-
1
-
-
0142214756
-
Forward genetics and map-based cloning approaches
-
Peters J.L., et al. Forward genetics and map-based cloning approaches. Trends Plant Sci. 2003, 8:484-491.
-
(2003)
Trends Plant Sci.
, vol.8
, pp. 484-491
-
-
Peters, J.L.1
-
2
-
-
1642465435
-
An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics
-
Rosso M.G., et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 2003, 53:247-259.
-
(2003)
Plant Mol. Biol.
, vol.53
, pp. 247-259
-
-
Rosso, M.G.1
-
3
-
-
0034030591
-
Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project
-
Parinov S., Sundaresan V. Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotechnol. 2000, 11:157-161.
-
(2000)
Curr. Opin. Biotechnol.
, vol.11
, pp. 157-161
-
-
Parinov, S.1
Sundaresan, V.2
-
4
-
-
53649088131
-
Applications of next-generation sequencing technologies in functional genomics
-
Morozova O., Marra M.A. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 92:255-264.
-
(2008)
Genomics
, vol.92
, pp. 255-264
-
-
Morozova, O.1
Marra, M.A.2
-
5
-
-
67651097787
-
Phenome analysis in plant species using loss-of-function and gain-of-function mutants
-
Kuromori T., et al. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol. 2009, 50:1215-1231.
-
(2009)
Plant Cell Physiol.
, vol.50
, pp. 1215-1231
-
-
Kuromori, T.1
-
6
-
-
0342927487
-
Activation tagging in Arabidopsis
-
Weigel D., et al. Activation tagging in Arabidopsis. Plant Physiol. 2000, 122:1003-1013.
-
(2000)
Plant Physiol.
, vol.122
, pp. 1003-1013
-
-
Weigel, D.1
-
7
-
-
33745232539
-
EMS mutagenesis of Arabidopsis
-
Kim Y., et al. EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 2006, 323:101-103.
-
(2006)
Methods Mol. Biol.
, vol.323
, pp. 101-103
-
-
Kim, Y.1
-
8
-
-
84903793635
-
EMS mutagenesis of Arabidopsis seed
-
pdb.prot4621
-
Weigel D., Glazebrook J. EMS mutagenesis of Arabidopsis seed. CSH Protoc. 2006, 2006. pdb.prot4621.
-
(2006)
CSH Protoc.
, vol.2006
-
-
Weigel, D.1
Glazebrook, J.2
-
9
-
-
0031127890
-
T-DNA insertion mutagenesis in Arabidopsis: going back and forth
-
Azpiroz-Leehan R., Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 1997, 13:152-156.
-
(1997)
Trends Genet.
, vol.13
, pp. 152-156
-
-
Azpiroz-Leehan, R.1
Feldmann, K.A.2
-
10
-
-
11944262800
-
Strategies for mutagenesis and gene cloning using transposon tagging and t-DNA insertional mutagenesis
-
Walbot V. Strategies for mutagenesis and gene cloning using transposon tagging and t-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43:49-82.
-
(1992)
Annu. Rev. Plant Physiol. Plant Mol. Biol.
, vol.43
, pp. 49-82
-
-
Walbot, V.1
-
11
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov F.D., et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11:636-646.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
-
12
-
-
84871803423
-
Transcription activator-like effector nucleases enable efficient plant genome engineering
-
Zhang Y., et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013, 161:20-27.
-
(2013)
Plant Physiol.
, vol.161
, pp. 20-27
-
-
Zhang, Y.1
-
13
-
-
55949101131
-
Crystal structure of I-Dmol in complex with its target DNA provides new insights into meganuclease engineering
-
Marciada M.J., et al. Crystal structure of I-Dmol in complex with its target DNA provides new insights into meganuclease engineering. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16888-16893.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 16888-16893
-
-
Marciada, M.J.1
-
14
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan Q.W., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31:686-688.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 686-688
-
-
Shan, Q.W.1
-
15
-
-
84884962826
-
RNA-guided genome editing in plants using a CRISPRCas System
-
Xie K.B., Yang Y.N. RNA-guided genome editing in plants using a CRISPRCas System. Mol. Plant 2013, 6:1975-1983.
-
(2013)
Mol. Plant
, vol.6
, pp. 1975-1983
-
-
Xie, K.B.1
Yang, Y.N.2
-
16
-
-
0033615491
-
A species of small antisense RNA in posttranscriptional gene silencing in plants
-
Hamilton A.J., Baulcombe D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286:950-952.
