-
1
-
-
69749113579
-
The Vam6 GEF controls TORC1 by activating the EGO complex
-
Binda M, Peli-Gulli MP, Bonfils G, Panchaud N, Urban J, Sturgill TW, et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell. 2009;35(5):563–73. Epub 2009/09/15. doi: 10.1016/j.molcel.2009.06.033 19748353.
-
(2009)
Mol Cell
, vol.35
, Issue.5
, pp. 563-573
-
-
Binda, M.1
Peli-Gulli, M.P.2
Bonfils, G.3
Panchaud, N.4
Urban, J.5
Sturgill, T.W.6
-
2
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501. Epub 2008/05/24. doi: 10.1126/science.1157535 18497260; PubMed Central PMCID: PMC2475333.
-
(2008)
Science
, vol.320
, Issue.5882
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
-
3
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL, Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008;10(8):935–45. doi: 10.1038/ncb1753 18604198; PubMed Central PMCID: PMC2711503.
-
(2008)
Nat Cell Biol
, vol.10
, Issue.8
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
4
-
-
84878353147
-
Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
-
Panchaud N, Peli-Gulli MP, De Virgilio C, Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal. 2013;6(277):ra42. doi: 10.1126/scisignal.2004112 23716719.
-
(2013)
Sci Signal
, vol.6
, Issue.277
, pp. ra42
-
-
Panchaud, N.1
Peli-Gulli, M.P.2
De Virgilio, C.3
-
5
-
-
67651235863
-
A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex
-
Neklesa TK, Davis RW, A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet. 2009;5(6):e1000515. doi: 10.1371/journal.pgen.1000515 19521502; PubMed Central PMCID: PMC2686269.
-
(2009)
PLoS Genet
, vol.5
, Issue.6
, pp. e1000515
-
-
Neklesa, T.K.1
Davis, R.W.2
-
6
-
-
84878357685
-
A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340(6136):1100–6. doi: 10.1126/science.1232044 23723238; PubMed Central PMCID: PMC3728654.
-
(2013)
Science
, vol.340
, Issue.6136
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
-
7
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell. 2013;52(4):495–505. doi: 10.1016/j.molcel.2013.09.016 24095279; PubMed Central PMCID: PMC3867817.
-
(2013)
Mol Cell
, vol.52
, Issue.4
, pp. 495-505
-
-
Tsun, Z.Y.1
Bar-Peled, L.2
Chantranupong, L.3
Zoncu, R.4
Wang, T.5
Kim, C.6
-
8
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C, Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 2012;46(1):105–10. doi: 10.1016/j.molcel.2012.02.009 22424774.
-
(2012)
Mol Cell
, vol.46
, Issue.1
, pp. 105-110
-
-
Bonfils, G.1
Jaquenoud, M.2
Bontron, S.3
Ostrowicz, C.4
Ungermann, C.5
De Virgilio, C.6
-
9
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 2012;149(2):410–24. Epub 2012/03/20. doi: 10.1016/j.cell.2012.02.044 22424946.
-
(2012)
Cell
, vol.149
, Issue.2
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
-
10
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM, mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science. 2011;334(6056):678–83. Epub 2011/11/05. doi: 10.1126/science.1207056 22053050; PubMed Central PMCID: PMC3211112.
-
(2011)
Science
, vol.334
, Issue.6056
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
11
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347(6218):188–94. doi: 10.1126/science.1257132 25567906; PubMed Central PMCID: PMC4295826.
-
(2015)
Science
, vol.347
, Issue.6218
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
-
12
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477–81. doi: 10.1038/nature14107 25561175; PubMed Central PMCID: PMC4376665.
-
(2015)
Nature
, vol.519
, Issue.7544
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
de Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
-
13
-
-
84922727084
-
Metabolism. Differential regulation of mTORC1 by leucine and glutamine
-
Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 2015;347(6218):194–8. doi: 10.1126/science.1259472 25567907; PubMed Central PMCID: PMC4384888.
-
(2015)
Science
, vol.347
, Issue.6218
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.X.4
Park, H.W.5
Plouffe, S.W.6
-
14
-
-
84906971940
-
Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins
-
Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN, Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem. 2014;289(36):25010–20. doi: 10.1074/jbc.M114.574335 25063813; PubMed Central PMCID: PMC4155668.
-
(2014)
J Biol Chem
, vol.289
, Issue.36
, pp. 25010-25020
-
-
Stracka, D.1
Jozefczuk, S.2
Rudroff, F.3
Sauer, U.4
Hall, M.N.5
-
15
-
-
0029808294
-
Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
-
Di Como CJ, Arndt KT, Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 1996;10(15):1904–16. Epub 1996/08/01. 8756348.
-
(1996)
Genes Dev
, vol.10
, Issue.15
, pp. 1904-1916
-
-
Di Como, C.J.1
Arndt, K.T.2
-
16
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell. 2007;26(5):663–74. Epub 2007/06/15. doi: 10.1016/j.molcel.2007.04.020 17560372.
