메뉴 건너뛰기




Volumn 34, Issue 2, 2016, Pages 106-123

Essential RNA-based technologies and their applications in plant functional genomics

Author keywords

Artificial microRNA (amiRNA); Artificial synthetic tasiRNA (atasiRNA syn tasiRNA); CRISPR Cas9; MicroRNA sponge (SP); Short tandem target mimic (STTM); Target mimic (TM)

Indexed keywords

CODES (SYMBOLS); GENES;

EID: 84961216189     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.12.001     Document Type: Review
Times cited : (45)

References (118)
  • 1
    • 0142214756 scopus 로고    scopus 로고
    • Forward genetics and map-based cloning approaches
    • Peters J.L., et al. Forward genetics and map-based cloning approaches. Trends Plant Sci. 2003, 8:484-491.
    • (2003) Trends Plant Sci. , vol.8 , pp. 484-491
    • Peters, J.L.1
  • 2
    • 1642465435 scopus 로고    scopus 로고
    • An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics
    • Rosso M.G., et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 2003, 53:247-259.
    • (2003) Plant Mol. Biol. , vol.53 , pp. 247-259
    • Rosso, M.G.1
  • 3
    • 0034030591 scopus 로고    scopus 로고
    • Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project
    • Parinov S., Sundaresan V. Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotechnol. 2000, 11:157-161.
    • (2000) Curr. Opin. Biotechnol. , vol.11 , pp. 157-161
    • Parinov, S.1    Sundaresan, V.2
  • 4
    • 53649088131 scopus 로고    scopus 로고
    • Applications of next-generation sequencing technologies in functional genomics
    • Morozova O., Marra M.A. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 92:255-264.
    • (2008) Genomics , vol.92 , pp. 255-264
    • Morozova, O.1    Marra, M.A.2
  • 5
    • 67651097787 scopus 로고    scopus 로고
    • Phenome analysis in plant species using loss-of-function and gain-of-function mutants
    • Kuromori T., et al. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol. 2009, 50:1215-1231.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 1215-1231
    • Kuromori, T.1
  • 6
    • 0342927487 scopus 로고    scopus 로고
    • Activation tagging in Arabidopsis
    • Weigel D., et al. Activation tagging in Arabidopsis. Plant Physiol. 2000, 122:1003-1013.
    • (2000) Plant Physiol. , vol.122 , pp. 1003-1013
    • Weigel, D.1
  • 7
    • 33745232539 scopus 로고    scopus 로고
    • EMS mutagenesis of Arabidopsis
    • Kim Y., et al. EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 2006, 323:101-103.
    • (2006) Methods Mol. Biol. , vol.323 , pp. 101-103
    • Kim, Y.1
  • 8
    • 84903793635 scopus 로고    scopus 로고
    • EMS mutagenesis of Arabidopsis seed
    • pdb.prot4621
    • Weigel D., Glazebrook J. EMS mutagenesis of Arabidopsis seed. CSH Protoc. 2006, 2006. pdb.prot4621.
    • (2006) CSH Protoc. , vol.2006
    • Weigel, D.1    Glazebrook, J.2
  • 9
    • 0031127890 scopus 로고    scopus 로고
    • T-DNA insertion mutagenesis in Arabidopsis: going back and forth
    • Azpiroz-Leehan R., Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 1997, 13:152-156.
    • (1997) Trends Genet. , vol.13 , pp. 152-156
    • Azpiroz-Leehan, R.1    Feldmann, K.A.2
  • 10
    • 11944262800 scopus 로고
    • Strategies for mutagenesis and gene cloning using transposon tagging and t-DNA insertional mutagenesis
    • Walbot V. Strategies for mutagenesis and gene cloning using transposon tagging and t-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43:49-82.