-
(1999)
Science
, vol.286
, pp. 950-952
-
-
Hamilton, A.J.1
Baulcombe, D.C.2
-
17
-
-
4644242349
-
RNA silencing in plants
-
Baulcombe D. RNA silencing in plants. Nature 2004, 431:356-363.
-
(2004)
Nature
, vol.431
, pp. 356-363
-
-
Baulcombe, D.1
-
18
-
-
0032545933
-
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
-
Fire A., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
-
(1998)
Nature
, vol.391
, pp. 806-811
-
-
Fire, A.1
-
19
-
-
0034699247
-
Gene expression - total silencing by intron-spliced hairpin RNAs
-
Smith N.A., et al. Gene expression - total silencing by intron-spliced hairpin RNAs. Nature 2000, 407:319-320.
-
(2000)
Nature
, vol.407
, pp. 319-320
-
-
Smith, N.A.1
-
20
-
-
0034712919
-
Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana
-
Chuang C.F., Meyerowitz E.M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:4985-4990.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 4985-4990
-
-
Chuang, C.F.1
Meyerowitz, E.M.2
-
21
-
-
1542443559
-
Custom knock-outs with hairpin RNA-mediated gene silencing
-
Wesley S.V., et al. Custom knock-outs with hairpin RNA-mediated gene silencing. Methods Mol. Biol. 2003, 236:273-286.
-
(2003)
Methods Mol. Biol.
, vol.236
, pp. 273-286
-
-
Wesley, S.V.1
-
22
-
-
33745393624
-
Highly specific gene silencing by artificial microRNAs in Arabidopsis
-
Schwab R., et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 2006, 18:1121-1133.
-
(2006)
Plant Cell
, vol.18
, pp. 1121-1133
-
-
Schwab, R.1
-
23
-
-
0034649547
-
DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis
-
Morel J.B., et al. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol. 2000, 10:1591-1594.
-
(2000)
Curr. Biol.
, vol.10
, pp. 1591-1594
-
-
Morel, J.B.1
-
24
-
-
0035916831
-
Transcriptional and posttranscriptional gene silencing are mechanistically related
-
Sijen T., et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr. Biol. 2001, 11:436-440.
-
(2001)
Curr. Biol.
, vol.11
, pp. 436-440
-
-
Sijen, T.1
-
25
-
-
0035054777
-
Transcriptional gene silencing in plants: targets, inducers and regulators
-
Vaucheret H., Fagard M. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 2001, 17:29-35.
-
(2001)
Trends Genet.
, vol.17
, pp. 29-35
-
-
Vaucheret, H.1
Fagard, M.2
-
26
-
-
13244278197
-
SiRNA and miRNA: an insight into RISCs
-
Tang G.L. siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 2005, 30:106-114.
-
(2005)
Trends Biochem. Sci.
, vol.30
, pp. 106-114
-
-
Tang, G.L.1
-
27
-
-
78651293534
-
MiRBase: integrating microRNA annotation and deep-sequencing data
-
Kozomara A., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39:D152-D157.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. D152-D157
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
28
-
-
34547497309
-
Target mimicry provides a new mechanism for regulation of microRNA activity
-
Franco-Zorrilla J.M., et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 2007, 39:1033-1037.
-
(2007)
Nat. Genet.
, vol.39
, pp. 1033-1037
-
-
Franco-Zorrilla, J.M.1
-
29
-
-
84859067739
-
Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis
-
Yan J., et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 2012, 24:415-427.
-
(2012)
Plant Cell
, vol.24
, pp. 415-427
-
-
Yan, J.1
-
30
-
-
84879409295
-
Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals
-
Tang G.L., Tang X.Q. Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. J. Genet. Genomics 2013, 40:291-296.
-
(2013)
J. Genet. Genomics
, vol.40
, pp. 291-296
-
-
Tang, G.L.1
Tang, X.Q.2
-
31
-
-
84870038772
-
Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs
-
Tang G.L., et al. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 2012, 58:118-125.
-
(2012)
Methods
, vol.58
, pp. 118-125
-
-
Tang, G.L.1
-
32
-
-
34548316982
-
MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells
-
Ebert M.S., et al. microRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 2007, 4:721-726.
-
(2007)
Nat. Methods
, vol.4
, pp. 721-726
-
-
Ebert, M.S.1
-
33
-
-
79551552779
-
Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana
-
Eamens A.L., et al. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Mol. Plant 2011, 4:157-170.