-
(2007)
Mol Cell
, vol.26
, Issue.5
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
-
17
-
-
17344381954
-
Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
-
Duvel K, Santhanam A, Garrett S, Schneper L, Broach JR, Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell. 2003;11(6):1467–78. 12820961.
-
(2003)
Mol Cell
, vol.11
, Issue.6
, pp. 1467-1478
-
-
Duvel, K.1
Santhanam, A.2
Garrett, S.3
Schneper, L.4
Broach, J.R.5
-
18
-
-
75749090429
-
Tor directly controls the Atg1 kinase complex to regulate autophagy
-
Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol. 2010;30(4):1049–58. doi: 10.1128/MCB.01344-09 19995911; PubMed Central PMCID: PMC2815578.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.4
, pp. 1049-1058
-
-
Kamada, Y.1
Yoshino, K.2
Kondo, C.3
Kawamata, T.4
Oshiro, N.5
Yonezawa, K.6
-
19
-
-
5444256434
-
A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size
-
Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M, A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 2004;18(20):2491–505. Epub 2004/10/07. doi: 10.1101/gad.1228804 15466158; PubMed Central PMCID: PMC529537.
-
(2004)
Genes Dev
, vol.18
, Issue.20
, pp. 2491-2505
-
-
Jorgensen, P.1
Rupes, I.2
Sharom, J.R.3
Schneper, L.4
Broach, J.R.5
Tyers, M.6
-
20
-
-
84908031923
-
State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae
-
Hughes Hallett JE, Luo X, Capaldi AP, State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. Genetics. 2014;198(2):773–86. doi: 10.1534/genetics.114.168369 25085507; PubMed Central PMCID: PMC4196627.
-
(2014)
Genetics
, vol.198
, Issue.2
, pp. 773-786
-
-
Hughes, H.J.E.1
Luo, X.2
Capaldi, A.P.3
-
21
-
-
84921860516
-
PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1
-
DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH, PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell. 2015;26(3):569–82. doi: 10.1091/mbc.E14-06-1088 25428989; PubMed Central PMCID: PMC4310746.
-
(2015)
Mol Biol Cell
, vol.26
, Issue.3
, pp. 569-582
-
-
DeMille, D.1
Badal, B.D.2
Evans, J.B.3
Mathis, A.D.4
Anderson, J.F.5
Grose, J.H.6
-
22
-
-
84862776556
-
The TOR complex 1 is a direct target of Rho1 GTPase
-
Yan G, Lai Y, Jiang Y, The TOR complex 1 is a direct target of Rho1 GTPase. Mol Cell. 2012;45(6):743–53. doi: 10.1016/j.molcel.2012.01.028 22445487; PubMed Central PMCID: PMC3334367.
-
(2012)
Mol Cell
, vol.45
, Issue.6
, pp. 743-753
-
-
Yan, G.1
Lai, Y.2
Jiang, Y.3
-
23
-
-
84864308260
-
Transient sequestration of TORC1 into stress granules during heat stress
-
Takahara T, Maeda T, Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell. 2012;47(2):242–52. Epub 2012/06/26. doi: 10.1016/j.molcel.2012.05.019 22727621.
-
(2012)
Mol Cell
, vol.47
, Issue.2
, pp. 242-252
-
-
Takahara, T.1
Maeda, T.2
-
24
-
-
0037338355
-
Leucine biosynthesis in fungi: entering metabolism through the back door
-
Kohlhaw GB, Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev. 2003;67(1):1–15. 12626680; PubMed Central PMCID: PMC150519.
-
(2003)
Microbiol Mol Biol Rev
, vol.67
, Issue.1
, pp. 1-15
-
-
Kohlhaw, G.B.1
-
25
-
-
0035723369
-
The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids
-
Forsberg H, Gilstring CF, Zargari A, Martinez P, Ljungdahl PO, The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol Microbiol. 2001;42(1):215–28. 11679080.
-
(2001)
Mol Microbiol
, vol.42
, Issue.1
, pp. 215-228
-
-
Forsberg, H.1
Gilstring, C.F.2
Zargari, A.3
Martinez, P.4
Ljungdahl, P.O.5
-
26
-
-
0242437856
-
The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae
-
Donaton MC, Holsbeeks I, Lagatie O, Van Zeebroeck G, Crauwels M, Winderickx J, et al. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2003;50(3):911–29. 14617151.
-
(2003)
Mol Microbiol
, vol.50
, Issue.3
, pp. 911-929
-
-
Donaton, M.C.1
Holsbeeks, I.2
Lagatie, O.3
Van Zeebroeck, G.4
Crauwels, M.5
Winderickx, J.6
-
27
-
-
0031963197
-
The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae
-
Didion T, Regenberg B, Jorgensen MU, Kielland-Brandt MC, Andersen HA, The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol. 1998;27(3):643–50. 9489675.