    • (1992) Annu. Rev. Plant Physiol. Plant Mol. Biol. , vol.43 , pp. 49-82
    • Walbot, V.1
  • 11
    • 77955867185 scopus 로고    scopus 로고
    • Genome editing with engineered zinc finger nucleases
    • Urnov F.D., et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11:636-646.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 636-646
    • Urnov, F.D.1
  • 12
    • 84871803423 scopus 로고    scopus 로고
    • Transcription activator-like effector nucleases enable efficient plant genome engineering
    • Zhang Y., et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013, 161:20-27.
    • (2013) Plant Physiol. , vol.161 , pp. 20-27
    • Zhang, Y.1
  • 13
    • 55949101131 scopus 로고    scopus 로고
    • Crystal structure of I-Dmol in complex with its target DNA provides new insights into meganuclease engineering
    • Marciada M.J., et al. Crystal structure of I-Dmol in complex with its target DNA provides new insights into meganuclease engineering. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16888-16893.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 16888-16893
    • Marciada, M.J.1
  • 14
    • 85042815594 scopus 로고    scopus 로고
    • Targeted genome modification of crop plants using a CRISPR-Cas system
    • Shan Q.W., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31:686-688.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 686-688
    • Shan, Q.W.1
  • 15
    • 84884962826 scopus 로고    scopus 로고
    • RNA-guided genome editing in plants using a CRISPRCas System
    • Xie K.B., Yang Y.N. RNA-guided genome editing in plants using a CRISPRCas System. Mol. Plant 2013, 6:1975-1983.
    • (2013) Mol. Plant , vol.6 , pp. 1975-1983
    • Xie, K.B.1    Yang, Y.N.2
  • 16
    • 0033615491 scopus 로고    scopus 로고
    • A species of small antisense RNA in posttranscriptional gene silencing in plants
    • Hamilton A.J., Baulcombe D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286:950-952.
    • (1999) Science , vol.286 , pp. 950-952
    • Hamilton, A.J.1    Baulcombe, D.C.2
  • 17
    • 4644242349 scopus 로고    scopus 로고
    • RNA silencing in plants
    • Baulcombe D. RNA silencing in plants. Nature 2004, 431:356-363.
    • (2004) Nature , vol.431 , pp. 356-363
    • Baulcombe, D.1
  • 18
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
    • Fire A., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
    • (1998) Nature , vol.391 , pp. 806-811
    • Fire, A.1
  • 19
    • 0034699247 scopus 로고    scopus 로고
    • Gene expression - total silencing by intron-spliced hairpin RNAs
    • Smith N.A., et al. Gene expression - total silencing by intron-spliced hairpin RNAs. Nature 2000, 407:319-320.
    • (2000) Nature , vol.407 , pp. 319-320
    • Smith, N.A.1
  • 20
    • 0034712919 scopus 로고    scopus 로고
    • Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana
    • Chuang C.F., Meyerowitz E.M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:4985-4990.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 4985-4990
    • Chuang, C.F.1    Meyerowitz, E.M.2
  • 21
    • 1542443559 scopus 로고    scopus 로고
    • Custom knock-outs with hairpin RNA-mediated gene silencing
    • Wesley S.V., et al. Custom knock-outs with hairpin RNA-mediated gene silencing. Methods Mol. Biol. 2003, 236:273-286.
    • (2003) Methods Mol. Biol. , vol.236 , pp. 273-286
    • Wesley, S.V.1
  • 22
    • 33745393624 scopus 로고    scopus 로고
    • Highly specific gene silencing by artificial microRNAs in Arabidopsis
    • Schwab R., et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 2006, 18:1121-1133.
    • (2006) Plant Cell , vol.18 , pp. 1121-1133
    • Schwab, R.1
  • 23
    • 0034649547 scopus 로고    scopus 로고
    • DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis
    • Morel J.B., et al. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol. 2000, 10:1591-1594.
    • (2000) Curr. Biol. , vol.10 , pp. 1591-1594
    • Morel, J.B.1
  • 24
    • 0035916831 scopus 로고    scopus 로고
    • Transcriptional and posttranscriptional gene silencing are mechanistically related
    • Sijen T., et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr. Biol. 2001, 11:436-440.
