-
1
-
-
38449110592
-
SNF1/AMPK pathways in yeast
-
K. Hedbacker, M. Carlson, SNF1/AMPK pathways in yeast. Front. Biosci. 13, 2408-2420 (2008).
-
(2008)
Front. Biosci.
, vol.13
, pp. 2408-2420
-
-
Hedbacker, K.1
Carlson, M.2
-
2
-
-
0033118209
-
Glucose repression in yeast
-
M. Carlson, Glucose repression in yeast. Curr. Opin. Microbiol. 2, 202-207 (1999).
-
(1999)
Curr. Opin. Microbiol.
, vol.2
, pp. 202-207
-
-
Carlson, M.1
-
3
-
-
0023410934
-
Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes
-
H. J. Schüller, K. D. Entian, Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Mol. Gen. Genet. 209, 366-373 (1987).
-
(1987)
Mol. Gen. Genet.
, vol.209
, pp. 366-373
-
-
Schüller, H.J.1
Entian, K.D.2
-
4
-
-
0027932717
-
Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase
-
K. I. Mitchelhill, D. Stapleton, G. Gao, C. House, B. Michell, F. Katsis, L. A. Witters, B. E. Kemp, Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269, 2361-2364 (1994).
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 2361-2364
-
-
Mitchelhill, K.I.1
Stapleton, D.2
Gao, G.3
House, C.4
Michell, B.5
Katsis, F.6
Witters, L.A.7
Kemp, B.E.8
-
5
-
-
0034898311
-
Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae
-
M. K. Shirra, J. Patton-Vogt, A. Ulrich, O. Liuta-Tehlivets, S. D. Kohlwein, S. A. Henry, K. M. Arndt, Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 5710-5722 (2001).
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 5710-5722
-
-
Shirra, M.K.1
Patton-Vogt, J.2
Ulrich, A.3
Liuta-Tehlivets, O.4
Kohlwein, S.D.5
Henry, S.A.6
Arndt, K.M.7
-
6
-
-
34447128162
-
Regulation of Snf1 protein kinase in response to environmental stress
-
S. P. Hong, M. Carlson, Regulation of Snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282, 16838-16845 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 16838-16845
-
-
Hong, S.P.1
Carlson, M.2
-
7
-
-
77953594906
-
Snf1/AMPK promotes S-phase entrance by controlling CLB5 transcription in budding yeast
-
S. Pessina, V. Tsiarentsyeva, S. Busnelli, M. Vanoni, L. Alberghina, P. Coccetti, Snf1/AMPK promotes S-phase entrance by controlling CLB5 transcription in budding yeast. Cell Cycle 9, 2189-2200 (2010).
-
(2010)
Cell Cycle
, vol.9
, pp. 2189-2200
-
-
Pessina, S.1
Tsiarentsyeva, V.2
Busnelli, S.3
Vanoni, M.4
Alberghina, L.5
Coccetti, P.6
-
8
-
-
0034610273
-
Glucose depletion causes haploid invasive growth in yeast
-
P. J. Cullen, G. F. Sprague Jr., Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. U.S.A. 97, 13619-13624 (2000).
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 13619-13624
-
-
Cullen, P.J.1
Sprague, G.F.2
-
9
-
-
0036067136
-
Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase
-
S. P. Palecek, A. S. Parikh, J. H. Huh, S. J. Kron, Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol. Microbiol. 45, 453-469 (2002).
-
(2002)
Mol. Microbiol.
, vol.45
, pp. 453-469
-
-
Palecek, S.P.1
Parikh, A.S.2
Huh, J.H.3
Kron, S.J.4
-
10
-
-
0031830719
-
Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae
-
S. M. Honigberg, R. H. Lee, Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 4548-4555 (1998).
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 4548-4555
-
-
Honigberg, S.M.1
Lee, R.H.2
-
11
-
-
79951772967
-
Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism
-
D. G. Hardie, Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Proc. Nutr. Soc. 70, 92-99 (2011).
-
(2011)
Proc. Nutr. Soc.
, vol.70
, pp. 92-99
-
-
Hardie, D.G.1
-
12
-
-
34250827107
-
Energy-dependent regulation of cell structure by AMP-activated protein kinase
-
J. H. Lee, H. Koh, M. Kim, Y. Kim, S. Y. Lee, R. E. Karess, S. H. Lee, M. Shong, J. M. Kim, J. Kim, J. Chung, Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017-1020 (2007).
-
(2007)
Nature
, vol.447
, pp. 1017-1020
-
-
Lee, J.H.1
Koh, H.2
Kim, M.3
Kim, Y.4
Lee, S.Y.5
Karess, R.E.6
Lee, S.H.7
Shong, M.8
Kim, J.M.9
Kim, J.10
Chung, J.11
-
13
-
-
34248185949
-
LKB1 and AMPK maintain epithelial cell polarity under energetic stress
-
V. Mirouse, L. L. Swick, N. Kazgan, D. St Johnston, J. E. Brenman, LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J. Cell Biol. 177, 387-392 (2007).
-
(2007)
J. Cell Biol.
, vol.177
, pp. 387-392
-
-
Mirouse, V.1
Swick, L.L.2
Kazgan, N.3
St Johnston, D.4
Brenman, J.E.5
-
14
-
-
84355161919
-
Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis
-
M. R. Banko, J. J. Allen, B. E. Schaffer, E. W. Wilker, P. Tsou, J. L. White, J. Villén, B. Wang, S. R. Kim, K. Sakamoto, S. P. Gygi, L. C. Cantley, M. B. Yaffe, K. M. Shokat, A. Brunet, Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 44, 878-892 (2011).
-
(2011)
Mol. Cell
, vol.44
, pp. 878-892
-
-
Banko, M.R.1
Allen, J.J.2
Schaffer, B.E.3
Wilker, E.W.4
Tsou, P.5
White, J.L.6
Villén, J.7
Wang, B.8
Kim, S.R.9
Sakamoto, K.10
Gygi, S.P.11
Cantley, L.C.12
Yaffe, M.B.13
Shokat, K.M.14
Brunet, A.15
-
15
-
-
84879732650
-
Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
-
P. Wang, L. Xue, G. Batelli, S. Lee, Y. J. Hou, M. J. Van Oosten, H. Zhang, W. A. Tao, J. K. Zhu, Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U.S.A. 110, 11205-11210 (2013).