-
(1998)
Mol Microbiol
, vol.27
, Issue.3
, pp. 643-650
-
-
Didion, T.1
Regenberg, B.2
Jorgensen, M.U.3
Kielland-Brandt, M.C.4
Andersen, H.A.5
-
28
-
-
0037382865
-
Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2
-
Cherkasova VA, Hinnebusch AG, Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 2003;17(7):859–72. 12654728.
-
(2003)
Genes Dev
, vol.17
, Issue.7
, pp. 859-872
-
-
Cherkasova, V.A.1
Hinnebusch, A.G.2
-
29
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012;47(3):349–58. doi: 10.1016/j.molcel.2012.05.043 22749528.
-
(2012)
Mol Cell
, vol.47
, Issue.3
, pp. 349-358
-
-
Duran, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
-
30
-
-
0031730304
-
Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes
-
Fox HL, Pham PT, Kimball SR, Jefferson LS, Lynch CJ, Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am J Physiol. 1998;275(5 Pt 1):C1232–8. 9814971.
-
(1998)
Am J Physiol
, vol.275
, Issue.5
, pp. 8-1232
-
-
Fox, H.L.1
Pham, P.T.2
Kimball, S.R.3
Jefferson, L.S.4
Lynch, C.J.5
-
31
-
-
1642503830
-
Tissue-specific regulation of 4E-BP1 and S6K1 phosphorylation by alpha-ketoisocaproate
-
Yoshizawa F, Sekizawa H, Hirayama S, Yamazaki Y, Nagasawa T, Sugahara K, Tissue-specific regulation of 4E-BP1 and S6K1 phosphorylation by alpha-ketoisocaproate. J Nutr Sci Vitaminol (Tokyo). 2004;50(1):56–60. 15228219.
-
(2004)
J Nutr Sci Vitaminol (Tokyo)
, vol.50
, Issue.1
, pp. 56-60
-
-
Yoshizawa, F.1
Sekizawa, H.2
Hirayama, S.3
Yamazaki, Y.4
Nagasawa, T.5
Sugahara, K.6
-
32
-
-
0035145602
-
Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells
-
Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML, Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes. 2001;50(2):353–60. 11272147.
-
(2001)
Diabetes
, vol.50
, Issue.2
, pp. 353-360
-
-
Xu, G.1
Kwon, G.2
Cruz, W.S.3
Marshall, C.A.4
McDaniel, M.L.5
-
33
-
-
0001437616
-
Bidirectional modulation of insulin action by amino acids
-
Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR, Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998;101(7):1519–29. doi: 10.1172/JCI1326 9525995; PubMed Central PMCID: PMC508730.
-
(1998)
J Clin Invest
, vol.101
, Issue.7
, pp. 1519-1529
-
-
Patti, M.E.1
Brambilla, E.2
Luzi, L.3
Landaker, E.J.4
Kahn, C.R.5
-
34
-
-
0041384020
-
In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint
-
Martinez-Anaya C, Dickinson JR, Sudbery PE, In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci. 2003;116(Pt 16):3423–31. Epub 2003/07/04. doi: 10.1242/jcs.00634 12840070.
-
(2003)
J Cell Sci
, vol.116
, pp. 3423-3431
-
-
Martinez-Anaya, C.1
Dickinson, J.R.2
Sudbery, P.E.3
-
35
-
-
77954208849
-
Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body
-
Taylor EJ, Campbell SG, Griffiths CD, Reid PJ, Slaven JW, Harrison RJ, et al. Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body. Mol Biol Cell. 2010;21(13):2202–16. Epub 2010/05/07. doi: 10.1091/mbc.E09-11-0962 20444979; PubMed Central PMCID: PMC2893985.
-
(2010)
Mol Biol Cell
, vol.21
, Issue.13
, pp. 2202-2216
-
-
Taylor, E.J.1
Campbell, S.G.2
Griffiths, C.D.3
Reid, P.J.4
Slaven, J.W.5
Harrison, R.J.6
-
36
-
-
4644269814
-
Isoamyl alcohol-induced morphological change in Saccharomyces cerevisiae involves increases in mitochondria and cell wall chitin content
-
Kern K, Nunn CD, Pichova A, Dickinson JR, Isoamyl alcohol-induced morphological change in Saccharomyces cerevisiae involves increases in mitochondria and cell wall chitin content. FEMS Yeast Res. 2004;5(1):43–9. Epub 2004/09/24. doi: 10.1016/j.femsyr.2004.06.011 15381121.
-
(2004)
FEMS Yeast Res
, vol.5
, Issue.1
, pp. 43-49
-
-
Kern, K.1
Nunn, C.D.2
Pichova, A.3
Dickinson, J.R.4
-
37
-
-
42349106782
-
The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
-
Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR, The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74(8):2259–66. doi: 10.1128/AEM.02625-07 18281432; PubMed Central PMCID: PMC2293160.
