-
1
-
-
84867706295
-
S-Adenosylmethionine in liver health, injury, and cancer
-
Lu SC, Mato JM. 2012. S-Adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 92:1515-42
-
(2012)
Physiol. Rev.
, vol.92
, pp. 1515-1542
-
-
Lu, S.C.1
Mato, J.M.2
-
2
-
-
33747186460
-
S-Adenosyl-L-methionine: Beyond the universalmethyl donor
-
Roje S. 2006. S-Adenosyl-L-methionine: beyond the universalmethyl donor. Phytochemistry 67:1686-98
-
(2006)
Phytochemistry
, vol.67
, pp. 1686-1698
-
-
Roje, S.1
-
3
-
-
70349493013
-
Marine-derived metabolites of S-adenosylmethionine as templates for new anti-infectives
-
Sufrin JR, Finckbeiner S, Oliver CM. 2009. Marine-derived metabolites of S-adenosylmethionine as templates for new anti-infectives. Mar. Drugs 7:401-34
-
(2009)
Mar. Drugs
, vol.7
, pp. 401-434
-
-
Sufrin, J.R.1
Finckbeiner, S.2
Oliver, C.M.3
-
4
-
-
0032035296
-
Self perception in bacteria: Quorum sensing with acylated homoserine lactones
-
Fuqua C, Greenberg EP. 1998. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1:183-89
-
(1998)
Curr. Opin. Microbiol.
, vol.1
, pp. 183-189
-
-
Fuqua, C.1
Greenberg, E.P.2
-
5
-
-
37249024344
-
Discovery and characterization of a marine bacterial SAM-dependent chlorinase
-
Eustáquio AS, Pojer F, Noel JP, Moore BS. 2008. Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat. Chem. Biol. 4:69-74
-
(2008)
Nat. Chem. Biol.
, vol.4
, pp. 69-74
-
-
Eustáquio, A.S.1
Pojer, F.2
Noel, J.P.3
Moore, B.S.4
-
6
-
-
84878736509
-
Biochemistry: The ylide has landed
-
Landgraf BJ, Booker SJ. 2013. Biochemistry: The ylide has landed. Nature 498:45-47
-
(2013)
Nature
, vol.498
, pp. 45-47
-
-
Landgraf, B.J.1
Booker, S.J.2
-
9
-
-
84856367380
-
Radical S-adenosylmethionine enzymes: Mechanism, control and function
-
Challand MR, Driesener RC, Roach PL. 2011. Radical S-adenosylmethionine enzymes: mechanism, control and function. Nat. Prod. Rep. 28:1696-721
-
(2011)
Nat. Prod. Rep.
, vol.28
, pp. 1696-1721
-
-
Challand, M.R.1
Driesener, R.C.2
Roach, P.L.3
-
10
-
-
33847635732
-
S-adenosylmethionine as an oxidant: The radical SAM superfamily
-
Wang SC, Frey PA. 2007. S-adenosylmethionine as an oxidant: The radical SAM superfamily. Trends Biochem. Sci. 32:101-10
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 101-110
-
-
Wang, S.C.1
Frey, P.A.2
-
11
-
-
36048929198
-
Binding energy in the one-electron reductive cleavage of Sadenosylmethionine in lysine 2, 3-aminomutase, a radical SAM enzyme
-
Wang SC, Frey PA. 2007. Binding energy in the one-electron reductive cleavage of Sadenosylmethionine in lysine 2, 3-aminomutase, a radical SAM enzyme. Biochemistry 46:12889-95
-
(2007)
Biochemistry
, vol.46
, pp. 12889-12895
-
-
Wang, S.C.1
Frey, P.A.2
-
12
-
-
84866046539
-
Enzyme catalyzed formation of radicals from S-adenosylmethionine and inhibition of enzyme activity by the cleavage products
-
Hiscox MJ, Driesener RC, Roach PL. 2012. Enzyme catalyzed formation of radicals from S-adenosylmethionine and inhibition of enzyme activity by the cleavage products. Biochim. Biophys. Acta 1824:1165-77
-
(2012)
Biochim. Biophys. Acta
, vol.1824
, pp. 1165-1177
-
-
Hiscox, M.J.1
Driesener, R.C.2
Roach, P.L.3
-
13
-
-
0035282866
-
Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods
-
Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29:1097-106
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 1097-1106
-
-
Sofia, H.J.1
Chen, G.2
Hetzler, B.G.3
Reyes-Spindola, J.F.4
Miller, N.E.5
-
14
-
-
13844275460
-
Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-SAM" protein superfamily
-
Walsby CJ, Ortillo D, Yang J, Nnyepi MR, Broderick WE, et al. 2005. Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-SAM" protein superfamily. Inorg. Chem. 44:727-41
-
(2005)
Inorg. Chem.
, vol.44
, pp. 727-741
-
-
Walsby, C.J.1
Ortillo, D.2
Yang, J.3
Nnyepi, M.R.4
Broderick, W.E.5
-
16
-
-
84961978565
-
S K-edge XAS and DFT calculations on SAM-dependent pyruvate formate-lyase activating enzyme: Nature of interaction between the Fe4S4 cluster and SAM and its role in reactivity
-
Dey A, Peng Y, Broderick WE, Hedman B, Hodgson KO, et al. 2011. S K-edge XAS and DFT calculations on SAM-dependent pyruvate formate-lyase activating enzyme: Nature of interaction between the Fe4S4 cluster and SAM and its role in reactivity. J. Am. Chem. Soc. 133:18656-62
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 18656-18662
-
-
Dey, A.1
Peng, Y.2
Broderick, W.E.3
Hedman, B.4
Hodgson, K.O.5
-
17
-
-
0034719099
-
Direct FeS cluster involvement in generation of a radical in lysine 2, 3-aminomutase
-
Cosper NJ, Booker SJ, Ruzicka F, FreyPA, ScottRA. 2000. Direct FeS cluster involvement in generation of a radical in lysine 2, 3-aminomutase. Biochemistry 39:15668-73
-
(2000)
Biochemistry
, vol.39
, pp. 15668-15673
-
-
Cosper, N.J.1
Booker, S.J.2
Ruzicka, F.3
Frey, P.A.4
Scott, R.A.5
-
18
-
-
70349381588
-
Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins
-
Nicolet Y, Amara P, Mouesca J-M, Fontecilla-Camps JC. 2009. Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins. PNAS 106:14867-71
-
(2009)
PNAS
, vol.106
, pp. 14867-14871
-
-
Nicolet, Y.1
Amara, P.2
Mouesca, J.-M.3
Fontecilla-Camps, J.C.4
-
19
-
-
84922901929
-
SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes
-
Grell TA, Goldman PJ, Drennan CL. 2015. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290:3964-71
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 3964-3971
-
-
Grell, T.A.1
Goldman, P.J.2
Drennan, C.L.3
-
20
-
-
84974732569
-
-
Deleted in proof
-
Deleted in proof
-
-
-
-
21
-
-
84891817304
-
The structure-function linkage database
-
Akiva E, Brown S, Almonacid DE, Barber AE 2nd, Custer AF, et al. 2014. The structure-function linkage database. Nucleic Acids Res. 42:D521-30
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D521-D530
-
-
Akiva, E.1
Brown, S.2
Almonacid, D.E.3
Barber, I.I.A.E.4
Custer, A.F.5
-
23
-
-
68949107281
-
Molybdenum cofactors, enzymes and pathways
-
Schwarz G, Mendel RR, Ribbe MW. 2009. Molybdenum cofactors, enzymes and pathways. Nature 460:839-47
-
(2009)
Nature
, vol.460
, pp. 839-847
-
-
Schwarz, G.1
Mendel, R.R.2
Ribbe, M.W.3
-
24
-
-
67649875830
-
Molybdenum enzymes
-
ed. I Bertini, HB Gray, EI Stiefel, JS Valentine, . Sausalito, CA: University Science Books
-
McMaster J, Garner CD, Stiefel EI. 2007. Molybdenum enzymes. In Biological Inorganic Chemistry: Structure and Reactivity, ed. I Bertini, HB Gray, EI Stiefel, JS Valentine, pp. 518-30. Sausalito, CA: University Science Books
-
(2007)
Biological Inorganic Chemistry: Structure and Reactivity
, pp. 518-530
-
-
McMaster, J.1
Garner, C.D.2
Stiefel, E.I.3
-
25
-
-
33745933654
-
Molybdenum cofactor biosynthesis and molybdenum enzymes
-
Schwarz G, Mendel RR. 2006. Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu. Rev. Plant Biol. 57:623-47
-
(2006)
Annu. Rev. Plant Biol.