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 11205-11210
-
-
Wang, P.1
Xue, L.2
Batelli, G.3
Lee, S.4
Hou, Y.J.5
Van Oosten, M.J.6
Zhang, H.7
Tao, W.A.8
Zhu, J.K.9
-
16
-
-
84867411346
-
Adenosine monophosphate-activated protein kinase: A central regulator of metabolism with roles in diabetes, cancer, and viral infection
-
D. G. Hardie, Adenosine monophosphate-activated protein kinase: A central regulator of metabolism with roles in diabetes, cancer, and viral infection. Cold Spring Harb. Symp. Quant. Biol. 76, 155-164 (2011).
-
(2011)
Cold Spring Harb. Symp. Quant. Biol.
, vol.76
, pp. 155-164
-
-
Hardie, D.G.1
-
17
-
-
0041305909
-
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
-
S. P. Hong, F. C. Leiper, A.Woods, D. Carling, M. Carlson, Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. U.S.A. 100, 8839-8843 (2003).
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 8839-8843
-
-
Hong, S.P.1
Leiper, F.C.2
Woods, A.3
Carling, D.4
Carlson, M.5
-
18
-
-
23044437445
-
2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
-
2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21-33 (2005).
-
(2005)
Cell Metab.
, vol.2
, pp. 21-33
-
-
Woods, A.1
Dickerson, K.2
Heath, R.3
Hong, S.P.4
Momcilovic, M.5
Johnstone, S.R.6
Carlson, M.7
Carling, D.8
-
19
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
A. Woods, S. R. Johnstone, K. Dickerson, F. C. Leiper, L. G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, D. Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008 (2003).
-
(2003)
Curr. Biol.
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.5
Neumann, D.6
Schlattner, U.7
Wallimann, T.8
Carlson, M.9
Carling, D.10
-
20
-
-
0035965277
-
Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
-
R. R. McCartney, M. C. Schmidt, Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276, 36460-36466 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36460-36466
-
-
McCartney, R.R.1
Schmidt, M.C.2
-
22
-
-
80455160062
-
ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase
-
F. V. Mayer, R. Heath, E. Underwood, M. J. Sanders, D. Carmena, R. R. McCartney, F. C. Leiper, B. Xiao, C. Jing, P. A. Walker, L. F. Haire, R. Ogrodowicz, S. R. Martin, M. C. Schmidt, S. J. Gamblin, D. Carling, ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab. 14, 707-714 (2011).
-
(2011)
Cell Metab.
, vol.14
, pp. 707-714
-
-
Mayer, F.V.1
Heath, R.2
Underwood, E.3
Sanders, M.J.4
Carmena, D.5
McCartney, R.R.6
Leiper, F.C.7
Xiao, B.8
Jing, C.9
Walker, P.A.10
Haire, L.F.11
Ogrodowicz, R.12
Martin, S.R.13
Schmidt, M.C.14
Gamblin, S.J.15
Carling, D.16
-
23
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
B. Xiao, M. J. Sanders, E. Underwood, R. Heath, F. V. Mayer, D. Carmena, C. Jing, P. A. Walker, J. F. Eccleston, L. F. Haire, P. Saiu, S. A. Howell, R. Aasland, S. R. Martin, D. Carling, S. J. Gamblin, Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230-233 (2011).
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
Sanders, M.J.2
Underwood, E.3
Heath, R.4
Mayer, F.V.5
Carmena, D.6
Jing, C.7
Walker, P.A.8
Eccleston, J.F.9
Haire, L.F.10
Saiu, P.11
Howell, S.A.12
Aasland, R.13
Martin, S.R.14
Carling, D.15
Gamblin, S.J.16
-
24
-
-
84872079812
-
Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation
-
D. G. Chandrashekarappa, R. R. McCartney, M. C. Schmidt, Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J. Biol. Chem. 288, 89-98 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 89-98
-
-
Chandrashekarappa, D.G.1
McCartney, R.R.2
Schmidt, M.C.3
-
25
-
-
38049174646
-
Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase
-
E. M. Rubenstein, R. R. McCartney, C. Zhang, K. M. Shokat, M. K. Shirra, K. M. Arndt, M. C. Schmidt, Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J. Biol. Chem. 283, 222-230 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 222-230
-
-
Rubenstein, E.M.1
McCartney, R.R.2
Zhang, C.3
Shokat, K.M.4
Shirra, M.K.5
Arndt, K.M.6
Schmidt, M.C.7
-
26
-
-
84861840057
-
Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast
-
D. Castermans, I. Somers, J. Kriel, W. Louwet, S. Wera, M. Versele, V. Janssens, J. M. Thevelein, Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res. 22, 1058-1077 (2012).
-
(2012)
Cell Res.
, vol.22
, pp. 1058-1077
-
-
Castermans, D.1
Somers, I.2
Kriel, J.3
Louwet, W.4
Wera, S.5
Versele, M.6
Janssens, V.7
Thevelein, J.M.8
-
27
-
-
79955588701
-
Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase
-
A. Ruiz, X. Xu, M. Carlson, Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc. Natl. Acad. Sci. U.S.A. 108, 6349-6354 (2011).
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 6349-6354
-
-
Ruiz, A.1
Xu, X.2
Carlson, M.3
-
28
-
-
67650914230
-
AMPK in health and disease
-
G. R. Steinberg, B. E. Kemp, AMPK in health and disease. Physiol. Rev. 89, 1025-1078 (2009).
-
(2009)
Physiol. Rev.
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
29
-
-
78650632764
-
Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast
-
B. Bodenmiller, S. Wanka, C. Kraft, J. Urban, D. Campbell, P. G. Pedrioli, B. Gerrits, P. Picotti, H. Lam, O. Vitek, M. Y. Brusniak, B. Roschitzki, C. Zhang, K. M. Shokat, R. Schlapbach, A. Colman-Lerner, G. P. Nolan, A. I. Nesvizhskii, M. Peter, R. Loewith, C. von Mering, R. Aebersold, Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal. 3, rs4 (2010).
-
(2010)
Sci. Signal.
, vol.3
, pp. rs4
-
-
Bodenmiller, B.1
Wanka, S.2
Kraft, C.3
Urban, J.4
Campbell, D.5
Pedrioli, P.G.6
Gerrits, B.7
Picotti, P.8
Lam, H.9
Vitek, O.10
Brusniak, M.Y.11
Roschitzki, B.12
Zhang, C.13
Shokat, K.M.14
Schlapbach, R.15
Colman-Lerner, A.16
Nolan, G.P.17
Nesvizhskii, A.I.18
Peter, M.19
Loewith, R.20
Von Mering, C.21
Aebersold, R.22
more..