    • (2001) Curr. Biol. , vol.11 , pp. 436-440
    • Sijen, T.1
  • 25
    • 0035054777 scopus 로고    scopus 로고
    • Transcriptional gene silencing in plants: targets, inducers and regulators
    • Vaucheret H., Fagard M. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 2001, 17:29-35.
    • (2001) Trends Genet. , vol.17 , pp. 29-35
    • Vaucheret, H.1    Fagard, M.2
  • 26
    • 13244278197 scopus 로고    scopus 로고
    • SiRNA and miRNA: an insight into RISCs
    • Tang G.L. siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 2005, 30:106-114.
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 106-114
    • Tang, G.L.1
  • 27
    • 78651293534 scopus 로고    scopus 로고
    • MiRBase: integrating microRNA annotation and deep-sequencing data
    • Kozomara A., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39:D152-D157.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D152-D157
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 28
    • 34547497309 scopus 로고    scopus 로고
    • Target mimicry provides a new mechanism for regulation of microRNA activity
    • Franco-Zorrilla J.M., et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 2007, 39:1033-1037.
    • (2007) Nat. Genet. , vol.39 , pp. 1033-1037
    • Franco-Zorrilla, J.M.1
  • 29
    • 84859067739 scopus 로고    scopus 로고
    • Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis
    • Yan J., et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 2012, 24:415-427.
    • (2012) Plant Cell , vol.24 , pp. 415-427
    • Yan, J.1
  • 30
    • 84879409295 scopus 로고    scopus 로고
    • Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals
    • Tang G.L., Tang X.Q. Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. J. Genet. Genomics 2013, 40:291-296.
    • (2013) J. Genet. Genomics , vol.40 , pp. 291-296
    • Tang, G.L.1    Tang, X.Q.2
  • 31
    • 84870038772 scopus 로고    scopus 로고
    • Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs
    • Tang G.L., et al. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 2012, 58:118-125.
    • (2012) Methods , vol.58 , pp. 118-125
    • Tang, G.L.1
  • 32
    • 34548316982 scopus 로고    scopus 로고
    • MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells
    • Ebert M.S., et al. microRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 2007, 4:721-726.
    • (2007) Nat. Methods , vol.4 , pp. 721-726
    • Ebert, M.S.1
  • 33
    • 79551552779 scopus 로고    scopus 로고
    • Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana
    • Eamens A.L., et al. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Mol. Plant 2011, 4:157-170.
    • (2011) Mol. Plant , vol.4 , pp. 157-170
    • Eamens, A.L.1
  • 34
    • 84901427653 scopus 로고    scopus 로고
    • Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements
    • Zhang Z.J. Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta 2014, 239:1139-1146.
    • (2014) Planta , vol.239 , pp. 1139-1146
    • Zhang, Z.J.1
  • 35
    • 84921929541 scopus 로고    scopus 로고
    • Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance
    • Jiang Q., et al. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol. 2014, 11:1243-1249.
    • (2014) RNA Biol. , vol.11 , pp. 1243-1249
    • Jiang, Q.1
  • 36
    • 84893819419 scopus 로고    scopus 로고
    • Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system
    • Zhao Y.C., et al. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep. 2014, 4:3943.
    • (2014) Sci. Rep. , vol.4 , pp. 3943
    • Zhao, Y.C.1
  • 37
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 38
    • 78049245303 scopus 로고    scopus 로고
    • Plant microRNAs: an insight into their gene structures and evolution
    • Tang G.L. Plant microRNAs: an insight into their gene structures and evolution. Semin. Cell Dev. Biol. 2010, 21:782-789.
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 782-789
    • Tang, G.L.1
  • 39
    • 33745827752 scopus 로고    scopus 로고
    • Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice
    • Jiang D.H., et al. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res. 2006, 16:507-518.
