr, N.1    Maddocks, S.2    Turville, S.G.3    Harman, A.N.4    Woolger, N.5
  • 151
    • 34547656276 scopus 로고    scopus 로고
    • The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts
    • Wang X, Hinson ER, Cresswell P. 2007. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2:96-105
    • (2007) Cell Host Microbe , vol.2 , pp. 96-105
    • Wang, X.1    Hinson, E.R.2    Cresswell, P.3
  • 152
    • 0035910046 scopus 로고    scopus 로고
    • Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus
    • Chin KC, Cresswell P. 2001. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. PNAS 98:15125-30
    • (2001) PNAS , vol.98 , pp. 15125-15130
    • Chin, K.C.1    Cresswell, P.2
  • 153
    • 73949106791 scopus 로고    scopus 로고
    • The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic helix
    • Hinson ER, CresswellP. 2009. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic helix. PNAS 106:20452-57
    • (2009) PNAS , vol.106 , pp. 20452-20457
    • Hinson, E.R.1    Cresswell, P.2
  • 154
    • 63249085868 scopus 로고    scopus 로고
    • The N-terminal amphipathic helix of viperinmediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion
    • Hinson ER, Cresswell P. 2009. The N-terminal amphipathic helix of viperinmediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion. J. Biol. Chem. 284:4705-12
    • (2009) J. Biol. Chem. , vol.284 , pp. 4705-4712
    • Hinson, E.R.1    Cresswell, P.2
  • 155
    • 80055046485 scopus 로고    scopus 로고
    • The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A
    • Helbig KJ, EyreNS, Yip E, Narayana S, Li K, et al. 2011. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology 54:1506-17
    • (2011) Hepatology , vol.54 , pp. 1506-1517
    • Helbig, K.J.1    Eyre, N.S.2    Yip, E.3    Narayana, S.4    Li, K.5
  • 156
    • 1842457783 scopus 로고    scopus 로고
    • Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft
    • Gao L, Aizaki H, He JW, Lai MM. 2004. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J. Virol. 78:3480-88
    • (2004) J. Virol. , vol.78 , pp. 3480-3488
    • Gao, L.1    Aizaki, H.2    He, J.W.3    Lai, M.M.4
  • 157
    • 83755183779 scopus 로고    scopus 로고
    • Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33
    • Wang S, Wu X, Pan T, SongW, Wang Y, et al. 2012. Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33. J. Gen. Virol. 93:83-92
    • (2012) J. Gen. Virol. , vol.93 , pp. 83-92
    • Wang, S.1    Wu, X.2    Pan, T.3    Song, W.4    Wang, Y.5
  • 158
    • 77950368112 scopus 로고    scopus 로고
    • The antiviral protein viperin is a radical SAM enzyme
    • Duschene KS, Broderick JB. 2010. The antiviral protein viperin is a radical SAM enzyme. FEBS Lett. 584:1263-67
    • (2010) FEBS Lett. , vol.584 , pp. 1263-1267
    • Duschene, K.S.1    Broderick, J.B.2
  • 159
    • 73949157872 scopus 로고    scopus 로고
    • Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme
    • Shaveta G, Shi J, Chow VT, Song J. 2010. Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme. Biochem. Biophys. Res. Commun. 391:1390-95
    • (2010) Biochem. Biophys. Res. Commun. , vol.391 , pp. 1390-1395
    • Shaveta, G.1    Shi, J.2    Chow, V.T.3    Song, J.4
  • 160
    • 84900537886 scopus 로고    scopus 로고
    • Viperin is an ironsulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity
    • Upadhyay AS, Vonderstein K, Pichlmair A, Stehling O, Bennett KL, et al. 2014. Viperin is an ironsulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cell Microbiol. 16:834-48
    • (2014) Cell Microbiol. , vol.16 , pp. 834-848
    • Upadhyay, A.S.1    Vonderstein, K.2    Pichlmair, A.3    Stehling, O.4    Bennett, K.L.5
  • 161
    • 84866901827 scopus 로고    scopus 로고
    • Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera Orthobunyavirus replication
    • Carlton-Smith C, Elliott RM. 2012. Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera Orthobunyavirus replication. J. Virol. 86:11548-57
    • (2012) J. Virol. , vol.86 , pp. 11548-11557
    • Carlton-Smith, C.1    Elliott, R.M.2
  • 162
    • 84906919951 scopus 로고    scopus 로고
    • HIV-1Vpr induces interferonstimulated genes in human monocyte-derived macrophages
    • Zahoor MA, Xue G, Sato H, Murakami T, Takeshima SN, Aida Y. 2014. HIV-1Vpr induces interferonstimulated genes in human monocyte-derived macrophages. PLOS ONE 9:e106418
    • (2014) PLOS ONE , vol.9 , pp. e106418
    • Zahoor, M.A.1    Xue, G.2    Sato, H.3    Murakami, T.4    Takeshima, S.N.5    Aida, Y.6
  • 163
    • 79957617805 scopus 로고    scopus 로고
    • Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity
    • Seo JY, Yaneva R, Hinson ER, Cresswell P. 2011. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 332:1093-97
    • (2011) Science , vol.332 , pp. 1093-1097
    • Seo, J.Y.1    Yaneva, R.2    Hinson, E.R.3    Cresswell, P.4
  • 164
    • 55249107198 scopus 로고    scopus 로고
    • The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells
    • Chan YL, Chang TH, Liao CL, Lin YL. 2008. The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells. J. Virol. 82:10455-64
    • (2008) J. Virol. , vol.82 , pp. 10455-10464
    • Chan, Y.L.1    Chang, T.H.2    Liao, C.L.3    Lin, Y.L.4
  • 165
    • 84907426399 scopus 로고    scopus 로고
    • Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41
    • Shen G, Wang K, Wang S, Cai M, Li ML, Zheng C. 2014. Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41. J. Virol. 88:12163-66
    • (2014) J. Virol. , vol.88 , pp. 12163-12166
    • Shen, G.1    Wang, K.2    Wang, S.3    Cai, M.4    Li, M.L.5    Zheng, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.