-
30
-
-
80855128291
-
Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae
-
J. Zhang, S. Vaga, P. Chumnanpuen, R. Kumar, G. N. Vemuri, R. Aebersold, J. Nielsen, Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol. Syst. Biol. 7, 545 (2011).
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 545
-
-
Zhang, J.1
Vaga, S.2
Chumnanpuen, P.3
Kumar, R.4
Vemuri, G.N.5
Aebersold, R.6
Nielsen, J.7
-
31
-
-
44849104320
-
The early steps of glucose signalling in yeast
-
J. M. Gancedo, The early steps of glucose signalling in yeast. FEMS Microbiol. Rev. 32, 673-704 (2008).
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 673-704
-
-
Gancedo, J.M.1
-
32
-
-
33645130011
-
Glucose signaling in Saccharomyces cerevisiae
-
G. M. Santangelo, Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 253-282 (2006).
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, pp. 253-282
-
-
Santangelo, G.M.1
-
33
-
-
0030883032
-
Regulated nuclear translocation of the Mig1 glucose repressor
-
M. J. De Vit, J. A. Waddle, M. Johnston, Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8, 1603-1618 (1997).
-
(1997)
Mol. Biol. Cell
, vol.8
, pp. 1603-1618
-
-
De Vit, M.J.1
Waddle, J.A.2
Johnston, M.3
-
34
-
-
0031740335
-
Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
-
M. A. Treitel, S. Kuchin, M. Carlson, Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 6273-6280 (1998).
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 6273-6280
-
-
Treitel, M.A.1
Kuchin, S.2
Carlson, M.3
-
35
-
-
82955217673
-
The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
-
K. H. Wong, K. Struhl, The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev. 25, 2525-2539 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 2525-2539
-
-
Wong, K.H.1
Struhl, K.2
-
36
-
-
0038506725
-
Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8
-
E. T. Young, K. M. Dombek, C. Tachibana, T. Ideker, Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278, 26146-26158 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 26146-26158
-
-
Young, E.T.1
Dombek, K.M.2
Tachibana, C.3
Ideker, T.4
-
37
-
-
0034608811
-
A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme
-
S. Kuchin, I. Treich, M. Carlson, A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. U.S.A. 97, 7916-7920 (2000).
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 7916-7920
-
-
Kuchin, S.1
Treich, I.2
Carlson, M.3
-
38
-
-
38049156447
-
A poised initiation complex is activated by SNF1
-
C. Tachibana, R. Biddick, G. L. Law, E. T. Young, A poised initiation complex is activated by SNF1. J. Biol. Chem. 282, 37308-37315 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37308-37315
-
-
Tachibana, C.1
Biddick, R.2
Law, G.L.3
Young, E.T.4
-
39
-
-
0028981747
-
Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: Sequence elements in the 5′ untranslated region of the Ip mRNA play a dominant role
-
G. P. Cereghino, D. P. Atencio, M. Saghbini, J. Beiner, I. E. Scheffler, Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: Sequence elements in the 5′ untranslated region of the Ip mRNA play a dominant role. Mol. Biol. Cell 6, 1125-1143 (1995).
-
(1995)
Mol. Biol. Cell
, vol.6
, pp. 1125-1143
-
-
Cereghino, G.P.1
Atencio, D.P.2
Saghbini, M.3
Beiner, J.4
Scheffler, I.E.5
-
40
-
-
0032213751
-
Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae
-
I. E. Scheffler, B. J. de la Cruz, S. Prieto, Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int. J. Biochem. Cell Biol. 30, 1175-1193 (1998).
-
(1998)
Int. J. Biochem. Cell Biol.
, vol.30
, pp. 1175-1193
-
-
Scheffler, I.E.1
De La Cruz, B.J.2
Prieto, S.3
-
41
-
-
0030015215
-
Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose
-
Z. Yin, R. J. Smith, A. J. Brown, Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol. Microbiol. 20, 751-764 (1996).
-
(1996)
Mol. Microbiol.
, vol.20
, pp. 751-764
-
-
Yin, Z.1
Smith, R.J.2
Brown, A.J.3
-
42
-
-
19344372911
-
Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae
-
R. P. Andrade, P. Kötter, K. D. Entian, M. Casal, Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 332, 254-262 (2005).
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.332
, pp. 254-262
-
-
Andrade, R.P.1
Kötter, P.2
Entian, K.D.3
Casal, M.4
-
43
-
-
0030058701
-
Genetic analysis of glucose regulation in Saccharomyces cerevisiae: Control of transcription versus mRNA turnover
-
G. P. Cereghino, I. E. Scheffler, Genetic analysis of glucose regulation in Saccharomyces cerevisiae: Control of transcription versus mRNA turnover. EMBO J. 15, 363-374 (1996).
-
(1996)
EMBO J.
, vol.15
, pp. 363-374
-
-
Cereghino, G.P.1
Scheffler, I.E.2
-
44
-
-
58149092197
-
A chemical genomics study identifies Snf1 as a repressor of GCN4 translation
-
M. K. Shirra, R. R. McCartney, C. Zhang, K. M. Shokat, M. C. Schmidt, K. M. Arndt, A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J. Biol. Chem. 283, 35889-35898 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35889-35898
-
-
Shirra, M.K.1
McCartney, R.R.2
Zhang, C.3
Shokat, K.M.4
Schmidt, M.C.5
Arndt, K.M.6
-
45
-
-
60749127330
-
Glucose regulates transcription in yeast through a network of signaling pathways
-
S. Zaman, S. I. Lippman, L. Schneper, N. Slonim, J. R. Broach, Glucose regulates transcription in yeast through a network of signaling pathways. Mol. Syst. Biol. 5, 245 (2009).
-
(2009)
Mol. Syst. Biol.
, vol.5
, pp. 245
-
-
Zaman, S.1
Lippman, S.I.2
Schneper, L.3
Slonim, N.4
Broach, J.R.5
-
46
-
-
84865218513
-
The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae
-
E. T. Young, C. Zhang, K. M. Shokat, P. K. Parua, K. A. Braun, The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J. Biol. Chem. 287, 29021-29034 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 29021-29034
-
-
Young, E.T.1
Zhang, C.2
Shokat, K.M.3
Parua, P.K.4
Braun, K.A.5
-
47
-
-
84878270249
-
Gene expression is circular: Factors for mRNA degradation also foster mRNA synthesis
-
G. Haimovich, D. A. Medina, S. Z. Causse, M. Garber, G. Millán-Zambrano, O. Barkai, S. Chávez, J. E. Pérez-Ortín, X. Darzacq, M. Choder, Gene expression is circular: Factors for mRNA degradation also foster mRNA synthesis. Cell 153, 1000-1011 (2013).