    • (2006) Cell Res. , vol.16 , pp. 507-518
    • Jiang, D.H.1
  • 40
    • 34250832061 scopus 로고    scopus 로고
    • Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319
    • Palatnik J.F., et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev. Cell 2007, 13:115-125.
    • (2007) Dev. Cell , vol.13 , pp. 115-125
    • Palatnik, J.F.1
  • 41
    • 36048980020 scopus 로고    scopus 로고
    • Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family
    • Allen R.S., et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:16371-16376.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 16371-16376
    • Allen, R.S.1
  • 42
    • 77957328824 scopus 로고    scopus 로고
    • A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana
    • Todesco M., et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 2010, 6:e1001031.
    • (2010) PLoS Genet. , vol.6
    • Todesco, M.1
  • 43
    • 84921047175 scopus 로고    scopus 로고
    • Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic
    • Jia X.Y., et al. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Sci. 2015, 233:11-21.
    • (2015) Plant Sci. , vol.233 , pp. 11-21
    • Jia, X.Y.1
  • 44
    • 84907018112 scopus 로고    scopus 로고
    • Roles of small RNAs in soybean defense against Phytophthora sojae infection
    • Wong J., et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J. 2014, 79:928-940.
    • (2014) Plant J. , vol.79 , pp. 928-940
    • Wong, J.1
  • 45
    • 84880172797 scopus 로고    scopus 로고
    • Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamiana
    • Tang Y., et al. Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamiana. Methods Mol. Biol. 2013, 975:99-107.
    • (2013) Methods Mol. Biol. , vol.975 , pp. 99-107
    • Tang, Y.1
  • 46
    • 84891764349 scopus 로고    scopus 로고
    • Virus-based microRNA silencing in plants
    • Sha A.H., et al. Virus-based microRNA silencing in plants. Plant Physiol. 2014, 164:36-47.
    • (2014) Plant Physiol. , vol.164 , pp. 36-47
    • Sha, A.H.1
  • 47
    • 84939567855 scopus 로고    scopus 로고
    • Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs
    • Reichel M., et al. Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol. J. 2015, 13:915-926.
    • (2015) Plant Biotechnol. J. , vol.13 , pp. 915-926
    • Reichel, M.1
  • 48
    • 77953215377 scopus 로고    scopus 로고
    • Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana
    • Vaistij F.E., et al. Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana. Plant Mol. Biol. 2010, 73:391-397.
    • (2010) Plant Mol. Biol. , vol.73 , pp. 391-397
    • Vaistij, F.E.1
  • 49
    • 84942931752 scopus 로고    scopus 로고
    • A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
    • Lowder L.G., et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015, 169:971-985.
    • (2015) Plant Physiol. , vol.169 , pp. 971-985
    • Lowder, L.G.1
  • 50
    • 33646185558 scopus 로고    scopus 로고
    • Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species
    • Alvarez J.P., et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 2006, 18:1134-1151.
    • (2006) Plant Cell , vol.18 , pp. 1134-1151
    • Alvarez, J.P.1
  • 51
    • 4344698377 scopus 로고    scopus 로고
    • Using RNAi to improve plant nutritional value: from mechanism to application
    • Tang G.L., Galili G. Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol. 2004, 22:463-469.
    • (2004) Trends Biotechnol. , vol.22 , pp. 463-469
    • Tang, G.L.1    Galili, G.2
  • 52
    • 46649106719 scopus 로고    scopus 로고
    • Highly specific gene silencing by artificial miRNAs in rice
    • Warthmann N., et al. Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 2008, 3:e1829.
    • (2008) PLoS ONE , vol.3
    • Warthmann, N.1
  • 53
    • 84930854127 scopus 로고    scopus 로고
    • Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors
    • Carbonell A., et al. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. Plant J. 2015, 82:1061-1075.
    • (2015) Plant J. , vol.82 , pp. 1061-1075
    • Carbonell, A.1
  • 54
    • 0142165224 scopus 로고    scopus 로고
    • Functional siRNAs and rniRNAs exhibit strand bias
    • Khvorova A., et al. Functional siRNAs and rniRNAs exhibit strand bias. Cell 2003, 115:209-216.