-
(2011)
Mol. Plant
, vol.4
, pp. 157-170
-
-
Eamens, A.L.1
-
34
-
-
84901427653
-
Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements
-
Zhang Z.J. Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta 2014, 239:1139-1146.
-
(2014)
Planta
, vol.239
, pp. 1139-1146
-
-
Zhang, Z.J.1
-
35
-
-
84921929541
-
Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance
-
Jiang Q., et al. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol. 2014, 11:1243-1249.
-
(2014)
RNA Biol.
, vol.11
, pp. 1243-1249
-
-
Jiang, Q.1
-
36
-
-
84893819419
-
Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system
-
Zhao Y.C., et al. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep. 2014, 4:3943.
-
(2014)
Sci. Rep.
, vol.4
, pp. 3943
-
-
Zhao, Y.C.1
-
37
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
38
-
-
78049245303
-
Plant microRNAs: an insight into their gene structures and evolution
-
Tang G.L. Plant microRNAs: an insight into their gene structures and evolution. Semin. Cell Dev. Biol. 2010, 21:782-789.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 782-789
-
-
Tang, G.L.1
-
39
-
-
33745827752
-
Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice
-
Jiang D.H., et al. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res. 2006, 16:507-518.
-
(2006)
Cell Res.
, vol.16
, pp. 507-518
-
-
Jiang, D.H.1
-
40
-
-
34250832061
-
Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319
-
Palatnik J.F., et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev. Cell 2007, 13:115-125.
-
(2007)
Dev. Cell
, vol.13
, pp. 115-125
-
-
Palatnik, J.F.1
-
41
-
-
36048980020
-
Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family
-
Allen R.S., et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:16371-16376.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 16371-16376
-
-
Allen, R.S.1
-
42
-
-
77957328824
-
A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana
-
Todesco M., et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 2010, 6:e1001031.
-
(2010)
PLoS Genet.
, vol.6
-
-
Todesco, M.1
-
43
-
-
84921047175
-
Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic
-
Jia X.Y., et al. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Sci. 2015, 233:11-21.
-
(2015)
Plant Sci.
, vol.233
, pp. 11-21
-
-
Jia, X.Y.1
-
44
-
-
84907018112
-
Roles of small RNAs in soybean defense against Phytophthora sojae infection
-
Wong J., et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J. 2014, 79:928-940.
-
(2014)
Plant J.
, vol.79
, pp. 928-940
-
-
Wong, J.1
-
45
-
-
84880172797
-
Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamiana
-
Tang Y., et al. Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamiana. Methods Mol. Biol. 2013, 975:99-107.
-
(2013)
Methods Mol. Biol.
, vol.975
, pp. 99-107
-
-
Tang, Y.1
-
46
-
-
84891764349
-
Virus-based microRNA silencing in plants
-
Sha A.H., et al. Virus-based microRNA silencing in plants. Plant Physiol. 2014, 164:36-47.
-
(2014)
Plant Physiol.
, vol.164
, pp. 36-47
-
-
Sha, A.H.1
-
47
-
-
84939567855
-
Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs
-
Reichel M., et al. Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol. J. 2015, 13:915-926.
-
(2015)
Plant Biotechnol. J.
, vol.13
, pp. 915-926
-
-
Reichel, M.1
-
48
-
-
77953215377
-
Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana
-
Vaistij F.E., et al. Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana. Plant Mol. Biol. 2010, 73:391-397.
-
(2010)
Plant Mol. Biol.
, vol.73
, pp. 391-397
-
-
Vaistij, F.E.1
-
49
-
-
84942931752
-
A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
-
Lowder L.G., et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015, 169:971-985.
-
(2015)
Plant Physiol.
, vol.169
, pp. 971-985
-
-
Lowder, L.G.1
-
50
-
-
33646185558
-
Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species
-
Alvarez J.P., et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 2006, 18:1134-1151.
-
(2006)
Plant Cell
, vol.18
, pp. 1134-1151
-
-
Alvarez, J.P.1
-
51
-
-
4344698377
-
Using RNAi to improve plant nutritional value: from mechanism to application
-
Tang G.L., Galili G. Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol. 2004, 22:463-469.
-
(2004)
Trends Biotechnol.
, vol.22
, pp. 463-469
-
-
Tang, G.L.1
Galili, G.2
-
52
-
-
46649106719
-
Highly specific gene silencing by artificial miRNAs in rice
-
Warthmann N., et al. Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 2008, 3:e1829.