-
(2013)
Cell
, vol.153
, pp. 1000-1011
-
-
Haimovich, G.1
Medina, D.A.2
Causse, S.Z.3
Garber, M.4
Millán-Zambrano, G.5
Barkai, O.6
Chávez, S.7
Pérez-Ortín, J.E.8
Darzacq, X.9
Choder, M.10
-
48
-
-
84885359411
-
Global analysis of eukaryotic mRNA degradation reveals xrn1-dependent buffering of transcript levels
-
M. Sun, B. Schwalb, N. Pirkl, K. C. Maier, A. Schenk, H. Failmezger, A. Tresch, P. Cramer, Global analysis of eukaryotic mRNA degradation reveals xrn1-dependent buffering of transcript levels. Mol. Cell 52, 52-62 (2013).
-
(2013)
Mol. Cell
, vol.52
, pp. 52-62
-
-
Sun, M.1
Schwalb, B.2
Pirkl, N.3
Maier, K.C.4
Schenk, A.5
Failmezger, H.6
Tresch, A.7
Cramer, P.8
-
49
-
-
84897674716
-
Cytoplasmic 5?-3? Exonuclease Xrn1p is also a genome-wide transcription factor in yeast
-
D. A. Medina, A. Jordán-Pla, G. Millán-Zambrano, S. Chávez, M. Choder, J. E. Péírez-Ortín, Cytoplasmic 5?-3? exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Front. Genet. 5, 1 (2014).
-
(2014)
Front. Genet.
, vol.5
, pp. 1
-
-
Medina, D.A.1
Jordán-Pla, A.2
Millán-Zambrano, G.3
Chávez, S.4
Choder, M.5
Péírez-Ortín, J.E.6
-
50
-
-
0038730985
-
mRNA decay: X (XRN1) marks the spot
-
R. M. Long, M. T. McNally, mRNA decay: X (XRN1) marks the spot. Mol. Cell 11, 1126-1128 (2003).
-
(2003)
Mol. Cell
, vol.11
, pp. 1126-1128
-
-
Long, R.M.1
McNally, M.T.2
-
51
-
-
79960065233
-
XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast
-
E. L. van Dijk, C. L. Chen, Y. d'Aubenton-Carafa, S. Gourvennec, M. Kwapisz, V. Roche, C. Bertrand, M. Silvain, P. Legoix-Né, S. Loeillet, A. Nicolas, C. Thermes, A. Morillon, XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114-117 (2011).
-
(2011)
Nature
, vol.475
, pp. 114-117
-
-
Van Dijk, E.L.1
Chen, C.L.2
D'Aubenton-Carafa, Y.3
Gourvennec, S.4
Kwapisz, M.5
Roche, V.6
Bertrand, C.7
Silvain, M.8
Legoix-Né, P.9
Loeillet, S.10
Nicolas, A.11
Thermes, C.12
Morillon, A.13
-
52
-
-
84455161597
-
Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation
-
D. G. Chandrashekarappa, R. R. McCartney, M. C. Schmidt, Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation. J. Biol. Chem. 286, 44532-44541 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 44532-44541
-
-
Chandrashekarappa, D.G.1
McCartney, R.R.2
Schmidt, M.C.3
-
53
-
-
78149378686
-
Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data
-
B. J. Webb-Robertson, L. A. McCue, K. M. Waters, M.M. Matzke, J.M. Jacobs, T. O. Metz, S. M. Varnum, J. G. Pounds, Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data. J. Proteome Res. 9, 5748-5756 (2010).
-
(2010)
J. Proteome Res.
, vol.9
, pp. 5748-5756
-
-
Webb-Robertson, B.J.1
McCue, L.A.2
Waters, K.M.3
Matzke, M.M.4
Jacobs, J.M.5
Metz, T.O.6
Varnum, S.M.7
Pounds, J.G.8
-
54
-
-
75649125966
-
Differential roles of the glycogen-binding domains of b subunits in regulation of the Snf1 kinase complex
-
S. Mangat, D. Chandrashekarappa, R. R. McCartney, K. Elbing, M. C. Schmidt, Differential roles of the glycogen-binding domains of b subunits in regulation of the Snf1 kinase complex. Eukaryot. Cell 9, 173-183 (2010).
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 173-183
-
-
Mangat, S.1
Chandrashekarappa, D.2
McCartney, R.R.3
Elbing, K.4
Schmidt, M.C.5
-
55
-
-
35448979122
-
Rod1, an arrestin-related protein, is phosphorylated by Snf1-kinase in Saccharomyces cerevisiae
-
J. Shinoda, Y. Kikuchi, Rod1, an arrestin-related protein, is phosphorylated by Snf1-kinase in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 364, 258-263 (2007).
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.364
, pp. 258-263
-
-
Shinoda, J.1
Kikuchi, Y.2
-
56
-
-
80052939858
-
Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction
-
J. Y. Lu, Y. Y. Lin, J. C. Sheu, J. T. Wu, F. J. Lee, Y. Chen, M. I. Lin, F. T. Chiang, T. Y. Tai, S. L. Berger, Y. Zhao, K. S. Tsai, H. Zhu, L. M. Chuang, J. D. Boeke, Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146, 969-979 (2011).
-
(2011)
Cell
, vol.146
, pp. 969-979
-
-
Lu, J.Y.1
Lin, Y.Y.2
Sheu, J.C.3
Wu, J.T.4
Lee, F.J.5
Chen, Y.6
Lin, M.I.7
Chiang, F.T.8
Tai, T.Y.9
Berger, S.L.10
Zhao, Y.11
Tsai, K.S.12
Zhu, H.13
Chuang, L.M.14
Boeke, J.D.15
-
57
-
-
0026758003
-
A protein kinase substrate identified by the two-hybrid system
-
X. Yang, E. J. Hubbard, M. Carlson, A protein kinase substrate identified by the two-hybrid system. Science 257, 680-682 (1992).