, vol.57
, pp. 623-647
-
-
Schwarz, G.1
Mendel, R.R.2
-
26
-
-
0032126771
-
Rearrangement reactions in the biosynthesis of molybdopterin: An NMR study with multiply 13C/15N labelled precursors
-
Rieder C, Eisenreich W, O'Brien J, Richter G, Gotze E, et al. 1998. Rearrangement reactions in the biosynthesis of molybdopterin: An NMR study with multiply 13C/15N labelled precursors. Eur. J. Biochem. 255:24-36
-
(1998)
Eur. J. Biochem.
, vol.255
, pp. 24-36
-
-
Rieder, C.1
Eisenreich, W.2
O'Brien, J.3
Richter, G.4
Gotze, E.5
-
27
-
-
0028819468
-
Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies
-
Wuebbens MM, Rajagopalan KV. 1995. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J. Biol. Chem. 270:1082-87
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 1082-1087
-
-
Wuebbens, M.M.1
Rajagopalan, K.V.2
-
28
-
-
0037166328
-
Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis
-
Hänzelmann P, Schwartz G, Mendel RR. 2002. Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 277:18303-12
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 18303-18312
-
-
Hänzelmann, P.1
Schwartz, G.2
Mendel, R.R.3
-
29
-
-
4444346402
-
Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans
-
Hänzelmann P, Schindelin H. 2004. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. PNAS 101:12870-75
-
(2004)
PNAS
, vol.101
, pp. 12870-12875
-
-
Hänzelmann, P.1
Schindelin, H.2
-
30
-
-
33646468635
-
Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism
-
Hänzelmann P, Schindelin H. 2006. Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. PNAS 103:6829-34
-
(2006)
PNAS
, vol.103
, pp. 6829-6834
-
-
Hänzelmann, P.1
Schindelin, H.2
-
31
-
-
67649976798
-
ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: Mechanistic implications
-
Lees NS, Hänzelmann P, Hernandez HL, Subramanian S, Schindelin H, et al. 2009. ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: mechanistic implications. J. Am. Chem. Soc. 131:9184-85
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 9184-9185
-
-
Lees, N.S.1
Hänzelmann, P.2
Hernandez, H.L.3
Subramanian, S.4
Schindelin, H.5
-
32
-
-
84877262019
-
Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis
-
Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K. 2013. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J. Am. Chem. Soc. 135:7019-32
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 7019-7032
-
-
Hover, B.M.1
Loksztejn, A.2
Ribeiro, A.A.3
Yokoyama, K.4
-
33
-
-
84929441317
-
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis
-
Hover BM, Tonthat NK, Schumacher MA, Yokoyama K. 2015. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. PNAS 112:6347-52
-
(2015)
PNAS
, vol.112
, pp. 6347-6352
-
-
Hover, B.M.1
Tonthat, N.K.2
Schumacher, M.A.3
Yokoyama, K.4
-
34
-
-
84874066127
-
Catalysis of a new ribose carbon-insertion reaction by the molybdenum cofactor biosynthetic enzyme MoaA
-
Mehta AP, Hanes JW, Abdelwahed SH, Hilmey DG, Hänzelmann P, Begley TP. 2013. Catalysis of a new ribose carbon-insertion reaction by the molybdenum cofactor biosynthetic enzyme MoaA. Biochemistry 52:1134-36
-
(2013)
Biochemistry
, vol.52
, pp. 1134-1136
-
-
Mehta, A.P.1
Hanes, J.W.2
Abdelwahed, S.H.3
Hilmey, D.G.4
Hänzelmann, P.5
Begley, T.P.6
-
35
-
-
84881067917
-
Molybdopterin biosynthesis: Trapping an unusual purine ribose adduct in the MoaA-catalyzed reaction
-
Mehta AP, Abdelwahed SH, Begley TP. 2013. Molybdopterin biosynthesis: Trapping an unusual purine ribose adduct in the MoaA-catalyzed reaction. J. Am. Chem. Soc. 135:10883-85
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10883-10885
-
-
Mehta, A.P.1
Abdelwahed, S.H.2
Begley, T.P.3
-
36
-
-
84905269965
-
Molybdopterin biosynthesis: Trapping of intermediates for the MoaA-catalyzed reaction using 2-deoxyGTP and 2-chloroGTP as substrate analogues
-
Mehta AP, Abdelwahed SH, XuH, Begley TP. 2014. Molybdopterin biosynthesis: Trapping of intermediates for the MoaA-catalyzed reaction using 2-deoxyGTP and 2-chloroGTP as substrate analogues. J. Am. Chem. Soc. 136:10609-14
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 10609-10614
-
-
Mehta, A.P.1
Abdelwahed, S.H.2
Xu, H.3
Begley, T.P.4
-
37
-
-
3042777530
-
Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli
-
Schwarz G, Santamaria-Araujo JA, Wolf S, Lee H-J, Adham IM, et al. 2004. Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli. Hum. Mol. Genet. 13:1249-55
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 1249-1255
-
-
Schwarz, G.1
Santamaria-Araujo, J.A.2
Wolf, S.3
Lee, H.-J.4
Adham, I.M.5
-
38
-
-
0038579490
-
Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH
-
Reiss J, Johnson JL. 2003. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH. Hum. Mutat. 21:569-76
-
(2003)
Hum. Mutat.
, vol.21
, pp. 569-576
-
-
Reiss, J.1
Johnson, J.L.2
-
39
-
-
0037238787
-
Prenatal diagnosis of molybdenum cofactor deficiency and isolated sulfite oxidase deficiency
-
Johnson JL. 2003. Prenatal diagnosis of molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. Prenat. Diagn. 23:6-8
-
(2003)
Prenat. Diagn.
, vol.23
, pp. 6-8
-
-
Johnson, J.L.1
-
40
-
-
0037115493
-
Molybdenum cofactor-deficient mice resemble the phenotype of human patients
-
Lee H-J, Adham IM, Schwarz G, Kneussel M, Sass JO, et al. 2002. Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum. Mol. Genet. 11:3309-17
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 3309-3317
-
-
Lee, H.-J.1
Adham, I.M.2
Schwarz, G.3
Kneussel, M.4
Sass, J.O.5
-
41
-
-
0018051652
-
Combined deficiency of xanthine oxidase and sulphite oxidase: A defect of molybdenum metabolism or transport?
-
Duran M, Beemer FA, van de Heiden C, Korteland J, de Bree PK, et al. 1978. Combined deficiency of xanthine oxidase and sulphite oxidase: A defect of molybdenum metabolism or transport? J. Inherit. Metab. Dis. 1:175-78
-
(1978)
J. Inherit. Metab. Dis.
, vol.1
, pp. 175-178
-
-
Duran, M.1
Beemer, F.A.2
Van De Heiden, C.3
Korteland, J.4
De Bree, P.K.5
-
42
-
-
0032436716
-
Genomic structure andmutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A
-
Reiss J, Christensen E, KurlemannG, Zabot M-T, Dorche C. 1998. Genomic structure andmutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A. Hum. Genet. 103:639-44
-
(1998)
Hum. Genet.
, vol.103
, pp. 639-644
-
-
Reiss, J.1
Christensen, E.2
Kurlemann, G.3
Zabot, M.-T.4
Dorche, C.5
-
43
-
-
27544453316
-
Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase
-
Leimkuhler S, Charcosset M, Latour P, Dorche C, Kleppe S, et al. 2005. Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase. Hum. Genet. 117:565-70
-
(2005)
Hum. Genet.