-
(2008)
PLoS ONE
, vol.3
-
-
Warthmann, N.1
-
53
-
-
84930854127
-
Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors
-
Carbonell A., et al. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. Plant J. 2015, 82:1061-1075.
-
(2015)
Plant J.
, vol.82
, pp. 1061-1075
-
-
Carbonell, A.1
-
54
-
-
0142165224
-
Functional siRNAs and rniRNAs exhibit strand bias
-
Khvorova A., et al. Functional siRNAs and rniRNAs exhibit strand bias. Cell 2003, 115:209-216.
-
(2003)
Cell
, vol.115
, pp. 209-216
-
-
Khvorova, A.1
-
55
-
-
10744225153
-
Asymmetry in the assembly of the RNAi enzyme complex
-
Schwarz D.S., et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115:199-208.
-
(2003)
Cell
, vol.115
, pp. 199-208
-
-
Schwarz, D.S.1
-
56
-
-
70449122099
-
Distinct mechanisms for microRNA strand selection by Drosophila Argonautes
-
Okamura K., et al. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell 2009, 36:431-444.
-
(2009)
Mol. Cell
, vol.36
, pp. 431-444
-
-
Okamura, K.1
-
57
-
-
78049245303
-
Plant microRNAs: an insight into their gene structures and evolution
-
Tang G. Plant microRNAs: an insight into their gene structures and evolution. Semin. Cell Dev. Biol. 2010, 21:782-789.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 782-789
-
-
Tang, G.1
-
58
-
-
55049142524
-
The art of microRNA: various strategies leading to gene silencing via an ancient pathway
-
Tang G., et al. The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochim. Biophys. Acta 2008, 1779:655-662.
-
(2008)
Biochim. Biophys. Acta
, vol.1779
, pp. 655-662
-
-
Tang, G.1
-
59
-
-
38749123986
-
Evolution of complexity in miRNA-mediated gene regulation systems
-
Takuno S., Innan H. Evolution of complexity in miRNA-mediated gene regulation systems. Trends Genet. 2008, 24:56-59.
-
(2008)
Trends Genet.
, vol.24
, pp. 56-59
-
-
Takuno, S.1
Innan, H.2
-
60
-
-
79953744170
-
ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis
-
Ji L., et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet. 2011, 7:e1001358.
-
(2011)
PLoS Genet.
, vol.7
-
-
Ji, L.1
-
61
-
-
84903710740
-
GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis
-
Cai Z.Y., et al. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:9651-9656.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 9651-9656
-
-
Cai, Z.Y.1
-
62
-
-
84862789556
-
A new strategy for construction of artificial miRNA vectors in Arabidopsis
-
Liang G., et al. A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 2012, 235:1421-1429.
-
(2012)
Planta
, vol.235
, pp. 1421-1429
-
-
Liang, G.1
-
63
-
-
84899823774
-
New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis
-
Carbonell A., et al. New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 2014, 165:15-29.
-
(2014)
Plant Physiol.
, vol.165
, pp. 15-29
-
-
Carbonell, A.1
-
64
-
-
48549091827
-
Artificial trans-acting siRNAs confer consistent and effective gene silencing
-
de la Luz Gutierrez-Nava M., et al. Artificial trans-acting siRNAs confer consistent and effective gene silencing. Plant Physiol. 2008, 147:543-551.
-
(2008)
Plant Physiol.
, vol.147
, pp. 543-551
-
-
de la Luz Gutierrez-Nava, M.1
-
65
-
-
84855257296
-
Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat
-
Fahim M., et al. Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol. J. 2012, 10:150-163.
-
(2012)
Plant Biotechnol. J.
, vol.10
, pp. 150-163
-
-
Fahim, M.1
-
66
-
-
84879487599
-
Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants
-
Li J.F., et al. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 2013, 25:1507-1522.
-
(2013)
Plant Cell
, vol.25
, pp. 1507-1522
-
-
Li, J.F.1
-
67
-
-
84897134958
-
Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants
-
Li J.F., et al. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat. Protoc. 2014, 9:939-949.
-
(2014)
Nat. Protoc.
, vol.9
, pp. 939-949
-
-
Li, J.F.1
-
68
-
-
84878162832
-
An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation
-
Bhagwat B., et al. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. J. Genet. Genomics 2013, 40:261-270.