-
(1992)
Science
, vol.257
, pp. 680-682
-
-
Yang, X.1
Hubbard, E.J.2
Carlson, M.3
-
58
-
-
77953414533
-
Snf1 promotes phosphorylation of the α subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4
-
V. Cherkasova, H. Qiu, A. G. Hinnebusch, Snf1 promotes phosphorylation of the α subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4. Mol. Cell. Biol. 30, 2862-2873 (2010).
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 2862-2873
-
-
Cherkasova, V.1
Qiu, H.2
Hinnebusch, A.G.3
-
59
-
-
84858588614
-
Saccharomyces Genome Database: The genomics resource of budding yeast
-
J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley, E. T. Chan, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. R. Engel, D. G. Fisk, J. E. Hirschman, B. C. Hitz, K. Karra, C. J. Krieger, S. R. Miyasato, R. S. Nash, J. Park, M. S. Skrzypek, M. Simison, S. Weng, E. D. Wong, Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 40, D700-D705 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. D700-D705
-
-
Cherry, J.M.1
Hong, E.L.2
Amundsen, C.3
Balakrishnan, R.4
Binkley, G.5
Chan, E.T.6
Christie, K.R.7
Costanzo, M.C.8
Dwight, S.S.9
Engel, S.R.10
Fisk, D.G.11
Hirschman, J.E.12
Hitz, B.C.13
Karra, K.14
Krieger, C.J.15
Miyasato, S.R.16
Nash, R.S.17
Park, J.18
Skrzypek, M.S.19
Simison, M.20
Weng, S.21
Wong, E.D.22
more..
-
60
-
-
84860361165
-
Detecting overlapping protein complexes in protein-protein interaction networks
-
T. Nepusz, H. Yu, A. Paccanaro, Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471-472 (2012).
-
(2012)
Nat. Methods
, vol.9
, pp. 471-472
-
-
Nepusz, T.1
Yu, H.2
Paccanaro, A.3
-
61
-
-
84876515907
-
STRING v9.1: Protein-protein interaction networks, with increased coverage and integration
-
A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic, A. Roth, J. Lin, P. Minguez, P. Bork, C. von Mering, L. J. Jensen, STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808-D815 (2013).
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. D808-D815
-
-
Franceschini, A.1
Szklarczyk, D.2
Frankild, S.3
Kuhn, M.4
Simonovic, M.5
Roth, A.6
Lin, J.7
Minguez, P.8
Bork, P.9
Von Mering, C.10
Jensen, L.J.11
-
62
-
-
84864463147
-
Seq2Logo: A method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion
-
M. C. Thomsen, M. Nielsen, Seq2Logo: A method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 40, W281-W287 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. W281-W287
-
-
Thomsen, M.C.1
Nielsen, M.2
-
63
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery, D. S. Vasquez, B. E. Turk, R. J. Shaw, AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226 (2008).
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
64
-
-
77952986553
-
Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs
-
J. Mok, P. M. Kim, H. Y. Lam, S. Piccirillo, X. Zhou, G. R. Jeschke, D. L. Sheridan, S. A. Parker, V. Desai, M. Jwa, E. Cameroni, H. Niu, M. Good, A. Remenyi, J. L. Ma, Y. J. Sheu, H. E. Sassi, R. Sopko, C. S. Chan, C. De Virgilio, N. M. Hollingsworth, W. A. Lim, D. F. Stern, B. Stillman, B. J. Andrews, M. B. Gerstein, M. Snyder, B. E. Turk, Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal. 3, ra12 (2010).
-
(2010)
Sci. Signal.
, vol.3
, pp. ra12
-
-
Mok, J.1
Kim, P.M.2
Lam, H.Y.3
Piccirillo, S.4
Zhou, X.5
Jeschke, G.R.6
Sheridan, D.L.7
Parker, S.A.8
Desai, V.9
Jwa, M.10
Cameroni, E.11
Niu, H.12
Good, M.13
Remenyi, A.14
Ma, J.L.15
Sheu, Y.J.16
Sassi, H.E.17
Sopko, R.18
Chan, C.S.19
De Virgilio, C.20
Hollingsworth, N.M.21
Lim, W.A.22
Stern, D.F.23
Stillman, B.24
Andrews, B.J.25
Gerstein, M.B.26
Snyder, M.27
Turk, B.E.28
more..
-
65
-
-
79959471456
-
Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences
-
T. Y. Lee, Z. Q. Lin, S. J. Hsieh, N. A. Bretaña, C. T. Lu, Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 27, 1780-1787 (2011).
-
(2011)
Bioinformatics
, vol.27
, pp. 1780-1787
-
-
Lee, T.Y.1
Lin, Z.Q.2
Hsieh, S.J.3
Bretaña, N.A.4
Lu, C.T.5
-
66
-
-
28444460297
-
Global analysis of protein phosphorylation in yeast
-
J. Ptacek, G. Devgan, G.Michaud, H. Zhu, X. Zhu, J. Fasolo, H. Guo, G. Jona, A. Breitkreutz, R. Sopko, R. R. McCartney, M. C. Schmidt, N. Rachidi, S. J. Lee, A. S. Mah, L. Meng, M. J. Stark, D. F. Stern, C. De Virgilio, M. Tyers, B. Andrews, M. Gerstein, B. Schweitzer, P. F. Predki, M. Snyder, Global analysis of protein phosphorylation in yeast. Nature 438, 679-684 (2005).
-
(2005)
Nature
, vol.438
, pp. 679-684
-
-
Ptacek, J.1
Devgan, G.2
Michaud, G.3
Zhu, H.4
Zhu, X.5
Fasolo, J.6
Guo, H.7
Jona, G.8
Breitkreutz, A.9
Sopko, R.10
McCartney, R.R.11
Schmidt, M.C.12
Rachidi, N.13
Lee, S.J.14
Mah, A.S.15
Meng, L.16
Stark, M.J.17
Stern, D.F.18
De Virgilio, C.19
Tyers, M.20
Andrews, B.21
Gerstein, M.22
Schweitzer, B.23
Predki, P.F.24
Snyder, M.25
more..
-
67
-
-
77956288371
-
The yeast PUF protein Puf5 has Pop2-independent roles in response to DNA replication stress
-
A. Traven, T. L. Lo, T. Lithgow, J. Heierhorst, The yeast PUF protein Puf5 has Pop2-independent roles in response to DNA replication stress. PLOS One 5, e10651 (2010).