, vol.117
, pp. 565-570
-
-
Leimkuhler, S.1
Charcosset, M.2
Latour, P.3
Dorche, C.4
Kleppe, S.5
-
44
-
-
33646468635
-
Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism
-
Hänzelmann P, Schindelin H. 2006. Binding of 5-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. PNAS 103:6829-34
-
(2006)
PNAS
, vol.103
, pp. 6829-6834
-
-
Hänzelmann, P.1
Schindelin, H.2
-
45
-
-
84974682043
-
-
Deleted in proof
-
Deleted in proof
-
-
-
-
46
-
-
77951821454
-
Successful treatment of molybdenum cofactor deficiency type A with cPMP
-
Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, et al. 2010. Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249-54
-
(2010)
Pediatrics
, vol.125
, pp. e1249-e1254
-
-
Veldman, A.1
Santamaria-Araujo, J.A.2
Sollazzo, S.3
Pitt, J.4
Gianello, R.5
-
47
-
-
2642644904
-
Multienzyme complexes
-
Reed L. 1974. Multienzyme complexes. Acc. Chem. Res. 7:40-46
-
(1974)
Acc. Chem. Res.
, vol.7
, pp. 40-46
-
-
Reed, L.1
-
48
-
-
0034773628
-
Molecular aspects of lipoic acid in the prevention of diabetes complications
-
Packer L, Kraemer K, Rimbach G. 2001. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17:888-95
-
(2001)
Nutrition
, vol.17
, pp. 888-895
-
-
Packer, L.1
Kraemer, K.2
Rimbach, G.3
-
49
-
-
84862937339
-
Reduced expression of lipoic acid synthase accelerates diabetic nephropathy
-
Yi X, Xu L, Hiller S, Kim HS, Nickeleit V, et al. 2012. Reduced expression of lipoic acid synthase accelerates diabetic nephropathy. J. Am. Soc. Nephrol. 23:103-11
-
(2012)
J. Am. Soc. Nephrol.
, vol.23
, pp. 103-111
-
-
Yi, X.1
Xu, L.2
Hiller, S.3
Kim, H.S.4
Nickeleit, V.5
-
50
-
-
62749126684
-
Lipoic acid synthase (LASY): A novel role in inflammation, mitochondrial function, and insulin resistance
-
Padmalayam I, Hasham S, Saxena U, Pillarisetti S. 2009. Lipoic acid synthase (LASY): A novel role in inflammation, mitochondrial function, and insulin resistance. Diabetes 58:600-608
-
(2009)
Diabetes
, vol.58
, pp. 600-608
-
-
Padmalayam, I.1
Hasham, S.2
Saxena, U.3
Pillarisetti, S.4
-
51
-
-
26444504579
-
Function, attachment and synthesis of lipoic acid in Escherichia coli
-
Cronan JE, Zhao X, Jiang Y. 2005. Function, attachment and synthesis of lipoic acid in Escherichia coli. Adv. Microb. Physiol. 50:103-46
-
(2005)
Adv. Microb. Physiol.
, vol.50
, pp. 103-146
-
-
Cronan, J.E.1
Zhao, X.2
Jiang, Y.3
-
52
-
-
0031026270
-
Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production
-
Wada H, Shintani D, Ohlrogge J. 1997. Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. PNAS 94:1591-96
-
(1997)
PNAS
, vol.94
, pp. 1591-1596
-
-
Wada, H.1
Shintani, D.2
Ohlrogge, J.3
-
53
-
-
0035800735
-
Purification, characterization, and cDNA cloning of lipoate-activating enzyme from bovine liver
-
Fujiwara K, Takeuchi S, Okamura-Ikeda K, Motokawa Y. 2001. Purification, characterization, and cDNA cloning of lipoate-activating enzyme from bovine liver. J. Biol. Chem. 276:28819-23
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 28819-28823
-
-
Fujiwara, K.1
Takeuchi, S.2
Okamura-Ikeda, K.3
Motokawa, Y.4
-
54
-
-
0028244665
-
Purification and characterization of lipoyl-AMP: N epsilon-lysine lipoyltransferase from bovine liver mitochondria
-
Fujiwara K, Okamura-Ikeda K, Motokawa Y. 1994. Purification and characterization of lipoyl-AMP:N epsilon-lysine lipoyltransferase from bovine liver mitochondria. J. Biol. Chem. 269:16605-9
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 16605-16609
-
-
Fujiwara, K.1
Okamura-Ikeda, K.2
Motokawa, Y.3
-
55
-
-
17544383938
-
Lipoylation of acyltransferase components of ketoacid dehydrogenase complexes
-
Fujiwara K, Okamura-Ikeda K, Motokawa Y. 1996. Lipoylation of acyltransferase components of ketoacid dehydrogenase complexes. J. Biol. Chem. 271:12932-36
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 12932-12936
-
-
Fujiwara, K.1
Okamura-Ikeda, K.2
Motokawa, Y.3
-
56
-
-
84904626958
-
Lipoic acid biosynthesis and enzymology
-
ed. LMander, H-W Liu, Oxford: Elsevier
-
Billgren ES, Cicchillo RM, Nesbitt NM, Booker SJ. 2010. Lipoic acid biosynthesis and enzymology. In Comprehensive Natural Products II Chemistry and Biology, ed. LMander, H-W Liu, pp. 181-212. Oxford: Elsevier
-
(2010)
Comprehensive Natural Products II Chemistry and Biology
, pp. 181-212
-
-
Billgren, E.S.1
Cicchillo, R.M.2
Nesbitt, N.M.3
Booker, S.J.4
-
57
-
-
84927166656
-
The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor
-
ed. TA Rouault. Berlin: Walter de Gruyter
-
Lanz ND, Booker SJ. 2014. The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor. In Iron-Sulfur Clusters in Chemistry and Biology, ed. TA Rouault, pp. 211-31. Berlin:Walter de Gruyter
-
(2014)
Iron-Sulfur Clusters in Chemistry and Biology
, pp. 211-231
-
-
Lanz, N.D.1
Booker, S.J.2
-
58
-
-
4644229658
-
Escherichia coli lipoyl synthase binds two distinct [4Fe-4S] clusters per polypeptide
-
Cicchillo RM, Lee K-H, Baleanu-Gogonea C, Nesbitt NM, Krebs C, Booker SJ. 2004. Escherichia coli lipoyl synthase binds two distinct [4Fe-4S] clusters per polypeptide. Biochemistry 43:11770-81
-
(2004)
Biochemistry
, vol.43
, pp. 11770-11781
-
-
Cicchillo, R.M.1
Lee, K.-H.2
Baleanu-Gogonea, C.3
Nesbitt, N.M.4
Krebs, C.5
Booker, S.J.6
-
59
-
-
84908387322
-
Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions
-
Harmer JE, Hiscox MJ, Dinis PC, Fox SJ, Lliopoulos A, et al. 2014. Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions. Biochem. J. 464:123-33
-
(2014)
Biochem. J.
, vol.464
, pp. 123-133
-
-
Harmer, J.E.1
Hiscox, M.J.2
Dinis, P.C.3
Fox, S.J.4
Lliopoulos, A.5
-
60
-
-
14844317304
-
Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: Both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide
-
Cicchillo RM, Booker SJ. 2005. Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: Both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J. Am. Chem. Soc. 127:2860-61
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 2860-2861
-
-
Cicchillo, R.M.1
Booker, S.J.2
-
61
-
-
84904628766
-
Evidence for a catalytically and kinetically competent enzyme-substrate cross-linked intermediate in catalysis by lipoyl synthase
-
Lanz ND, Pandelia ME, Kakar ES, Lee K-H, Krebs C, Booker SJ. 2014. Evidence for a catalytically and kinetically competent enzyme-substrate cross-linked intermediate in catalysis by lipoyl synthase. Biochemistry 53:4557-72
-
(2014)
Biochemistry
, vol.53
, pp. 4557-4572
-
-
Lanz, N.D.1
Pandelia, M.E.2
Kakar, E.S.3
Lee, K.-H.4
Krebs, C.5
Booker, S.J.6
-
62
-
-
35348886232
-
Lipoyl synthase inserts sulfur atoms into an octanoyl substrate in a stepwise manner
-
Douglas P, Kriek M, Bryant P, Roach PL. 2006. Lipoyl synthase inserts sulfur atoms into an octanoyl substrate in a stepwise manner. Angew. Chem. 118:5321-23
-
(2006)
Angew. Chem.