-
(2013)
J. Genet. Genomics
, vol.40
, pp. 261-270
-
-
Bhagwat, B.1
-
69
-
-
38949151063
-
Gene silencing in plants using artificial microRNAs and other small RNAs
-
Ossowski S., et al. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 2008, 53:674-690.
-
(2008)
Plant J.
, vol.53
, pp. 674-690
-
-
Ossowski, S.1
-
70
-
-
84959922714
-
P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design
-
Fahlgren N., et al. P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design. Bioinformatics 2015, 32:157-158.
-
(2015)
Bioinformatics
, vol.32
, pp. 157-158
-
-
Fahlgren, N.1
-
71
-
-
84875628218
-
Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic
-
Chen H., et al. Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic. Plant Biotechnol. J. 2013, 11:336-343.
-
(2013)
Plant Biotechnol. J.
, vol.11
, pp. 336-343
-
-
Chen, H.1
-
72
-
-
84929666410
-
Expanding the biologist's toolkit with CRISPR-Cas9
-
Sternberg S.H., Doudna J.A. Expanding the biologist's toolkit with CRISPR-Cas9. Mol. Cell 2015, 58:568-574.
-
(2015)
Mol. Cell
, vol.58
, pp. 568-574
-
-
Sternberg, S.H.1
Doudna, J.A.2
-
73
-
-
84928205754
-
High-throughput functional genomics using CRISPR-Cas9
-
Shalem O., et al. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 2015, 16:299-311.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 299-311
-
-
Shalem, O.1
-
74
-
-
0023600057
-
Nucleotide-sequence of the Iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia coli, and identification of the gene-product
-
Ishino Y., et al. Nucleotide-sequence of the Iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia coli, and identification of the gene-product. J. Bacteriol. 1987, 169:5429-5433.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
-
75
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
76
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
77
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H., et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156:935-949.
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
-
78
-
-
84924322574
-
Rational design of a split-Cas9 enzyme complex
-
Wright A.V., et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:2984-2989.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 2984-2989
-
-
Wright, A.V.1
-
79
-
-
84923297110
-
A split-Cas9 architecture for inducible genome editing and transcription modulation
-
Zetsche B., et al. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 2015, 33:139-142.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 139-142
-
-
Zetsche, B.1
-
80
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek M., et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343:1247997.
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
-
81
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520:186-191.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
82
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver B.P., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015, 523:481-485.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
83
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas System
-
Zetsche B., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas System. Cell 2015, 163:759-771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
84
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
-
Doench J.G., et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 2014, 32:1262-1267.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
-
85
-
-
84959123021
-
CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo
-
Moreno-Mateos M.A., et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 2015, 12:982-988.
-
(2015)
Nat. Methods
, vol.12
, pp. 982-988
-
-
Moreno-Mateos, M.A.1
-
86
-
-
84897546295
-
Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing
-
Gao Y., Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 2014, 56:343-349.
-
(2014)
J. Integr. Plant Biol.
, vol.56
, pp. 343-349
-
-
Gao, Y.1
Zhao, Y.2
-
87
-
-
84925262435
-
Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
-
Xie K., et al. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:3570-3575.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 3570-3575
-
-
Xie, K.1
-
88
-
-
84884950106
-
CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity
-
Cradick T.J., et al. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013, 41:9584-9592.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 9584-9592
-
-
Cradick, T.J.1
-
89
-
-
84888866065
-
Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish
-
Hruscha A., et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 2013, 140:4982-4987.
-
(2013)
Development
, vol.140
, pp. 4982-4987
-
-
Hruscha, A.1
-
90
-
-
84884155038
-
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
-
Pattanayak V., et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 2013, 31:839-843.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 839-843
-
-
Pattanayak, V.1
-
91
-
-
84903545084
-
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
-
Kuscu C., et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 2014, 32:677-683.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 677-683
-
-
Kuscu, C.1
-
92
-
-
84922664019
-
Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
-
Endo M., et al. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 2015, 56:41-47.
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 41-47
-
-
Endo, M.1
-
93
-
-
84896924524
-
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
-
Feng Z., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:4632-4637.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 4632-4637
-
-
Feng, Z.1
-
94
-
-
84896308706
-
Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
-
Bae S., et al. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014, 30:1473-1475.
-
(2014)
Bioinformatics
, vol.30
, pp. 1473-1475
-
-
Bae, S.1
-
95
-
-
84898889321
-
CasOT: a genome-wide Cas9/gRNA off-target searching tool
-
Xiao A., et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 2014, 30:1180-1182.