-
(2008)
Appl Environ Microbiol
, vol.74
, Issue.8
, pp. 2259-2266
-
-
Hazelwood, L.A.1
Daran, J.M.2
van Maris, A.J.3
Pronk, J.T.4
Dickinson, J.R.5
-
38
-
-
73649126526
-
Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm)
-
Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chuang DT, Hutson SM, Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm). J Biol Chem. 2010;285(1):265–76. doi: 10.1074/jbc.M109.048777 19858196; PubMed Central PMCID: PMC2804173.
-
(2010)
J Biol Chem
, vol.285
, Issue.1
, pp. 265-276
-
-
Islam, M.M.1
Nautiyal, M.2
Wynn, R.M.3
Mobley, J.A.4
Chuang, D.T.5
Hutson, S.M.6
-
39
-
-
80052260152
-
Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways
-
Hutson SM, Islam MM, Zaganas I, Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways. Neurochem Int. 2011;59(4):518–24. doi: 10.1016/j.neuint.2011.05.001 21621574.
-
(2011)
Neurochem Int
, vol.59
, Issue.4
, pp. 518-524
-
-
Hutson, S.M.1
Islam, M.M.2
Zaganas, I.3
-
40
-
-
38849085192
-
Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae
-
Dumlao DS, Hertz N, Clarke S, Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae. Biochemistry. 2008;47(2):698–709. doi: 10.1021/bi7018157 18092814.
-
(2008)
Biochemistry
, vol.47
, Issue.2
, pp. 698-709
-
-
Dumlao, D.S.1
Hertz, N.2
Clarke, S.3
-
41
-
-
0029768098
-
Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein
-
Kispal G, Steiner H, Court DA, Rolinski B, Lill R, Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem. 1996;271(40):24458–64. 8798704.
-
(1996)
J Biol Chem
, vol.271
, Issue.40
, pp. 24458-24464
-
-
Kispal, G.1
Steiner, H.2
Court, D.A.3
Rolinski, B.4
Lill, R.5
-
42
-
-
34548680957
-
Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae
-
Sung MK, Huh WK, Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast. 2007;24(9):767–75. doi: 10.1002/yea.1504 17534848.
-
(2007)
Yeast
, vol.24
, Issue.9
, pp. 767-775
-
-
Sung, M.K.1
Huh, W.K.2
-
43
-
-
0033741370
-
Detection of protein-protein interactions by protein fragment complementation strategies
-
Michnick SW, Remy I, Campbell-Valois FX, Vallee-Belisle A, Pelletier JN, Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 2000;328:208–30. 11075347.
-
(2000)
Methods Enzymol
, vol.328
, pp. 208-230
-
-
Michnick, S.W.1
Remy, I.2
Campbell-Valois, F.X.3
Vallee-Belisle, A.4
Pelletier, J.N.5
-
44
-
-
0025336743
-
Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate
-
Gangloff SP, Marguet D, Lauquin GJ, Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol Cell Biol. 1990;10(7):3551–61. 1972545; PubMed Central PMCID: PMC360790.
-
(1990)
Mol Cell Biol
, vol.10
, Issue.7
, pp. 3551-3561
-
-
Gangloff, S.P.1
Marguet, D.2
Lauquin, G.J.3
-
45
-
-
0013773214
-
Glutamate auxotrophs in Saccharomyces 1. I. The biochemical lesion in the glt-1 mutants-2
-
Ogur M, Coker L, Ogur S, Glutamate auxotrophs in Saccharomyces 1. I. The biochemical lesion in the glt-1 mutants-2. Biochem Biophys Res Commun. 1964;14:193–7. Epub 1964/01/01. 5836504.
-
(1964)
Biochem Biophys Res Commun
, vol.14
, pp. 193-197
-
-
Ogur, M.1
Coker, L.2
Ogur, S.3
-
46
-
-
0024288671
-
Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae
-
de Vries S, Grivell LA, Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur J Biochem. 1988;176(2):377–84. 3138118.
-
(1988)
Eur J Biochem
, vol.176
, Issue.2
, pp. 377-384
-
-
de Vries, S.1
Grivell, L.A.2
-
47
-
-
84875279038
-
Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
-
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J, Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng. 2013;15:48–54. doi: 10.1016/j.ymben.2012.11.002 23164578.
-
(2013)
Metab Eng
, vol.15
, pp. 48-54
-
-
Chen, Y.1
Daviet, L.2
Schalk, M.3
Siewers, V.4
Nielsen, J.5
-
48
-
-
0041700137
-
Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
-
Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, et al. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol. 2003;13(15):1299–305. 12906789.