, vol.118
, pp. 5321-5323
-
-
Douglas, P.1
Kriek, M.2
Bryant, P.3
Roach, P.L.4
-
63
-
-
0001179909
-
Biosynthesis of lipoic acid. 2. Stereochemistry of sulfur introduction at C-6 of octanoic acid
-
Parry RJ, Trainor DA. 1978. Biosynthesis of lipoic acid. 2. Stereochemistry of sulfur introduction at C-6 of octanoic acid. J. Am. Chem. Soc. 100:5243-44
-
(1978)
J. Am. Chem. Soc.
, vol.100
, pp. 5243-5244
-
-
Parry, R.J.1
Trainor, D.A.2
-
65
-
-
2542641045
-
Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid
-
Cicchillo RM, Iwig DF, Jones AD, Nesbitt NM, Baleanu-Gogonea C, et al. 2004. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43:6378-86
-
(2004)
Biochemistry
, vol.43
, pp. 6378-6386
-
-
Cicchillo, R.M.1
Iwig, D.F.2
Jones, A.D.3
Nesbitt, N.M.4
Baleanu-Gogonea, C.5
-
66
-
-
84893819382
-
Variant nonketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5
-
Baker PR 2nd, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K, et al. 2014. Variant nonketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137:366-79
-
(2014)
Brain
, vol.137
, pp. 366-379
-
-
Baker, I.I.P.R.1
Friederich, M.W.2
Swanson, M.A.3
Shaikh, T.4
Bhattacharya, K.5
-
67
-
-
84904093112
-
Lipoic acid biosynthesis defects
-
Mayr JA, Feichtinger RG, Tort F, Ribes A, SperlW. 2014. Lipoic acid biosynthesis defects. J. Inherit. Metab. Dis. 37:553-63
-
(2014)
J. Inherit. Metab. Dis.
, vol.37
, pp. 553-563
-
-
Mayr, J.A.1
Feichtinger, R.G.2
Tort, F.3
Ribes, A.4
Sperl, W.5
-
68
-
-
84945272423
-
Novel compound heterozygous LIAS mutations cause glycine encephalopathy
-
Tsurusaki Y, Tanaka R, Shimada S, Shimojima K, ShiinaM, et al. 2015. Novel compound heterozygous LIAS mutations cause glycine encephalopathy. J. Hum. Genet. 60:631-35
-
(2015)
J. Hum. Genet.
, vol.60
, pp. 631-635
-
-
Tsurusaki, Y.1
Tanaka, R.2
Shimada, S.3
Shimojima, K.4
Shiina, M.5
-
69
-
-
8844270815
-
Natural history of nonketotic hyperglycinemia in 65 patients
-
Hoover-Fong JE, Shah S, Van Hove JL, Applegarth D, Toone J, Hamosh A. 2004. Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 63:1847-53
-
(2004)
Neurology
, vol.63
, pp. 1847-1853
-
-
Hoover-Fong, J.E.1
Shah, S.2
Van Hove, J.L.3
Applegarth, D.4
Toone, J.5
Hamosh, A.6
-
70
-
-
83455253737
-
Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation
-
Mayr JA, Zimmermann FA, Fauth C, Bergheim C, Meierhofer D, et al. 2011. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am. J. Hum. Genet. 89:792-97
-
(2011)
Am. J. Hum. Genet.
, vol.89
, pp. 792-797
-
-
Mayr, J.A.1
Zimmermann, F.A.2
Fauth, C.3
Bergheim, C.4
Meierhofer, D.5
-
71
-
-
47249142777
-
Iron-sulfur cluster biogenesis and human disease
-
Rouault TA, Tong WH. 2008. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24:398-407
-
(2008)
Trends Genet.
, vol.24
, pp. 398-407
-
-
Rouault, T.A.1
Tong, W.H.2
-
72
-
-
84897000909
-
Mitochondrial iron-sulfur protein biogenesis and human disease
-
StehlingO, WilbrechtC, Lill R. 2014. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61-77
-
(2014)
Biochimie
, vol.100
, pp. 61-77
-
-
Stehling, O.1
Wilbrecht, C.2
Lill, R.3
-
73
-
-
80053898097
-
Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes
-
Cameron JM, Janer A, Levandovskiy V, Mackay N, Rouault TA, et al. 2011. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am. J. Hum. Genet. 89:486-95
-
(2011)
Am. J. Hum. Genet.
, vol.89
, pp. 486-495
-
-
Cameron, J.M.1
Janer, A.2
Levandovskiy, V.3
Mackay, N.4
Rouault, T.A.5
-
74
-
-
84917736963
-
Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations
-
Invernizzi F, Ardissone A, Lamantea E, Garavaglia B, Zeviani M, et al. 2014. Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations. Front. Genet. 5:412
-
(2014)
Front. Genet.
, vol.5
, pp. 412
-
-
Invernizzi, F.1
Ardissone, A.2
Lamantea, E.3
Garavaglia, B.4
Zeviani, M.5
-
75
-
-
80955133245
-
A fatal mitochondrial disease is associated with defectiveNFU1 function in the maturation of a subset of mitochondrial Fe-S proteins
-
Navarro-Sastre A, Tort F, StehlingO, UzarskaMA, Arranz JA, et al. 2011. A fatal mitochondrial disease is associated with defectiveNFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am. J. Hum. Genet. 89:656-67
-
(2011)
Am. J. Hum. Genet.
, vol.89
, pp. 656-667
-
-
Navarro-Sastre, A.1
Tort, F.2
Stehling, O.3
Uzarska, M.A.4
Arranz, J.A.5
-
76
-
-
84899971298
-
Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency
-
Nizon M, Boutron A, Boddaert N, Slama A, Delpech H, et al. 2014. Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency. Mitochondrion 15:59-64
-
(2014)
Mitochondrion
, vol.15
, pp. 59-64
-
-
Nizon, M.1
Boutron, A.2
Boddaert, N.3
Slama, A.4
Delpech, H.5
-
77
-
-
0035121867
-
A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13
-
Seyda A, Newbold RF, Hudson TJ, Verner A, MacKay N, et al. 2001. A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13. Am. J. Hum. Genet. 68:386-96
-
(2001)
Am. J. Hum. Genet.
, vol.68
, pp. 386-396
-
-
Seyda, A.1
Newbold, R.F.2
Hudson, T.J.3
Verner, A.4
MacKay, N.5
-
78
-
-
84870152928
-
Biosynthesis and function of posttranscriptional modifications of transfer RNAs
-
El Yacoubi B, Bailly M, de Crécy-Lagard V. 2012. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46:69-95
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 69-95
-
-
El Yacoubi, B.1
Bailly, M.2
De Crécy-Lagard, V.3
-
80
-
-
78649637486
-
S-adenosylmethioninedependent radical-based modification of biological macromolecules
-
Atta M, Mulliez E, Arragain S, Forouhar F, Hunt JF, Fontecave M. 2010. S-adenosylmethioninedependent radical-based modification of biological macromolecules. Curr. Opin. Struct. Biol. 20:1-9
-
(2010)
Curr. Opin. Struct. Biol.