-
(2010)
PLOS One
, vol.5
, pp. e10651
-
-
Traven, A.1
Lo, T.L.2
Lithgow, T.3
Heierhorst, J.4
-
68
-
-
54949148332
-
Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system
-
D. J. Hogan, D. P. Riordan, A. P. Gerber, D. Herschlag, P. O. Brown, Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLOS Biol. 6, e255 (2008).
-
(2008)
PLOS Biol.
, vol.6
, pp. e255
-
-
Hogan, D.J.1
Riordan, D.P.2
Gerber, A.P.3
Herschlag, D.4
Brown, P.O.5
-
69
-
-
0027218487
-
An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs
-
F. J. Lee, J. Moss, An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J. Biol. Chem. 268, 15080-15087 (1993).
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 15080-15087
-
-
Lee, F.J.1
Moss, J.2
-
70
-
-
0031724595
-
Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation
-
D. A. Mangus, N. Amrani, A. Jacobson, Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol. Cell. Biol. 18, 7383-7396 (1998).
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 7383-7396
-
-
Mangus, D.A.1
Amrani, N.2
Jacobson, A.3
-
71
-
-
33846446777
-
Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast
-
L. J. García-Rodríguez, A. C. Gay, L. A. Pon, Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J. Cell Biol. 176, 197-207 (2007).
-
(2007)
J. Cell Biol.
, vol.176
, pp. 197-207
-
-
García-Rodríguez, L.J.1
Gay, A.C.2
Pon, L.A.3
-
72
-
-
0029135214
-
Scp160p, a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum, is necessary for maintenance of exact ploidy
-
U. Wintersberger, C. Kühne, A. Karwan, Scp160p, a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum, is necessary for maintenance of exact ploidy. Yeast 11, 929-944 (1995).
-
(1995)
Yeast
, vol.11
, pp. 929-944
-
-
Wintersberger, U.1
Kühne, C.2
Karwan, A.3
-
73
-
-
84876204988
-
Ras/cAMP-dependent protein kinase (PKA) regulates multiple aspects of cellular events by phosphorylating the Whi3 cell cycle regulator in budding yeast
-
M. Mizunuma, R. Tsubakiyama, T. Ogawa, A. Shitamukai, Y. Kobayashi, T. Inai, K. Kume, D. Hirata, Ras/cAMP-dependent protein kinase (PKA) regulates multiple aspects of cellular events by phosphorylating the Whi3 cell cycle regulator in budding yeast. J. Biol. Chem. 288, 10558-10566 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 10558-10566
-
-
Mizunuma, M.1
Tsubakiyama, R.2
Ogawa, T.3
Shitamukai, A.4
Kobayashi, Y.5
Inai, T.6
Kume, K.7
Hirata, D.8
-
74
-
-
33748939071
-
7GpppX pyrophosphatase activity that locates to P bodies
-
7GpppX pyrophosphatase activity that locates to P bodies. J. Mol. Biol. 363, 370-382 (2006).
-
(2006)
J. Mol. Biol.
, vol.363
, pp. 370-382
-
-
Malys, N.1
McCarthy, J.E.2
-
75
-
-
84856925419
-
The RNA helicase Dhh1p cooperates with Rbp1p to promote porin mRNA decay via its non-conserved C-terminal domain
-
L. C. Chang, F. J. Lee, The RNA helicase Dhh1p cooperates with Rbp1p to promote porin mRNA decay via its non-conserved C-terminal domain. Nucleic Acids Res. 40, 1331-1344 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 1331-1344
-
-
Chang, L.C.1
Lee, F.J.2
-
76
-
-
0025252545
-
Disruption of the gene XRN1, coding for a 5′→3′ exoribonuclease, restricts yeast cell growth
-
F. W. Larimer, A. Stevens, Disruption of the gene XRN1, coding for a 5′→3′ exoribonuclease, restricts yeast cell growth. Gene 95, 85-90 (1990).
-
(1990)
Gene
, vol.95
, pp. 85-90
-
-
Larimer, F.W.1
Stevens, A.2
-
77
-
-
0031027465
-
Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme
-
X. Shi, M. Chang, A. J. Wolf, C. H. Chang, A. A. Frazer-Abel, P. A. Wade, Z. F. Burton, J. A. Jaehning, Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme. Mol. Cell. Biol. 17, 1160-1169 (1997).
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 1160-1169
-
-
Shi, X.1
Chang, M.2
Wolf, A.J.3
Chang, C.H.4
Frazer-Abel, A.A.5
Wade, P.A.6
Burton, Z.F.7
Jaehning, J.A.8
-
78
-
-
0036123253
-
Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex
-
C. L. Mueller, J. A. Jaehning, Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell. Biol. 22, 1971-1980 (2002).
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 1971-1980
-
-
Mueller, C.L.1
Jaehning, J.A.2
-
79
-
-
0037524702
-
The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: Linking transcriptional elongation to histone methylation
-
N. J. Krogan, J. Dover, A. Wood, J. Schneider, J. Heidt, M. A. Boateng, K. Dean, O. W. Ryan, A. Golshani, M. Johnston, J. F. Greenblatt, A. Shilatifard, The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: Linking transcriptional elongation to histone methylation. Mol. Cell 11, 721-729 (2003).
-
(2003)
Mol. Cell
, vol.11
, pp. 721-729
-
-
Krogan, N.J.1
Dover, J.2
Wood, A.3
Schneider, J.4
Heidt, J.5
Boateng, M.A.6
Dean, K.7
Ryan, O.W.8
Golshani, A.9
Johnston, M.10
Greenblatt, J.F.11
Shilatifard, A.12
-
80
-
-
0035830508
-
The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae
-
M. Tucker, M. A. Valencia-Sanchez, R. R. Staples, J. Chen, C. L. Denis, R. Parker, The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-386 (2001).
-
(2001)
Cell
, vol.104
, pp. 377-386
-
-
Tucker, M.1
Valencia-Sanchez, M.A.2
Staples, R.R.3
Chen, J.4
Denis, C.L.5
Parker, R.6
-
81
-
-
84155195139
-
The Ccr4-Not complex
-
M. A. Collart, O. O. Panasenko, The Ccr4-Not complex. Gene 492, 42-53 (2012).
-
(2012)
Gene
, vol.492
, pp. 42-53
-
-
Collart, M.A.1
Panasenko, O.O.2
-
82
-
-
0019566797
-
Mutants of yeast defective in sucrose utilization
-
M. Carlson, B. C. Osmond, D. Botstein, Mutants of yeast defective in sucrose utilization. Genetics 98, 25-40 (1981).
-
(1981)
Genetics
, vol.98
, pp. 25-40
-
-
Carlson, M.1
Osmond, B.C.2
Botstein, D.3
-
83
-
-
0017396028
-
Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression
-
M. Ciriacy, Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol. Gen. Genet. 154, 213-220 (1977).
-
(1977)
Mol. Gen. Genet.