-
(2014)
Bioinformatics
, vol.30
, pp. 1180-1182
-
-
Xiao, A.1
-
96
-
-
84897954175
-
Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
-
Shen B., et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 2014, 11:399-402.
-
(2014)
Nat. Methods
, vol.11
, pp. 399-402
-
-
Shen, B.1
-
97
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho S.W., et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014, 24:132-141.
-
(2014)
Genome Res.
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
-
98
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y., et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014, 32:279-284.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
-
99
-
-
84949087122
-
DNA-binding-domain fusions enhance the targeting range and precision of Cas9
-
1160-1156
-
Bolukbasi M.F., et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 2015, 12. 1160-1156.
-
(2015)
Nat. Methods
, vol.12
-
-
Bolukbasi, M.F.1
-
100
-
-
84935033103
-
Generation of inheritable and 'transgene clean' targeted genome-modified rice in later generations using the CRISPR/Cas9 system
-
Xu R.F., et al. Generation of inheritable and 'transgene clean' targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 2015, 5:11491.
-
(2015)
Sci. Rep.
, vol.5
, pp. 11491
-
-
Xu, R.F.1
-
101
-
-
73449123032
-
VIGS - genomics goes functional
-
Becker A., Lange M. VIGS - genomics goes functional. Trends Plant Sci. 2010, 15:1-4.
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 1-4
-
-
Becker, A.1
Lange, M.2
-
102
-
-
84938746255
-
Efficient virus-nediated genome editing in plants using the CRISPR/Cas9 system
-
Ali Z., et al. Efficient virus-nediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 2015, 8:1288-1291.
-
(2015)
Mol. Plant
, vol.8
, pp. 1288-1291
-
-
Ali, Z.1
-
103
-
-
84943602335
-
A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing
-
Yin K., et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 2015, 5:14926.
-
(2015)
Sci. Rep.
, vol.5
, pp. 14926
-
-
Yin, K.1
-
104
-
-
84896882685
-
DNA replicons for plant genome engineering
-
Baltes N.J., et al. DNA replicons for plant genome engineering. Plant Cell 2014, 26:151-163.
-
(2014)
Plant Cell
, vol.26
, pp. 151-163
-
-
Baltes, N.J.1
-
105
-
-
84928212884
-
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
-
Piatek A., et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 2015, 13:578-589.
-
(2015)
Plant Biotechnol. J.
, vol.13
, pp. 578-589
-
-
Piatek, A.1
-
106
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
Konermann S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015, 517:583-588.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
-
107
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan J.G., et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015, 160:339-350.
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.G.1
-
108
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152:1173-1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
-
109
-
-
84886993480
-
CRISPR interference (CRISPRi) for sequence-specific control of gene expression
-
Larson M.H., et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 2013, 8:2180-2196.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
-
110
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154:442-451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
-
111
-
-
84913551783
-
Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells
-
Zheng Q., et al. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques 2014, 57:115-124.
-
(2014)
Biotechniques
, vol.57
, pp. 115-124
-
-
Zheng, Q.1
-
112
-
-
84913568580
-
Programmable RNA recognition and cleavage by CRISPR/Cas9
-
O'Connell M.R., et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014, 516:263-266.
-
(2014)
Nature
, vol.516
, pp. 263-266
-
-
O'Connell, M.R.1
-
113
-
-
84964313841
-
A CRISPR/Cas9 toolkit for multiplex genome editing in plants
-
Xing H.L., et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014, 14:327.
-
(2014)
BMC Plant Biol.
, vol.14
, pp. 327
-
-
Xing, H.L.1
-
114
-
-
84940827347
-
CRISPR-Cas9-mediated genome editing in Leishmania donovani
-
Zhang W.W., Matlashewski G. CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio 2015, 6:e00861.
-
(2015)
MBio
, vol.6
-
-
Zhang, W.W.1
Matlashewski, G.2
-
115
-
-
39149125097
-
Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize
-
Han F., et al. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell 2007, 19:3853-3863.
-
(2007)
Plant Cell
, vol.19
, pp. 3853-3863
-
-
Han, F.1
-
116
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
Woo J.W., et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015, 33:1162-1164.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
-
117
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
Chen B., et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013, 155:1479-1491.
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
-
118
-
-
84949557262
-
A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis
-
Zhang Z., et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 2015, 10.1007/s00299-015-1900-z.
-
(2015)
Plant Cell Rep.
-
-
Zhang, Z.1
|