    • (2003) Cell , vol.115 , pp. 209-216
    • Khvorova, A.1
  • 55
    • 10744225153 scopus 로고    scopus 로고
    • Asymmetry in the assembly of the RNAi enzyme complex
    • Schwarz D.S., et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115:199-208.
    • (2003) Cell , vol.115 , pp. 199-208
    • Schwarz, D.S.1
  • 56
    • 70449122099 scopus 로고    scopus 로고
    • Distinct mechanisms for microRNA strand selection by Drosophila Argonautes
    • Okamura K., et al. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell 2009, 36:431-444.
    • (2009) Mol. Cell , vol.36 , pp. 431-444
    • Okamura, K.1
  • 57
    • 78049245303 scopus 로고    scopus 로고
    • Plant microRNAs: an insight into their gene structures and evolution
    • Tang G. Plant microRNAs: an insight into their gene structures and evolution. Semin. Cell Dev. Biol. 2010, 21:782-789.
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 782-789
    • Tang, G.1
  • 58
    • 55049142524 scopus 로고    scopus 로고
    • The art of microRNA: various strategies leading to gene silencing via an ancient pathway
    • Tang G., et al. The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochim. Biophys. Acta 2008, 1779:655-662.
    • (2008) Biochim. Biophys. Acta , vol.1779 , pp. 655-662
    • Tang, G.1
  • 59
    • 38749123986 scopus 로고    scopus 로고
    • Evolution of complexity in miRNA-mediated gene regulation systems
    • Takuno S., Innan H. Evolution of complexity in miRNA-mediated gene regulation systems. Trends Genet. 2008, 24:56-59.
    • (2008) Trends Genet. , vol.24 , pp. 56-59
    • Takuno, S.1    Innan, H.2
  • 60
    • 79953744170 scopus 로고    scopus 로고
    • ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis
    • Ji L., et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet. 2011, 7:e1001358.
    • (2011) PLoS Genet. , vol.7
    • Ji, L.1
  • 61
    • 84903710740 scopus 로고    scopus 로고
    • GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis
    • Cai Z.Y., et al. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:9651-9656.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 9651-9656
    • Cai, Z.Y.1
  • 62
    • 84862789556 scopus 로고    scopus 로고
    • A new strategy for construction of artificial miRNA vectors in Arabidopsis
    • Liang G., et al. A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 2012, 235:1421-1429.
    • (2012) Planta , vol.235 , pp. 1421-1429
    • Liang, G.1
  • 63
    • 84899823774 scopus 로고    scopus 로고
    • New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis
    • Carbonell A., et al. New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 2014, 165:15-29.
    • (2014) Plant Physiol. , vol.165 , pp. 15-29
    • Carbonell, A.1
  • 64
    • 48549091827 scopus 로고    scopus 로고
    • Artificial trans-acting siRNAs confer consistent and effective gene silencing
    • de la Luz Gutierrez-Nava M., et al. Artificial trans-acting siRNAs confer consistent and effective gene silencing. Plant Physiol. 2008, 147:543-551.
    • (2008) Plant Physiol. , vol.147 , pp. 543-551
    • de la Luz Gutierrez-Nava, M.1
  • 65
    • 84855257296 scopus 로고    scopus 로고
    • Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat
    • Fahim M., et al. Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol. J. 2012, 10:150-163.
    • (2012) Plant Biotechnol. J. , vol.10 , pp. 150-163
    • Fahim, M.1
  • 66
    • 84879487599 scopus 로고    scopus 로고
    • Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants
    • Li J.F., et al. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 2013, 25:1507-1522.
    • (2013) Plant Cell , vol.25 , pp. 1507-1522
    • Li, J.F.1
  • 67
    • 84897134958 scopus 로고    scopus 로고
    • Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants
    • Li J.F., et al. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat. Protoc. 2014, 9:939-949.