, vol.154
, pp. 213-220
-
-
Ciriacy, M.1
-
84
-
-
0037774738
-
Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae
-
H. J. Schüller, Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43, 139-160 (2003).
-
(2003)
Curr. Genet.
, vol.43
, pp. 139-160
-
-
Schüller, H.J.1
-
85
-
-
0021702006
-
Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II
-
C. L. Denis, Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 108, 833-844 (1984).
-
(1984)
Genetics
, vol.108
, pp. 833-844
-
-
Denis, C.L.1
-
86
-
-
14844338858
-
Combined global localization analysis and transcriptome data identify genes that are directly co-regulated by Adr1 and Cat8
-
C. Tachibana, J. Y. Yoo, J. B. Tagne, N. Kacherovsky, T. I. Lee, E. T. Young, Combined global localization analysis and transcriptome data identify genes that are directly co-regulated by Adr1 and Cat8. Mol. Cell. Biol. 25, 2138-2146 (2005).
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 2138-2146
-
-
Tachibana, C.1
Yoo, J.Y.2
Tagne, J.B.3
Kacherovsky, N.4
Lee, T.I.5
Young, E.T.6
-
87
-
-
0034875093
-
Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae
-
K. Walther, H. J. Schüller, Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiology 147, 2037-2044 (2001).
-
(2001)
Microbiology
, vol.147
, pp. 2037-2044
-
-
Walther, K.1
Schüller, H.J.2
-
88
-
-
0033621393
-
Post-translational regulation of Adr1 activity is mediated by its DNA binding domain
-
J. S. Sloan, K. M. Dombek, E. T. Young, Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J. Biol. Chem. 274, 37575-37582 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 37575-37582
-
-
Sloan, J.S.1
Dombek, K.M.2
Young, E.T.3
-
89
-
-
0022727604
-
ADR1-mediated regulation of ADH2 requires an inverted repeat sequence
-
J. Shuster, J. Yu, D. Cox, R. V. Chan, M. Smith, E. Young, ADR1-mediated regulation of ADH2 requires an inverted repeat sequence. Mol. Cell. Biol. 6, 1894-1902 (1986).
-
(1986)
Mol. Cell. Biol.
, vol.6
, pp. 1894-1902
-
-
Shuster, J.1
Yu, J.2
Cox, D.3
Chan, R.V.4
Smith, M.5
Young, E.6
-
90
-
-
0018613884
-
Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae
-
M. Ciriacy, Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Mol. Gen. Genet. 176, 427-431 (1979).
-
(1979)
Mol. Gen. Genet.
, vol.176
, pp. 427-431
-
-
Ciriacy, M.1
-
91
-
-
0020665597
-
Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae
-
C. L. Denis, E. T. Young, Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae. Mol. Cell. Biol. 3, 360-370 (1983).
-
(1983)
Mol. Cell. Biol.
, vol.3
, pp. 360-370
-
-
Denis, C.L.1
Young, E.T.2
-
92
-
-
0031028964
-
Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1
-
K. M. Dombek, E. T. Young, Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Mol. Cell. Biol. 17, 1450-1458 (1997).
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 1450-1458
-
-
Dombek, K.M.1
Young, E.T.2
-
93
-
-
78649598716
-
14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain
-
P. K. Parua, S. Ratnakumar, K. A. Braun, K. M. Dombek, E. Arms, P.M. Ryan, E. T. Young, 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol. Cell. Biol. 30, 5273-5283 (2010).
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 5273-5283
-
-
Parua, P.K.1
Ratnakumar, S.2
Braun, K.A.3
Dombek, K.M.4
Arms, E.5
Ryan, P.M.6
Young, E.T.7
-
94
-
-
84891611109
-
Binding and transcriptional regulation by 14-3-3 (Bmh) proteins requires residues outside of the canonical motif
-
P. K. Parua, E. T. Young, Binding and transcriptional regulation by 14-3-3 (Bmh) proteins requires residues outside of the canonical motif. Eukaryot. Cell 13, 21-30 (2014).
-
(2014)
Eukaryot. Cell
, vol.13
, pp. 21-30
-
-
Parua, P.K.1
Young, E.T.2
-
95
-
-
0026655521
-
Isolation and characterization of RAT1: An essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA
-
D. C. Amberg, A. L. Goldstein, C. N. Cole, Isolation and characterization of RAT1: An essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6, 1173-1189 (1992).
-
(1992)
Genes Dev.
, vol.6
, pp. 1173-1189
-
-
Amberg, D.C.1
Goldstein, A.L.2
Cole, C.N.3
-
96
-
-
0030764692
-
Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively
-
A. W. Johnson, Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 17, 6122-6130 (1997).
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 6122-6130
-
-
Johnson, A.W.1
-
97
-
-
84885896190
-
The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: Version 2.0 update
-
I. Sadowski, B. J. Breitkreutz, C. Stark, T. C. Su, M. Dahabieh, S. Raithatha, W. Bernhard, R. Oughtred, K. Dolinski, K. Barreto, M. Tyers, The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: Version 2.0 update. Database 2013, bat026 (2013).
-
(2013)
Database
, vol.2013
, pp. bat026
-
-
Sadowski, I.1
Breitkreutz, B.J.2
Stark, C.3
Su, T.C.4
Dahabieh, M.5
Raithatha, S.6
Bernhard, W.7
Oughtred, R.8
Dolinski, K.9
Barreto, K.10
Tyers, M.11
-
98
-
-
0033974002
-
Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase
-
P. Sanz, G. R. Alms, T. A. Haystead, M. Carlson, Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 20, 1321-1328 (2000).
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 1321-1328
-
-
Sanz, P.1
Alms, G.R.2
Haystead, T.A.3
Carlson, M.4
-
99
-
-
0020645054
-
One-step gene disruption in yeast
-
R. J. Rothstein, One-step gene disruption in yeast. Methods Enzymol. 101, 202-211 (1983).
-
(1983)
Methods Enzymol.