, vol.20
, pp. 1-9
-
-
Atta, M.1
Mulliez, E.2
Arragain, S.3
Forouhar, F.4
Hunt, J.F.5
Fontecave, M.6
-
81
-
-
78049430605
-
Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis
-
Anton BP, Russell SP, Vertrees J, Kasif S, Raleigh EA, et al. 2010. Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis. Nucleic Acids Res. 38:6195-205
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 6195-6205
-
-
Anton, B.P.1
Russell, S.P.2
Vertrees, J.3
Kasif, S.4
Raleigh, E.A.5
-
82
-
-
77949332141
-
Post-translational modification of ribosomal proteins: Structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase
-
Arragain S, Garcá-Serres R, Blondin G, Douki T, Clemancey M, et al. 2010. Post-translational modification of ribosomal proteins: structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase. J. Biol. Chem. 285:5792-801 82a.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5792-80182
-
-
Arragain, S.1
Garcá-Serres, R.2
Blondin, G.3
Douki, T.4
Clemancey, M.5
-
83
-
-
84960403933
-
Stereochemical course of the reaction catalyzed by RimO, a radical SAM methylthiotransferase
-
Landgraf BJ, Booker SJ. 2016. Stereochemical course of the reaction catalyzed by RimO, a radical SAM methylthiotransferase. J. Am. Chem. Soc. 138:2889-92
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 2889-2892
-
-
Landgraf, B.J.1
Booker, S.J.2
-
84
-
-
40849111520
-
RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli
-
Anton BP, Saleh L, Benner JS, Raleigh EA, Kasif S, Roberts RJ. 2008. RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. PNAS 105:1826-31
-
(2008)
PNAS
, vol.105
, pp. 1826-1831
-
-
Anton, B.P.1
Saleh, L.2
Benner, J.S.3
Raleigh, E.A.4
Kasif, S.5
Roberts, R.J.6
-
85
-
-
77956514978
-
Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA
-
Arragain S, Handelman SK, Forouhar F, Wei FY, Tomizawa K, et al. 2010. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem. 285:28425-33
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 28425-28433
-
-
Arragain, S.1
Handelman, S.K.2
Forouhar, F.3
Wei, F.Y.4
Tomizawa, K.5
-
86
-
-
0037134469
-
Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein
-
Pierrel F, Björk GR, Fontecave M, Atta M. 2002. Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein. J. Biol. Chem. 277:13367-70
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 13367-13370
-
-
Pierrel, F.1
Björk, G.R.2
Fontecave, M.3
Atta, M.4
-
87
-
-
9144220291
-
MiaB protein is a bifunctional radical-Sadenosylmethionine enzyme involved in thiolation and methylation of tRNA
-
Pierrel F, Douki T, Fontecave M, Atta M. 2004. MiaB protein is a bifunctional radical-Sadenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem. 279:47555-653
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47555-47653
-
-
Pierrel, F.1
Douki, T.2
Fontecave, M.3
Atta, M.4
-
88
-
-
84946074739
-
The InterPro protein families database: The classification resource after 15 years
-
Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, et al. 2015. The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res. 43:D213-21
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D213-D221
-
-
Mitchell, A.1
Chang, H.Y.2
Daugherty, L.3
Fraser, M.4
Hunter, S.5
-
89
-
-
0014968396
-
N6-(2-isopentenyl)adenosine: Biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli
-
Bartz JK, Kline LK, Soll D. 1970. N6-(2-isopentenyl)adenosine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli. Biochem. Biophys. Res. Commun. 40:1481-87
-
(1970)
Biochem. Biophys. Res. Commun.
, vol.40
, pp. 1481-1487
-
-
Bartz, J.K.1
Kline, L.K.2
Soll, D.3
-
90
-
-
0015523674
-
-2-Isopentenylpyrophosphate: Transfer ribonucleic acid -2-isopentenyltransferase from Escherichia coli. Purification and properties of the enzyme
-
Rosenbaum N, Gefter ML. 1972. -2-Isopentenylpyrophosphate: Transfer ribonucleic acid -2-isopentenyltransferase from Escherichia coli. Purification and properties of the enzyme. J. Biol. Chem. 247:5675-80
-
(1972)
J. Biol. Chem.
, vol.247
, pp. 5675-5680
-
-
Rosenbaum, N.1
Gefter, M.L.2
-
91
-
-
84859994582
-
Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside
-
Deutsch C, El Yacoubi B, de Crecy-Lagard V, Iwata-ReuylD. 2012. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J. Biol. Chem. 287:13666-73
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 13666-13673
-
-
Deutsch, C.1
El Yacoubi, B.2
De Crecy-Lagard, V.3
Iwata-Reuyl, D.4
-
92
-
-
0025974215
-
Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations
-
Connolly DM, Winkler ME. 1991. Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J. Bacteriol. 173:1711-21
-
(1991)
J. Bacteriol.
, vol.173
, pp. 1711-1721
-
-
Connolly, D.M.1
Winkler, M.E.2
-
93
-
-
0028986353
-
The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA
-
Esberg B, Björk GR. 1995. The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J. Bacteriol. 177:1967-75
-
(1995)
J. Bacteriol.
, vol.177
, pp. 1967-1975
-
-
Esberg, B.1
Björk, G.R.2
-
94
-
-
0035801515
-
Improvement of reading frame maintenance is a common function for several tRNA modifications
-
Urbonavicius J, Qian Q, Durand JMB, Hagervall TG, Björk GR. 2001. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20:4863-73
-
(2001)
EMBO J.
, vol.20
, pp. 4863-4873
-
-
Urbonavicius, J.1
Qian, Q.2
Durand, J.M.B.3
Hagervall, T.G.4
Björk, G.R.5
-
95
-
-
84879097741
-
Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases
-
Forouhar F, Arragain S, Atta M, Gambarelli S, Mouesca J-M, et al. 2013. Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat. Chem. Biol. 9:333-38
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 333-338
-
-
Forouhar, F.1
Arragain, S.2
Atta, M.3
Gambarelli, S.4
Mouesca, J.-M.5
-
96
-
-
70350215875
-
Characterization of RimO, a new member of themethylthiotransferase subclass of the radicalSAMsuperfamily
-
Lee K-H, Saleh L, Anton BP, Madinger CL, Benner JS, et al. 2009. Characterization of RimO, a new member of themethylthiotransferase subclass of the radicalSAMsuperfamily. Biochemistry 48:10162-74
-
(2009)
Biochemistry
, vol.48
, pp. 10162-10174
-
-
Lee, K.-H.1
Saleh, L.2
Anton, B.P.3
Madinger, C.L.4
Benner, J.S.5
-
97
-
-
0043032766
-
Characterization of an extremely thermophilic tRNA-methylthiotransferase
-
Pierrel F, Hernandez HL, Johnson MK, FontecaveM, Atta M. 2003. Characterization of an extremely thermophilic tRNA-methylthiotransferase. J. Biol. Chem. 278:29515-24
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 29515-29524
-
-
Pierrel, F.1
Hernandez, H.L.2
Johnson, M.K.3
Fontecave, M.4
Atta, M.5
-
98
-
-
84886888360
-
Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB
-
Landgraf BJ, Arcinas AJ, Lee K-H, Booker SJ. 2013. Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. J. Am. Chem. Soc. 135:15404-16
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 15404-15416
-
-
Landgraf, B.J.1
Arcinas, A.J.2
Lee, K.-H.3
Booker, S.J.4
-
100
-
-
4544241684
-
Cloning, characterization and expression of CDK5RAP1-v3 and CDK5RAP1-v4, two novel splice variants of human CDK5RAP1
-
Zou X, Ji C, Jin F, Liu J, WuM, et al. 2004. Cloning, characterization and expression of CDK5RAP1-v3 and CDK5RAP1-v4, two novel splice variants of human CDK5RAP1. Genes Genet. Syst. 79:177-82
-
(2004)
Genes Genet. Syst.