-
(2003)
Curr Biol
, vol.13
, Issue.15
, pp. 1299-1305
-
-
Sutherland, C.M.1
Hawley, S.A.2
McCartney, R.R.3
Leech, A.4
Stark, M.J.5
Schmidt, M.C.6
-
49
-
-
0032568542
-
Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
-
Ludin K, Jiang R, Carlson M, Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998;95(11):6245–50. 9600950; PubMed Central PMCID: PMC27646.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, Issue.11
, pp. 6245-6250
-
-
Ludin, K.1
Jiang, R.2
Carlson, M.3
-
50
-
-
18844446425
-
Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method
-
Xie MW, Jin F, Hwang H, Hwang S, Anand V, Duncan MC, et al. Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci U S A. 2005;102(20):7215–20. Epub 2005/05/11. 0500297102 [pii] doi: 10.1073/pnas.0500297102 15883373; PubMed Central PMCID: PMC1091748.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, Issue.20
, pp. 7215-7220
-
-
Xie, M.W.1
Jin, F.2
Hwang, H.3
Hwang, S.4
Anand, V.5
Duncan, M.C.6
-
51
-
-
0036148362
-
Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3
-
Bertram PG, Choi JH, Carvalho J, Chan TF, Ai W, Zheng XF, Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3. Mol Cell Biol. 2002;22(4):1246–52. 11809814; PubMed Central PMCID: PMC134645.
-
(2002)
Mol Cell Biol
, vol.22
, Issue.4
, pp. 1246-1252
-
-
Bertram, P.G.1
Choi, J.H.2
Carvalho, J.3
Chan, T.F.4
Ai, W.5
Zheng, X.F.6
-
52
-
-
84936114684
-
L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome
-
Xu B, Sowa N, Cardenas ME, Gerton JL, L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome. Hum Mol Genet. 2015;24(6):1540–55. doi: 10.1093/hmg/ddu565 25378554; PubMed Central PMCID: PMC4351377.
-
(2015)
Hum Mol Genet
, vol.24
, Issue.6
, pp. 1540-1555
-
-
Xu, B.1
Sowa, N.2
Cardenas, M.E.3
Gerton, J.L.4
-
53
-
-
0029786833
-
Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases
-
Eden A, Simchen G, Benvenisty N, Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem. 1996;271(34):20242–5. 8702755.
-
(1996)
J Biol Chem
, vol.271
, Issue.34
, pp. 20242-20245
-
-
Eden, A.1
Simchen, G.2
Benvenisty, N.3
-
54
-
-
34249699637
-
A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex
-
Islam MM, Wallin R, Wynn RM, Conway M, Fujii H, Mobley JA, et al. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex. J Biol Chem. 2007;282(16):11893–903. doi: 10.1074/jbc.M700198200 17314104.
-
(2007)
J Biol Chem
, vol.282
, Issue.16
, pp. 11893-11903
-
-
Islam, M.M.1
Wallin, R.2
Wynn, R.M.3
Conway, M.4
Fujii, H.5
Mobley, J.A.6
-
55
-
-
84877783219
-
Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae
-
Styger G, Jacobson D, Prior BA, Bauer FF, Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2013;97(10):4429–42. doi: 10.1007/s00253-012-4522-1 23111598.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, Issue.10
, pp. 4429-4442
-
-
Styger, G.1
Jacobson, D.2
Prior, B.A.3
Bauer, F.F.4
-
56
-
-
20344373417
-
Overview of the molecular and biochemical basis of branched-chain amino acid catabolism
-
Harris RA, Joshi M, Jeoung NH, Obayashi M, Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr. 2005;135(6 Suppl):1527S–30S. 15930464.
-
(2005)
J Nutr
, vol.135
, Issue.6 Suppl
, pp. 30S-1527S
-
-
Harris, R.A.1
Joshi, M.2
Jeoung, N.H.3
Obayashi, M.4
-
57
-
-
0023733427
-
Branched-chain amino acid aminotransferase of Escherichia coli: overproduction and properties
-
Inoue K, Kuramitsu S, Aki K, Watanabe Y, Takagi T, Nishigai M, et al. Branched-chain amino acid aminotransferase of Escherichia coli: overproduction and properties. J Biochem. 1988;104(5):777–84. 3069843.
-
(1988)
J Biochem
, vol.104
, Issue.5
, pp. 777-784
-
-
Inoue, K.1
Kuramitsu, S.2
Aki, K.3
Watanabe, Y.4
Takagi, T.5
Nishigai, M.6
-
58
-
-
0029584470
-
Cloning and expression of the mammalian cytosolic branched chain aminotransferase isoenzyme
-
Hutson SM, Bledsoe RK, Hall TR, Dawson PA, Cloning and expression of the mammalian cytosolic branched chain aminotransferase isoenzyme. J Biol Chem. 1995;270(51):30344–52. 8530459.
-
(1995)
J Biol Chem
, vol.270
, Issue.51
, pp. 30344-30352
-
-
Hutson, S.M.1
Bledsoe, R.K.2
Hall, T.R.3
Dawson, P.A.4
-
59
-
-
0035075262
-
The structure of human mitochondrial branched-chain aminotransferase
-
Yennawar N, Dunbar J, Conway M, Hutson S, Farber G, The structure of human mitochondrial branched-chain aminotransferase. Acta Crystallogr D Biol Crystallogr. 2001;57(Pt 4):506–15. 11264579.