    • (2014) Nat. Protoc. , vol.9 , pp. 939-949
    • Li, J.F.1
  • 68
    • 84878162832 scopus 로고    scopus 로고
    • An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation
    • Bhagwat B., et al. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. J. Genet. Genomics 2013, 40:261-270.
    • (2013) J. Genet. Genomics , vol.40 , pp. 261-270
    • Bhagwat, B.1
  • 69
    • 38949151063 scopus 로고    scopus 로고
    • Gene silencing in plants using artificial microRNAs and other small RNAs
    • Ossowski S., et al. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 2008, 53:674-690.
    • (2008) Plant J. , vol.53 , pp. 674-690
    • Ossowski, S.1
  • 70
    • 84959922714 scopus 로고    scopus 로고
    • P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design
    • Fahlgren N., et al. P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design. Bioinformatics 2015, 32:157-158.
    • (2015) Bioinformatics , vol.32 , pp. 157-158
    • Fahlgren, N.1
  • 71
    • 84875628218 scopus 로고    scopus 로고
    • Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic
    • Chen H., et al. Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic. Plant Biotechnol. J. 2013, 11:336-343.
    • (2013) Plant Biotechnol. J. , vol.11 , pp. 336-343
    • Chen, H.1
  • 72
    • 84929666410 scopus 로고    scopus 로고
    • Expanding the biologist's toolkit with CRISPR-Cas9
    • Sternberg S.H., Doudna J.A. Expanding the biologist's toolkit with CRISPR-Cas9. Mol. Cell 2015, 58:568-574.
    • (2015) Mol. Cell , vol.58 , pp. 568-574
    • Sternberg, S.H.1    Doudna, J.A.2
  • 73
    • 84928205754 scopus 로고    scopus 로고
    • High-throughput functional genomics using CRISPR-Cas9
    • Shalem O., et al. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 2015, 16:299-311.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 299-311
    • Shalem, O.1
  • 74
    • 0023600057 scopus 로고
    • Nucleotide-sequence of the Iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia coli, and identification of the gene-product
    • Ishino Y., et al. Nucleotide-sequence of the Iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia coli, and identification of the gene-product. J. Bacteriol. 1987, 169:5429-5433.
    • (1987) J. Bacteriol. , vol.169 , pp. 5429-5433
    • Ishino, Y.1
  • 75
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 76
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 77
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • Nishimasu H., et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156:935-949.
    • (2014) Cell , vol.156 , pp. 935-949
    • Nishimasu, H.1
  • 78
    • 84924322574 scopus 로고    scopus 로고
    • Rational design of a split-Cas9 enzyme complex
    • Wright A.V., et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:2984-2989.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 2984-2989
    • Wright, A.V.1
  • 79
    • 84923297110 scopus 로고    scopus 로고
    • A split-Cas9 architecture for inducible genome editing and transcription modulation
    • Zetsche B., et al. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 2015, 33:139-142.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 139-142
    • Zetsche, B.1
  • 80
    • 84893157352 scopus 로고    scopus 로고
    • Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
    • Jinek M., et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343:1247997.
    • (2014) Science , vol.343 , pp. 1247997
    • Jinek, M.1
  • 81
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • Ran F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520:186-191.
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 82
    • 84937908208 scopus 로고    scopus 로고
    • Engineered CRISPR-Cas9 nucleases with altered PAM specificities
    • Kleinstiver B.P., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015, 523:481-485.
    • (2015) Nature , vol.523 , pp. 481-485
    • Kleinstiver, B.P.1
  • 83
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas System
    • Zetsche B., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas System. Cell 2015, 163:759-771.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 84
    • 84921540377 scopus 로고    scopus 로고
    • Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
    • Doench J.G., et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 2014, 32:1262-1267.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1262-1267
    • Doench, J.G.1
  • 85
    • 84959123021 scopus 로고    scopus 로고
    • CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo
    • Moreno-Mateos M.A., et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 2015, 12:982-988.