, vol.79
, pp. 177-182
-
-
Zou, X.1
Ji, C.2
Jin, F.3
Liu, J.4
Wu, M.5
-
101
-
-
0037013311
-
Identification of a neuronal Cdk5 activatorbinding protein as Cdk5 inhibitor
-
Ching Y-P, Pang ASH, Lam W-H, Qi RZ, Wang JH. 2002. Identification of a neuronal Cdk5 activatorbinding protein as Cdk5 inhibitor. J. Biol. Chem. 277:15237-40
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 15237-15240
-
-
Ching, Y.-P.1
Pang, A.S.H.2
Lam, W.-H.3
Qi, R.Z.4
Wang, J.H.5
-
103
-
-
84864450117
-
The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA
-
Reiter V, Matschkal DMS, WagnerM, Globisch D, Kneuttinger AC, et al. 2012. The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA. Nucleic Acids Res. 40:6235-40
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 6235-6240
-
-
Reiter, V.1
Matschkal, D.M.S.2
Wagner, M.3
Globisch, D.4
Kneuttinger, A.C.5
-
104
-
-
84924408965
-
Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans
-
Wei FY, Zhou B, Suzuki T, Miyata K, Ujihara Y, et al. 2015. Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans. Cell Metab. 21:428-42
-
(2015)
Cell Metab.
, vol.21
, pp. 428-442
-
-
Wei, F.Y.1
Zhou, B.2
Suzuki, T.3
Miyata, K.4
Ujihara, Y.5
-
105
-
-
19444386899
-
Unusual usage of wobble modifications in mitochondrial tRNAs of the nematode Ascaris suum
-
Sakurai M, Ohtsuki T, Suzuki T, Watanabe K. 2005. Unusual usage of wobble modifications in mitochondrial tRNAs of the nematode Ascaris suum. FEBS Lett. 579:2767-72
-
(2005)
FEBS Lett.
, vol.579
, pp. 2767-2772
-
-
Sakurai, M.1
Ohtsuki, T.2
Suzuki, T.3
Watanabe, K.4
-
106
-
-
34249888775
-
Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels
-
Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. 2007. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331-36
-
(2007)
Science
, vol.316
, pp. 1331-1336
-
-
Saxena, R.1
Voight, B.F.2
Lyssenko, V.3
Burtt, N.P.4
De Bakker, P.I.5
-
107
-
-
34249885875
-
A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants
-
Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. 2007. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341-45
-
(2007)
Science
, vol.316
, pp. 1341-1345
-
-
Scott, L.J.1
Mohlke, K.L.2
Bonnycastle, L.L.3
Willer, C.J.4
Li, Y.5
-
108
-
-
34249828965
-
A variant in CDKAL1 influences insulin response and risk of type 2 diabetes
-
Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, et al. 2007. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39:770-75
-
(2007)
Nat. Genet.
, vol.39
, pp. 770-775
-
-
Steinthorsdottir, V.1
Thorleifsson, G.2
Reynisdottir, I.3
Benediktsson, R.4
Jonsdottir, T.5
-
109
-
-
34249895023
-
Replication of genomewide association signals in UK samples reveals risk loci for type 2 diabetes
-
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. 2007. Replication of genomewide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336-41
-
(2007)
Science
, vol.316
, pp. 1336-1341
-
-
Zeggini, E.1
Weedon, M.N.2
Lindgren, C.M.3
Frayling, T.M.4
Elliott, K.S.5
-
110
-
-
80052375980
-
Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice
-
Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, et al. 2011. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 121:3598-608
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3598-3608
-
-
Wei, F.Y.1
Suzuki, T.2
Watanabe, S.3
Kimura, S.4
Kaitsuka, T.5
-
111
-
-
0345304724
-
Naturally-occurring modification restricts the anticodon domain conformational space of tRNAPhe
-
Stuart JW, Koshlap KM, Guenther R, Agris PF. 2003. Naturally-occurring modification restricts the anticodon domain conformational space of tRNAPhe. J. Mol. Biol. 334:901-18
-
(2003)
J. Mol. Biol.
, vol.334
, pp. 901-918
-
-
Stuart, J.W.1
Koshlap, K.M.2
Guenther, R.3
Agris, P.F.4
-
112
-
-
33646778150
-
Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA
-
Noma A, Kirino Y, Ikeuchi Y, Suzuki T. 2006. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25:2142-54
-
(2006)
EMBO J.
, vol.25
, pp. 2142-2154
-
-
Noma, A.1
Kirino, Y.2
Ikeuchi, Y.3
Suzuki, T.4
-
113
-
-
34748889928
-
Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis
-
Goto-Ito S, Ishii R, Ito T, Shibata R, Fusatomi E, et al. 2007. Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis. Acta Crystallogr. Sect. D 63:1059-68
-
(2007)
Acta Crystallogr. Sect. D
, vol.63
, pp. 1059-1068
-
-
Goto-Ito, S.1
Ishii, R.2
Ito, T.3
Shibata, R.4
Fusatomi, E.5
-
114
-
-
34548504334
-
Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA
-
Suzuki Y, Noma A, Suzuki T, Senda M, Senda T, et al. 2007. Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA. J. Mol. Biol. 372:1204-14
-
(2007)
J. Mol. Biol.
, vol.372
, pp. 1204-1214
-
-
Suzuki, Y.1
Noma, A.2
Suzuki, T.3
Senda, M.4
Senda, T.5
-
115
-
-
82955169554
-
Pyruvate is the source of the two carbons that are required for formation of the imidazoline ring of 4-demethylwyosine
-
Young AP, Bandarian V. 2011. Pyruvate is the source of the two carbons that are required for formation of the imidazoline ring of 4-demethylwyosine. Biochemistry 50:10573-75
-
(2011)
Biochemistry
, vol.50
, pp. 10573-10575
-
-
Young, A.P.1
Bandarian, V.2
-
116
-
-
84934991057
-
Mechanistic studies of the radical S-adenosyl-L-methionine enzyme 4-demethylwyosine synthase reveal the site of hydrogen atom abstraction
-
Young AP, Bandarian V. 2015. Mechanistic studies of the radical S-adenosyl-L-methionine enzyme 4-demethylwyosine synthase reveal the site of hydrogen atom abstraction. Biochemistry 54:3569-72
-
(2015)
Biochemistry
, vol.54
, pp. 3569-3572
-
-
Young, A.P.1
Bandarian, V.2
-
117
-
-
84870350421
-
4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S]+2 cluster that interacts with the pyruvate co-substrate
-
Perche-Letuvée P, Kathirvelu V, Berggren G, Clemancey M, Latour J-M, et al. 2012. 4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S]+2 cluster that interacts with the pyruvate co-substrate. J. Biol. Chem. 287:41174-85
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 41174-41185
-
-
Perche-Letuvée, P.1
Kathirvelu, V.2
Berggren, G.3
Clemancey, M.4
Latour, J.-M.5
-
118
-
-
0029870925
-
Programmed translational frameshifting
-
Farabaugh PJ. 1996. Programmed translational frameshifting. Microbiol. Rev. 60:103-34
-
(1996)
Microbiol. Rev.
, vol.60
, pp. 103-134
-
-
Farabaugh, P.J.1
-
119
-
-
0024277965
-
Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region
-
Jacks T, Madhani HD, Masiarz FR, Varmus HE. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447-58
-
(1988)
Cell
, vol.55
, pp. 447-458
-
-
Jacks, T.1
Madhani, H.D.2
Masiarz, F.R.3
Varmus, H.E.4
-
120
-
-
0024789601
-
Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV
-
Hatfield D, Feng Y-X, Lee BJ, Rein A, Levin JG, Oroszlan S. 1989. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV. Virology 173:736-42
-
(1989)
Virology
, vol.173
, pp. 736-742
-
-
Hatfield, D.1
Feng, Y.-X.2
Lee, B.J.3
Rein, A.4
Levin, J.G.5
Oroszlan, S.6
-
121
-
-
0345624489
-
Transfer RNA modification status influences retroviral ribosomal frameshifting
-
Carlson BA, Kwon SY, Chamorro M, Oroszlan S, Hatfield DL, Lee BJ. 1999. Transfer RNA modification status influences retroviral ribosomal frameshifting. Virology 255:2-8
-
(1999)
Virology
, vol.255
, pp. 2-8
-
-
Carlson, B.A.1
Kwon, S.Y.2
Chamorro, M.3
Oroszlan, S.4
Hatfield, D.L.5
Lee, B.J.6
-
122
-
-
0035916013
-
1-Methylguanosine in place of y base at position 37 in phenylalanine tRNA is responsible for its shiftiness in retroviral ribosomal frameshifting
-
Carlson BA, Mushinski JF, Henderson DW, Kwon SY, Crain PF, et al. 2001. 1-Methylguanosine in place of Y base at position 37 in phenylalanine tRNA is responsible for its shiftiness in retroviral ribosomal frameshifting. Virology 279:130-35
-
(2001)
Virology
, vol.279
, pp. 130-135
-
-
Carlson, B.A.1
Mushinski, J.F.2
Henderson, D.W.3
Kwon, S.Y.4
Crain, P.F.5
-
123
-
-
0018421407
-
Tumor-associated phenylalanyl transfer RNA found in a wide spectrum of rat and mouse tumors but absent in normal adult, fetal, and regenerating tissues
-
Mushinski JF, Marini M. 1979. Tumor-associated phenylalanyl transfer RNA found in a wide spectrum of rat and mouse tumors but absent in normal adult, fetal, and regenerating tissues. Cancer Res. 39:1253-58
-
(1979)
Cancer Res.