-
(2001)
Acta Crystallogr D Biol Crystallogr
, vol.57
, pp. 506-515
-
-
Yennawar, N.1
Dunbar, J.2
Conway, M.3
Hutson, S.4
Farber, G.5
-
60
-
-
67650165225
-
Metabolic transformation in cancer
-
Tennant DA, Duran RV, Boulahbel H, Gottlieb E, Metabolic transformation in cancer. Carcinogenesis. 2009;30(8):1269–80. doi: 10.1093/carcin/bgp070 19321800.
-
(2009)
Carcinogenesis
, vol.30
, Issue.8
, pp. 1269-1280
-
-
Tennant, D.A.1
Duran, R.V.2
Boulahbel, H.3
Gottlieb, E.4
-
61
-
-
84858183302
-
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae
-
Ljungdahl PO, Daignan-Fornier B, Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 2012;190(3):885–929. Epub 2012/03/16. doi: 10.1534/genetics.111.133306 22419079; PubMed Central PMCID: PMC3296254.
-
(2012)
Genetics
, vol.190
, Issue.3
, pp. 885-929
-
-
Ljungdahl, P.O.1
Daignan-Fornier, B.2
-
62
-
-
84866076360
-
Nutritional control of growth and development in yeast
-
Broach JR, Nutritional control of growth and development in yeast. Genetics. 2012;192(1):73–105. doi: 10.1534/genetics.111.135731 22964838; PubMed Central PMCID: PMC3430547.
-
(2012)
Genetics
, vol.192
, Issue.1
, pp. 73-105
-
-
Broach, J.R.1
-
63
-
-
0035798097
-
Mammalian TOR: a homeostatic ATP sensor
-
Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G, Mammalian TOR: a homeostatic ATP sensor. Science. 2001;294(5544):1102–5. doi: 10.1126/science.1063518 11691993.
-
(2001)
Science
, vol.294
, Issue.5544
, pp. 1102-1105
-
-
Dennis, P.B.1
Jaeschke, A.2
Saitoh, M.3
Fowler, B.4
Kozma, S.C.5
Thomas, G.6
-
65
-
-
14844363721
-
Signaling by target of rapamycin proteins in cell growth control
-
Inoki K, Ouyang H, Li Y, Guan KL, Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev. 2005;69(1):79–100. doi: 10.1128/MMBR.69.1.79–100.2005 15755954; PubMed Central PMCID: PMC1082789.
-
(2005)
Microbiol Mol Biol Rev
, vol.69
, Issue.1
, pp. 79-100
-
-
Inoki, K.1
Ouyang, H.2
Li, Y.3
Guan, K.L.4
-
66
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA, AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. doi: 10.1038/nrm3311 22436748.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, Issue.4
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
67
-
-
80455160062
-
ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase
-
Mayer FV, Heath R, Underwood E, Sanders MJ, Carmena D, McCartney RR, et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab. 2011;14(5):707–14. doi: 10.1016/j.cmet.2011.09.009 22019086; PubMed Central PMCID: PMC3241989.
-
(2011)
Cell Metab
, vol.14
, Issue.5
, pp. 707-714
-
-
Mayer, F.V.1
Heath, R.2
Underwood, E.3
Sanders, M.J.4
Carmena, D.5
McCartney, R.R.6
-
68
-
-
80255127530
-
The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation
-
Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, et al. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J. 2011;278(21):3978–90. doi: 10.1111/j.1742-4658.2011.08315.x 21883929.
-
(2011)
FEBS J
, vol.278
, Issue.21
, pp. 3978-3990
-
-
Ghillebert, R.1
Swinnen, E.2
Wen, J.3
Vandesteene, L.4
Ramon, M.5
Norga, K.6
-
69
-
-
0035542970
-
AMP-activated protein kinase: the energy charge hypothesis revisited
-
Hardie DG, Hawley SA, AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays. 2001;23(12):1112–9. doi: 10.1002/bies.10009 11746230.
-
(2001)
Bioessays
, vol.23
, Issue.12
, pp. 1112-1119
-
-
Hardie, D.G.1
Hawley, S.A.2
-
70
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL, TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90. 14651849.
-
(2003)
Cell
, vol.115
, Issue.5
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
71
-
-
0037025356
-
AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling
-
Bolster DR, Crozier SJ, Kimball SR, Jefferson LS, AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002;277(27):23977–80. doi: 10.1074/jbc.C200171200 11997383.
-
(2002)
J Biol Chem
, vol.277
, Issue.27
, pp. 23977-23980
-
-
Bolster, D.R.1
Crozier, S.J.2
Kimball, S.R.3
Jefferson, L.S.4
-
72
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26. doi: 10.1016/j.molcel.2008.03.003 18439900; PubMed Central PMCID: PMC2674027.