    • (2015) Nat. Methods , vol.12 , pp. 982-988
    • Moreno-Mateos, M.A.1
  • 86
    • 84897546295 scopus 로고    scopus 로고
    • Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing
    • Gao Y., Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 2014, 56:343-349.
    • (2014) J. Integr. Plant Biol. , vol.56 , pp. 343-349
    • Gao, Y.1    Zhao, Y.2
  • 87
    • 84925262435 scopus 로고    scopus 로고
    • Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
    • Xie K., et al. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:3570-3575.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 3570-3575
    • Xie, K.1
  • 88
    • 84884950106 scopus 로고    scopus 로고
    • CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity
    • Cradick T.J., et al. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013, 41:9584-9592.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 9584-9592
    • Cradick, T.J.1
  • 89
    • 84888866065 scopus 로고    scopus 로고
    • Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish
    • Hruscha A., et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 2013, 140:4982-4987.
    • (2013) Development , vol.140 , pp. 4982-4987
    • Hruscha, A.1
  • 90
    • 84884155038 scopus 로고    scopus 로고
    • High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
    • Pattanayak V., et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 2013, 31:839-843.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 839-843
    • Pattanayak, V.1
  • 91
    • 84903545084 scopus 로고    scopus 로고
    • Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
    • Kuscu C., et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 2014, 32:677-683.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 677-683
    • Kuscu, C.1
  • 92
    • 84922664019 scopus 로고    scopus 로고
    • Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
    • Endo M., et al. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 2015, 56:41-47.
    • (2015) Plant Cell Physiol. , vol.56 , pp. 41-47
    • Endo, M.1
  • 93
    • 84896924524 scopus 로고    scopus 로고
    • Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
    • Feng Z., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:4632-4637.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 4632-4637
    • Feng, Z.1
  • 94
    • 84896308706 scopus 로고    scopus 로고
    • Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
    • Bae S., et al. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014, 30:1473-1475.
    • (2014) Bioinformatics , vol.30 , pp. 1473-1475
    • Bae, S.1
  • 95
    • 84898889321 scopus 로고    scopus 로고
    • CasOT: a genome-wide Cas9/gRNA off-target searching tool
    • Xiao A., et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 2014, 30:1180-1182.
    • (2014) Bioinformatics , vol.30 , pp. 1180-1182
    • Xiao, A.1
  • 96
    • 84897954175 scopus 로고    scopus 로고
    • Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
    • Shen B., et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 2014, 11:399-402.
    • (2014) Nat. Methods , vol.11 , pp. 399-402
    • Shen, B.1
  • 97
    • 84891710947 scopus 로고    scopus 로고
    • Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
    • Cho S.W., et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014, 24:132-141.
    • (2014) Genome Res. , vol.24 , pp. 132-141
    • Cho, S.W.1
  • 98
    • 84896929630 scopus 로고    scopus 로고
    • Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    • Fu Y., et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014, 32:279-284.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 279-284
    • Fu, Y.1
  • 99
    • 84949087122 scopus 로고    scopus 로고
    • DNA-binding-domain fusions enhance the targeting range and precision of Cas9
    • 1160-1156
    • Bolukbasi M.F., et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 2015, 12. 1160-1156.
    • (2015) Nat. Methods , vol.12
    • Bolukbasi, M.F.1
  • 100
    • 84935033103 scopus 로고    scopus 로고
    • Generation of inheritable and 'transgene clean' targeted genome-modified rice in later generations using the CRISPR/Cas9 system
    • Xu R.F., et al. Generation of inheritable and 'transgene clean' targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 2015, 5:11491.
    • (2015) Sci. Rep. , vol.5 , pp. 11491
    • Xu, R.F.1
  • 101
    • 73449123032 scopus 로고    scopus 로고
    • VIGS - genomics goes functional
    • Becker A., Lange M. VIGS - genomics goes functional. Trends Plant Sci. 2010, 15:1-4.