, vol.39
, pp. 1253-1258
-
-
Mushinski, J.F.1
Marini, M.2
-
124
-
-
0020491299
-
Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe
-
Kuchino Y, Borek E, Grunberger D, Mushinski JF, Nishimura S. 1982. Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. Nucleic Acids Res. 10:6421-32
-
(1982)
Nucleic Acids Res.
, vol.10
, pp. 6421-6432
-
-
Kuchino, Y.1
Borek, E.2
Grunberger, D.3
Mushinski, J.F.4
Nishimura, S.5
-
125
-
-
0035980015
-
RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes
-
Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, et al. 2001. RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J. Biol. Chem. 276:32743-49
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 32743-32749
-
-
Winkler, G.S.1
Petrakis, T.G.2
Ethelberg, S.3
Tokunaga, M.4
Erdjument-Bromage, H.5
-
126
-
-
0037133562
-
Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo
-
Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ. 2002. Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. PNAS 99:3517-22
-
(2002)
PNAS
, vol.99
, pp. 3517-3522
-
-
Winkler, G.S.1
Kristjuhan, A.2
Erdjument-Bromage, H.3
Tempst, P.4
Svejstrup, J.Q.5
-
127
-
-
43249104840
-
Eukaryotic wobble uridine modifications promote a functionally redundant decoding system
-
Johansson MJO, Esberg A, Huang B, Björk GR, Byström AS. 2008. Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol. Cell. Biol. 28:3301-12
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 3301-3312
-
-
Johansson, M.J.O.1
Esberg, A.2
Huang, B.3
Björk, G.R.4
Byström, A.S.5
-
128
-
-
84878526158
-
Structural insights into Elongator function
-
Glatt S, Muller CW. 2013. Structural insights into Elongator function. Curr. Opin. Struct. Biol. 23:235-42
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 235-242
-
-
Glatt, S.1
Muller, C.W.2
-
129
-
-
0033166761
-
A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme
-
Wittschieben BØ, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, et al. 1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4:123-28
-
(1999)
Mol. Cell
, vol.4
, pp. 123-128
-
-
Wittschieben, B.Ø.1
Otero, G.2
De Bizemont, T.3
Fellows, J.4
Erdjument-Bromage, H.5
-
130
-
-
33645070795
-
The Elongator subunit Elp3 contains a Fe4S4 cluster and binds S-adenosylmethionine
-
Paraskevopoulou C, Fairhurst SA, Lowe DJ, Brick P, Onesti S. 2006. The Elongator subunit Elp3 contains a Fe4S4 cluster and binds S-adenosylmethionine. Mol. Microbiol. 59:795-806
-
(2006)
Mol. Microbiol.
, vol.59
, pp. 795-806
-
-
Paraskevopoulou, C.1
Fairhurst, S.A.2
Lowe, D.J.3
Brick, P.4
Onesti, S.5
-
131
-
-
15444371415
-
An early step inwobble uridine tRNA modification requires the Elongator complex
-
Huang B, JohanssonMJ, Bystrom AS. 2005. An early step inwobble uridine tRNA modification requires the Elongator complex. RNA 11:424-36
-
(2005)
RNA
, vol.11
, pp. 424-436
-
-
Huang, B.1
Johansson, M.J.2
Bystrom, A.S.3
-
132
-
-
0037169503
-
Purification and characterization of the human Elongator complex
-
Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, et al. 2002. Purification and characterization of the human Elongator complex. J. Biol. Chem. 277:3047-52
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 3047-3052
-
-
Hawkes, N.A.1
Otero, G.2
Winkler, G.S.3
Marshall, N.4
Dahmus, M.E.5
-
133
-
-
58649104923
-
An iron-sulfur cluster domain in Elp3 important for the structural integrity of elongator
-
Greenwood C, Selth LA, Dirac-Svejstrup AB, Svejstrup JQ. 2009. An iron-sulfur cluster domain in Elp3 important for the structural integrity of elongator. J. Biol. Chem. 284:141-49
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 141-149
-
-
Greenwood, C.1
Selth, L.A.2
Dirac-Svejstrup, A.B.3
Svejstrup, J.Q.4
-
134
-
-
75749142980
-
A role for the elongator complex in zygotic paternal genome demethylation
-
Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y. 2010. A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554-58
-
(2010)
Nature
, vol.463
, pp. 554-558
-
-
Okada, Y.1
Yamagata, K.2
Hong, K.3
Wakayama, T.4
Zhang, Y.5
-
135
-
-
84922060886
-
Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism
-
Selvadurai K, Wang P, Seimetz J, Huang RH. 2014. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat. Chem. Biol. 10:810-12
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 810-812
-
-
Selvadurai, K.1
Wang, P.2
Seimetz, J.3
Huang, R.H.4
-
137
-
-
0021809173
-
Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management
-
Tandan R, Bradley WG. 1985. Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann. Neurol. 18:271-80
-
(1985)
Ann. Neurol.
, vol.18
, pp. 271-280
-
-
Tandan, R.1
Bradley, W.G.2
-
138
-
-
58749097964
-
Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration
-
Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, et al. 2009. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet. 18:472-81
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 472-481
-
-
Simpson, C.L.1
Lemmens, R.2
Miskiewicz, K.3
Broom, W.J.4
Hansen, V.K.5
-
139
-
-
33644870049
-
Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila
-
Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, et al. 2006. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833-44
-
(2006)
Neuron
, vol.49
, pp. 833-844
-
-
Wagh, D.A.1
Rasse, T.M.2
Asan, E.3
Hofbauer, A.4
Schwenkert, I.5
-
140
-
-
83355177262
-
ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot
-
Mískiewicz K, Jose Liya E, Bento-Abreu A, Fislage M, Taes I, et al. 2011. ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron 72:776-88
-
(2011)
Neuron
, vol.72
, pp. 776-788
-
-
Mískiewicz, K.1
Jose Liya, E.2
Bento-Abreu, A.3
Fislage, M.4
Taes, I.5
-
141
-
-
0037072870
-
Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli
-
Layer G, Verfurth K, Mahlitz E, Jahn D. 2002. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J. Biol. Chem. 277:34136-42
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 34136-34142
-
-
Layer, G.1
Verfurth, K.2
Mahlitz, E.3
Jahn, D.4
-
142
-
-
17844394673
-
HemZ is essential for heme biosynthesis in Mycobacterium tuberculosis
-
Parish T, Schaeffer M, Roberts G, Duncan K. 2005. HemZ is essential for heme biosynthesis in Mycobacterium tuberculosis. Tuberculosis 85:197-204
-
(2005)
Tuberculosis
, vol.85
, pp. 197-204
-
-
Parish, T.1
Schaeffer, M.2
Roberts, G.3
Duncan, K.4
-
143
-
-
84974720706
-
-
Deleted in proof
-
Deleted in proof
-
-
-
-
144
-
-
0032844453
-
Transcriptional control of Bacillus subtilis hemN and hemZ
-
Homuth G, Rompf A, Schumann W, Jahn D. 1999. Transcriptional control of Bacillus subtilis hemN and hemZ. J. Bacteriol. 181:5922-29
-
(1999)