-
(2008)
Mol Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
-
73
-
-
84903906735
-
Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling
-
Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, et al. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci Signal. 2014;7(333):ra64. doi: 10.1126/scisignal.2005000 25005228.
-
(2014)
Sci Signal
, vol.7
, Issue.333
, pp. ra64
-
-
Braun, K.A.1
Vaga, S.2
Dombek, K.M.3
Fang, F.4
Palmisano, S.5
Aebersold, R.6
-
74
-
-
73149091660
-
3rd, Olsson L, Nielsen J. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator
-
Usaite R, Jewett MC, Oliveira AP, Yates JR, 3rd, Olsson L, Nielsen J. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol. 2009;5:319. doi: 10.1038/msb.2009.67 19888214; PubMed Central PMCID: PMC2795470.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 319
-
-
Usaite, R.1
Jewett, M.C.2
Oliveira, A.P.3
Yates, J.R.4
-
75
-
-
67749091321
-
Infectious tolerance via the consumption of essential amino acids and mTOR signaling
-
Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A. 2009;106(29):12055–60. Epub 2009/07/02. doi: 10.1073/pnas.0903919106 19567830; PubMed Central PMCID: PMC2704109.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.29
, pp. 12055-12060
-
-
Cobbold, S.P.1
Adams, E.2
Farquhar, C.A.3
Nolan, K.F.4
Howie, D.5
Lui, K.O.6
-
76
-
-
0346787541
-
Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves
-
Sweatt AJ, Wood M, Suryawan A, Wallin R, Willingham MC, Hutson SM, Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Physiol Endocrinol Metab. 2004;286(1):E64–76. doi: 10.1152/ajpendo.00276.2003 12965870.
-
(2004)
Am J Physiol Endocrinol Metab
, vol.286
, Issue.1
, pp. E64-76
-
-
Sweatt, A.J.1
Wood, M.2
Suryawan, A.3
Wallin, R.4
Willingham, M.C.5
Hutson, S.M.6
-
77
-
-
4444293612
-
Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus
-
Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM, Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol. 2004;477(4):360–70. doi: 10.1002/cne.20200 15329886.
-
(2004)
J Comp Neurol
, vol.477
, Issue.4
, pp. 360-370
-
-
Sweatt, A.J.1
Garcia-Espinosa, M.A.2
Wallin, R.3
Hutson, S.M.4
-
78
-
-
0017661095
-
Isozyme patterns of branched-chain amino acid transaminase in human tissues and tumors
-
Goto M, Shinno H, Ichihara A, Isozyme patterns of branched-chain amino acid transaminase in human tissues and tumors. Gan. 1977;68(5):663–7. 201538.
-
(1977)
Gan
, vol.68
, Issue.5
, pp. 663-667
-
-
Goto, M.1
Shinno, H.2
Ichihara, A.3
-
79
-
-
84880291912
-
BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1
-
Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19(7):901–8. doi: 10.1038/nm.3217 23793099.
-
(2013)
Nat Med
, vol.19
, Issue.7
, pp. 901-908
-
-
Tonjes, M.1
Barbus, S.2
Park, Y.J.3
Wang, W.4
Schlotter, M.5
Lindroth, A.M.6
-
80
-
-
84957942575
-
BCAT1 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder
-
Chang IW, Wu WJ, Wang YH, Wu TF, Liang PI, He HL, et al. BCAT1 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. Histopathology. 2015. doi: 10.1111/his.12778 26173071.
-
(2015)
Histopathology
-
-
Chang, I.W.1
Wu, W.J.2
Wang, Y.H.3
Wu, T.F.4
Liang, P.I.5
He, H.L.6
-
81
-
-
84879327240
-
Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer
-
Zhang EY, Cristofanilli M, Robertson F, Reuben JM, Mu Z, Beavis RC, et al. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer. J Proteome Res. 2013;12(6):2805–17. doi: 10.1021/pr4001527 23647160; PubMed Central PMCID: PMC4142215.
-
(2013)
J Proteome Res
, vol.12
, Issue.6
, pp. 2805-2817
-
-
Zhang, E.Y.1
Cristofanilli, M.2
Robertson, F.3
Reuben, J.M.4
Mu, Z.5
Beavis, R.C.6
-
82
-
-
84903842364
-
Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells
-
Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM, Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem. 2014;289(27):18793–804. doi: 10.1074/jbc.M114.554113 24847056; PubMed Central PMCID: PMC4081922.
-
(2014)
J Biol Chem
, vol.289
, Issue.27
, pp. 18793-18804
-
-
Ananieva, E.A.1
Patel, C.H.2
Drake, C.H.3
Powell, J.D.4
Hutson, S.M.5
-
84
-
-
77749339872
-
Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2Δ) mutants is influenced by the carbon source and rapamycin
-
Kingsbury JM, McCusker JH, Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2Δ) mutants is influenced by the carbon source and rapamycin. Microbiology. 2010;156(3):929–39. doi: 10.1099/mic.0.034348–0 WOS:000276189600029.