    • (2010) Trends Plant Sci. , vol.15 , pp. 1-4
    • Becker, A.1    Lange, M.2
  • 102
    • 84938746255 scopus 로고    scopus 로고
    • Efficient virus-nediated genome editing in plants using the CRISPR/Cas9 system
    • Ali Z., et al. Efficient virus-nediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 2015, 8:1288-1291.
    • (2015) Mol. Plant , vol.8 , pp. 1288-1291
    • Ali, Z.1
  • 103
    • 84943602335 scopus 로고    scopus 로고
    • A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing
    • Yin K., et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 2015, 5:14926.
    • (2015) Sci. Rep. , vol.5 , pp. 14926
    • Yin, K.1
  • 104
    • 84896882685 scopus 로고    scopus 로고
    • DNA replicons for plant genome engineering
    • Baltes N.J., et al. DNA replicons for plant genome engineering. Plant Cell 2014, 26:151-163.
    • (2014) Plant Cell , vol.26 , pp. 151-163
    • Baltes, N.J.1
  • 105
    • 84928212884 scopus 로고    scopus 로고
    • RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
    • Piatek A., et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 2015, 13:578-589.
    • (2015) Plant Biotechnol. J. , vol.13 , pp. 578-589
    • Piatek, A.1
  • 106
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • Konermann S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015, 517:583-588.
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1
  • 107
    • 84920992414 scopus 로고    scopus 로고
    • Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
    • Zalatan J.G., et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015, 160:339-350.
    • (2015) Cell , vol.160 , pp. 339-350
    • Zalatan, J.G.1
  • 108
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152:1173-1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 109
    • 84886993480 scopus 로고    scopus 로고
    • CRISPR interference (CRISPRi) for sequence-specific control of gene expression
    • Larson M.H., et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 2013, 8:2180-2196.
    • (2013) Nat. Protoc. , vol.8 , pp. 2180-2196
    • Larson, M.H.1
  • 110
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • Gilbert L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154:442-451.
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1
  • 111
    • 84913551783 scopus 로고    scopus 로고
    • Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells
    • Zheng Q., et al. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques 2014, 57:115-124.
    • (2014) Biotechniques , vol.57 , pp. 115-124
    • Zheng, Q.1
  • 112
    • 84913568580 scopus 로고    scopus 로고
    • Programmable RNA recognition and cleavage by CRISPR/Cas9
    • O'Connell M.R., et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014, 516:263-266.
    • (2014) Nature , vol.516 , pp. 263-266
    • O'Connell, M.R.1
  • 113
    • 84964313841 scopus 로고    scopus 로고
    • A CRISPR/Cas9 toolkit for multiplex genome editing in plants
    • Xing H.L., et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014, 14:327.
    • (2014) BMC Plant Biol. , vol.14 , pp. 327
    • Xing, H.L.1
  • 114
    • 84940827347 scopus 로고    scopus 로고
    • CRISPR-Cas9-mediated genome editing in Leishmania donovani
    • Zhang W.W., Matlashewski G. CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio 2015, 6:e00861.
    • (2015) MBio , vol.6
    • Zhang, W.W.1    Matlashewski, G.2
  • 115
    • 39149125097 scopus 로고    scopus 로고
    • Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize
    • Han F., et al. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell 2007, 19:3853-3863.
    • (2007) Plant Cell , vol.19 , pp. 3853-3863
    • Han, F.1
  • 116
    • 84947255513 scopus 로고    scopus 로고
    • DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
    • Woo J.W., et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015, 33:1162-1164.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1162-1164
    • Woo, J.W.1
  • 117
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen B., et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013, 155:1479-1491.
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1
  • 118
    • 84949557262 scopus 로고    scopus 로고
    • A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis
    • Zhang Z., et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 2015, 10.1007/s00299-015-1900-z.
    • (2015) Plant Cell Rep.
    • Zhang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.