J. Bacteriol.
, vol.181
, pp. 5922-5929
-
-
Homuth, G.1
Rompf, A.2
Schumann, W.3
Jahn, D.4
-
146
-
-
33744457328
-
A deficiency in the region homologous to human 17q21. 33-q23. 2 causes heart defects in mice
-
Yu YE, MorishimaM, Pao A, Wang D-Y, Wen X-Y, et al. 2006. A deficiency in the region homologous to human 17q21. 33-q23. 2 causes heart defects in mice. Genetics 173:297-307
-
(2006)
Genetics
, vol.173
, pp. 297-307
-
-
Yu, Y.E.1
Morishima, M.2
Pao, A.3
Wang, D.-Y.4
Wen, X.-Y.5
-
147
-
-
84970982966
-
-
Philadelphia: Elsevier
-
Kliegman RM, Stanton BF, Schor NF, St. Geme JW III, Behrman RE, eds. 2011. Nelson Textbook of Pediatrics. Philadelphia: Elsevier
-
(2011)
Nelson Textbook of Pediatrics
-
-
Kliegman, R.M.1
Stanton, B.F.2
Schor, N.F.3
St Geme, J.W.4
Behrman, R.E.5
-
148
-
-
38849194747
-
Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus
-
Jiang D, Guo H, Xu C, Chang J, Gu B, et al. 2008. Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J. Virol. 82:1665-78
-
(2008)
J. Virol.
, vol.82
, pp. 1665-1678
-
-
Jiang, D.1
Guo, H.2
Xu, C.3
Chang, J.4
Gu, B.5
-
149
-
-
84864491073
-
HIV-1 infection of human macrophages directly induces viperin which inhibits viral production
-
Nasr N, Maddocks S, Turville SG, Harman AN, Woolger N, et al. 2012. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood 120:778-88
-
(2012)
Blood
, vol.120
, pp. 778-788
-
-
Nasr, N.1
Maddocks, S.2
Turville, S.G.3
Harman, A.N.4
Woolger, N.5
-
150
-
-
80655146257
-
The interferoninducible gene viperin restrictsWest Nile virus pathogenesis
-
Szretter KJ, Brien JD, Thackray LB, Virgin HW, Cresswell P, Diamond MS. 2011. The interferoninducible gene viperin restrictsWest Nile virus pathogenesis. J. Virol. 85:11557-66
-
(2011)
J. Virol.
, vol.85
, pp. 11557-11566
-
-
Szretter, K.J.1
Brien, J.D.2
Thackray, L.B.3
Virgin, H.W.4
Cresswell, P.5
Diamond, M.S.6
-
151
-
-
34547656276
-
The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts
-
Wang X, Hinson ER, Cresswell P. 2007. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2:96-105
-
(2007)
Cell Host Microbe
, vol.2
, pp. 96-105
-
-
Wang, X.1
Hinson, E.R.2
Cresswell, P.3
-
152
-
-
0035910046
-
Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus
-
Chin KC, Cresswell P. 2001. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. PNAS 98:15125-30
-
(2001)
PNAS
, vol.98
, pp. 15125-15130
-
-
Chin, K.C.1
Cresswell, P.2
-
153
-
-
73949106791
-
The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic helix
-
Hinson ER, CresswellP. 2009. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic helix. PNAS 106:20452-57
-
(2009)
PNAS
, vol.106
, pp. 20452-20457
-
-
Hinson, E.R.1
Cresswell, P.2
-
154
-
-
63249085868
-
The N-terminal amphipathic helix of viperinmediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion
-
Hinson ER, Cresswell P. 2009. The N-terminal amphipathic helix of viperinmediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion. J. Biol. Chem. 284:4705-12
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 4705-4712
-
-
Hinson, E.R.1
Cresswell, P.2
-
155
-
-
80055046485
-
The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A
-
Helbig KJ, EyreNS, Yip E, Narayana S, Li K, et al. 2011. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology 54:1506-17
-
(2011)
Hepatology
, vol.54
, pp. 1506-1517
-
-
Helbig, K.J.1
Eyre, N.S.2
Yip, E.3
Narayana, S.4
Li, K.5
-
156
-
-
1842457783
-
Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft
-
Gao L, Aizaki H, He JW, Lai MM. 2004. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J. Virol. 78:3480-88
-
(2004)
J. Virol.
, vol.78
, pp. 3480-3488
-
-
Gao, L.1
Aizaki, H.2
He, J.W.3
Lai, M.M.4
-
157
-
-
83755183779
-
Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33
-
Wang S, Wu X, Pan T, SongW, Wang Y, et al. 2012. Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33. J. Gen. Virol. 93:83-92
-
(2012)
J. Gen. Virol.
, vol.93
, pp. 83-92
-
-
Wang, S.1
Wu, X.2
Pan, T.3
Song, W.4
Wang, Y.5
-
158
-
-
77950368112
-
The antiviral protein viperin is a radical SAM enzyme
-
Duschene KS, Broderick JB. 2010. The antiviral protein viperin is a radical SAM enzyme. FEBS Lett. 584:1263-67
-
(2010)
FEBS Lett.
, vol.584
, pp. 1263-1267
-
-
Duschene, K.S.1
Broderick, J.B.2
-
159
-
-
73949157872
-
Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme
-
Shaveta G, Shi J, Chow VT, Song J. 2010. Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme. Biochem. Biophys. Res. Commun. 391:1390-95
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.391
, pp. 1390-1395
-
-
Shaveta, G.1
Shi, J.2
Chow, V.T.3
Song, J.4
-
160
-
-
84900537886
-
Viperin is an ironsulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity
-
Upadhyay AS, Vonderstein K, Pichlmair A, Stehling O, Bennett KL, et al. 2014. Viperin is an ironsulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cell Microbiol. 16:834-48
-
(2014)
Cell Microbiol.
, vol.16
, pp. 834-848
-
-
Upadhyay, A.S.1
Vonderstein, K.2
Pichlmair, A.3
Stehling, O.4
Bennett, K.L.5
-
161
-
-
84866901827
-
Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera Orthobunyavirus replication
-
Carlton-Smith C, Elliott RM. 2012. Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera Orthobunyavirus replication. J. Virol. 86:11548-57
-
(2012)
J. Virol.
, vol.86
, pp. 11548-11557
-
-
Carlton-Smith, C.1
Elliott, R.M.2
-
162
-
-
84906919951
-
HIV-1Vpr induces interferonstimulated genes in human monocyte-derived macrophages
-
Zahoor MA, Xue G, Sato H, Murakami T, Takeshima SN, Aida Y. 2014. HIV-1Vpr induces interferonstimulated genes in human monocyte-derived macrophages. PLOS ONE 9:e106418
-
(2014)
PLOS ONE
, vol.9
, pp. e106418
-
-
Zahoor, M.A.1
Xue, G.2
Sato, H.3
Murakami, T.4
Takeshima, S.N.5
Aida, Y.6
-
163
-
-
79957617805
-
Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity
-
Seo JY, Yaneva R, Hinson ER, Cresswell P. 2011. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 332:1093-97
-
(2011)
Science
, vol.332
, pp. 1093-1097
-
-
Seo, J.Y.1
Yaneva, R.2
Hinson, E.R.3
Cresswell, P.4
-
164
-
-
55249107198
-
The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells
-
Chan YL, Chang TH, Liao CL, Lin YL. 2008. The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells. J. Virol. 82:10455-64
-
(2008)
J. Virol.
, vol.82
, pp. 10455-10464
-
-
Chan, Y.L.1
Chang, T.H.2
Liao, C.L.3
Lin, Y.L.4
-
165
-
-
84907426399
-
Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41
-
Shen G, Wang K, Wang S, Cai M, Li ML, Zheng C. 2014. Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41. J. Virol. 88:12163-66
-
(2014)
J. Virol.
, vol.88
, pp. 12163-12166
-
-
Shen, G.1
Wang, K.2
Wang, S.3
Cai, M.4
Li, M.L.5
Zheng, C.6
|