-
(2010)
Microbiology
, vol.156
, Issue.3
, pp. 929-939
-
-
Kingsbury, J.M.1
McCusker, J.H.2
-
85
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14(2):115–32. Epub 1998/03/04. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2–2 9483801.
-
(1998)
Yeast
, vol.14
, Issue.2
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
-
86
-
-
84901319212
-
Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae
-
Kingsbury JM, Sen ND, Maeda T, Heitman J, Cardenas ME, Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics. 2014;196(4):1077–89. doi: 10.1534/genetics.114.161646 24514902; PubMed Central PMCID: PMC3982701.
-
(2014)
Genetics
, vol.196
, Issue.4
, pp. 1077-1089
-
-
Kingsbury, J.M.1
Sen, N.D.2
Maeda, T.3
Heitman, J.4
Cardenas, M.E.5
-
87
-
-
0037371728
-
An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry
-
Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG, An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry. 2003;62(6):929–37. 12590120.
-
(2003)
Phytochemistry
, vol.62
, Issue.6
, pp. 929-937
-
-
Castrillo, J.I.1
Hayes, A.2
Mohammed, S.3
Gaskell, S.J.4
Oliver, S.G.5
-
88
-
-
36749067297
-
Cyclic changes in metabolic state during the life of a yeast cell
-
Tu BP, Mohler RE, Liu JC, Dombek KM, Young ET, Synovec RE, et al. Cyclic changes in metabolic state during the life of a yeast cell. Proc Natl Acad Sci U S A. 2007;104(43):16886–91. doi: 10.1073/pnas.0708365104 17940006; PubMed Central PMCID: PMC2040445.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.43
, pp. 16886-16891
-
-
Tu, B.P.1
Mohler, R.E.2
Liu, J.C.3
Dombek, K.M.4
Young, E.T.5
Synovec, R.E.6
-
89
-
-
41949105208
-
Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling
-
Ferrara CT, Wang P, Neto EC, Stevens RD, Bain JR, Wenner BR, et al. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet. 2008;4(3):e1000034. doi: 10.1371/journal.pgen.1000034 18369453; PubMed Central PMCID: PMC2265422.
-
(2008)
PLoS Genet
, vol.4
, Issue.3
, pp. e1000034
-
-
Ferrara, C.T.1
Wang, P.2
Neto, E.C.3
Stevens, R.D.4
Bain, J.R.5
Wenner, B.R.6
-
90
-
-
2342509057
-
Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance
-
An J, Muoio DM, Shiota M, Fujimoto Y, Cline GW, Shulman GI, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med. 2004;10(3):268–74. doi: 10.1038/nm995 14770177.
-
(2004)
Nat Med
, vol.10
, Issue.3
, pp. 268-274
-
-
An, J.1
Muoio, D.M.2
Shiota, M.3
Fujimoto, Y.4
Cline, G.W.5
Shulman, G.I.6
-
91
-
-
33746847686
-
Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion
-
Jensen MV, Joseph JW, Ilkayeva O, Burgess S, Lu D, Ronnebaum SM, et al. Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion. J Biol Chem. 2006;281(31):22342–51. doi: 10.1074/jbc.M604350200 16740637.
-
(2006)
J Biol Chem
, vol.281
, Issue.31
, pp. 22342-22351
-
-
Jensen, M.V.1
Joseph, J.W.2
Ilkayeva, O.3
Burgess, S.4
Lu, D.5
Ronnebaum, S.M.6
-
92
-
-
0027930011
-
Isolation and quantitation of long-chain acyl-coenzyme A esters in brain tissue by solid-phase extraction
-
Deutsch J, Grange E, Rapoport SI, Purdon AD, Isolation and quantitation of long-chain acyl-coenzyme A esters in brain tissue by solid-phase extraction. Anal Biochem. 1994;220(2):321–3. doi: 10.1006/abio.1994.1344 7978274.
-
(1994)
Anal Biochem
, vol.220
, Issue.2
, pp. 321-323
-
-
Deutsch, J.1
Grange, E.2
Rapoport, S.I.3
Purdon, A.D.4
-
93
-
-
41849099558
-
Novel isolation procedure for short-, medium-, and long-chain acyl-coenzyme A esters from tissue
-
Minkler PE, Kerner J, Ingalls ST, Hoppel CL, Novel isolation procedure for short-, medium-, and long-chain acyl-coenzyme A esters from tissue. Anal Biochem. 2008;376(2):275–6. doi: 10.1016/j.ab.2008.02.022 18355435; PubMed Central PMCID: PMC2444051.
-
(2008)
Anal Biochem
, vol.376
, Issue.2
, pp. 275-276
-
-
Minkler, P.E.1
Kerner, J.2
Ingalls, S.T.3
Hoppel, C.L.4
|