, vol.101
, pp. 202-211
-
-
Rothstein, R.J.1
-
100
-
-
77956028057
-
Quantitative analysis of protein phosphorylation on a system-wide scale by mass spectrometry-based proteomics
-
B. Bodenmiller, R. Aebersold, Quantitative analysis of protein phosphorylation on a system-wide scale by mass spectrometry-based proteomics. Methods Enzymol. 470, 317-334 (2010).
-
(2010)
Methods Enzymol.
, vol.470
, pp. 317-334
-
-
Bodenmiller, B.1
Aebersold, R.2
-
101
-
-
84879533104
-
Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data
-
Y. Zhang, H. K. Kweon, C. Shively, A. Kumar, P. C. Andrews, Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLOS Comput. Biol. 9, e1003077 (2013).
-
(2013)
PLOS Comput. Biol.
, vol.9
, pp. e1003077
-
-
Zhang, Y.1
Kweon, H.K.2
Shively, C.3
Kumar, A.4
Andrews, P.C.5
-
102
-
-
81055137383
-
Influence of inositol pyrophosphates on cellular energy dynamics
-
Z. Szijgyarto, A. Garedew, C. Azevedo, A. Saiardi, Influence of inositol pyrophosphates on cellular energy dynamics. Science 334, 802-805 (2011).
-
(2011)
Science
, vol.334
, pp. 802-805
-
-
Szijgyarto, Z.1
Garedew, A.2
Azevedo, C.3
Saiardi, A.4
-
103
-
-
80052293419
-
Inositol pyrophosphates as mammalian cell signals
-
A. Chakraborty, S. Kim, S. H. Snyder, Inositol pyrophosphates as mammalian cell signals. Sci. Signal. 4, re1 (2011).
-
(2011)
Sci. Signal.
, vol.4
, pp. re1
-
-
Chakraborty, A.1
Kim, S.2
Snyder, S.H.3
-
104
-
-
0032111444
-
Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains
-
C. G. Burd, S. D. Emr, Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157-162 (1998).
-
(1998)
Mol. Cell
, vol.2
, pp. 157-162
-
-
Burd, C.G.1
Emr, S.D.2
-
105
-
-
84869430619
-
Regulation of yeast central metabolism by enzyme phosphorylation
-
A. P. Oliveira, C. Ludwig, P. Picotti, M. Kogadeeva, R. Aebersold, U. Sauer, Regulation of yeast central metabolism by enzyme phosphorylation. Mol. Syst. Biol. 8, 623 (2012).
-
(2012)
Mol. Syst. Biol.
, vol.8
, pp. 623
-
-
Oliveira, A.P.1
Ludwig, C.2
Picotti, P.3
Kogadeeva, M.4
Aebersold, R.5
Sauer, U.6
-
106
-
-
0023055772
-
Phosphorylation-dephosphorylation of pyruvate dehydrogenase from bakers' yeast
-
D. J. Uhlinger, C. Y. Yang, L. J. Reed, Phosphorylation-dephosphorylation of pyruvate dehydrogenase from bakers' yeast. Biochemistry 25, 5673-5677 (1986).
-
(1986)
Biochemistry
, vol.25
, pp. 5673-5677
-
-
Uhlinger, D.J.1
Yang, C.Y.2
Reed, L.J.3
-
107
-
-
33646181563
-
YIL042c and YOR090c encode the kinase and phosphatase of the Saccharomyces cerevisiae pyruvate dehydrogenase complex
-
U. Krause-Buchholz, U. Gey, J. Wünschmann, S. Becker, G. Rödel, YIL042c and YOR090c encode the kinase and phosphatase of the Saccharomyces cerevisiae pyruvate dehydrogenase complex. FEBS Lett. 580, 2553-2560 (2006).
-
(2006)
FEBS Lett.
, vol.580
, pp. 2553-2560
-
-
Krause-Buchholz, U.1
Gey, U.2
Wünschmann, J.3
Becker, S.4
Rödel, G.5
-
108
-
-
44349170639
-
Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases
-
U. Gey, C. Czupalla, B. Hoflack, G. Rödel, U. Krause-Buchholz, Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J. Biol. Chem. 283, 9759-9767 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 9759-9767
-
-
Gey, U.1
Czupalla, C.2
Hoflack, B.3
Rödel, G.4
Krause-Buchholz, U.5
-
109
-
-
0034687210
-
Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia
-
A. S. Marsin, L. Bertrand, M. H. Rider, J. Deprez, C. Beauloye, M. F. Vincent, G. Van den Berghe, D. Carling, L. Hue, Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247-1255 (2000).
-
(2000)
Curr. Biol.
, vol.10
, pp. 1247-1255
-
-
Marsin, A.S.1
Bertrand, L.2
Rider, M.H.3
Deprez, J.4
Beauloye, C.5
Vincent, M.F.6
Van Den Berghe, G.7
Carling, D.8
Hue, L.9
-
110
-
-
0023956910
-
Characterization of phosphofructokinase 2 and of enzymes involved in the degradation of fructose 2,6-bisphosphate in yeast
-
J. Franc¸ois, E. Van Schaftigen, H. G. Hers, Characterization of phosphofructokinase 2 and of enzymes involved in the degradation of fructose 2,6-bisphosphate in yeast. Eur. J. Biochem. 171, 599-608 (1988).
-
(1988)
Eur. J. Biochem.
, vol.171
, pp. 599-608
-
-
Franc¸ois, J.1
Van Schaftigen, E.2
Hers, H.G.3
-
111
-
-
29544435434
-
LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast
-
T. Araki, Y. Uesono, T. Oguchi, E. A. Toh, LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast. Genes Genet. Syst. 80, 325-343 (2005).
-
(2005)
Genes Genet. Syst.
, vol.80
, pp. 325-343
-
-
Araki, T.1
Uesono, Y.2
Oguchi, T.3
Toh, E.A.4
-
112
-
-
2442605728
-
TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae
-
A. Reinke, S. Anderson, J. M. McCaffery, J. Yates III, S. Aronova, S. Chu, S. Fairclough, C. Iverson, K. P. Wedaman, T. Powers, TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279, 14752-14762 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 14752-14762
-
-
Reinke, A.1
Anderson, S.2
McCaffery, J.M.3
Yates, J.4
Aronova, S.5
Chu, S.6
Fairclough, S.7
Iverson, C.8
Wedaman, K.P.9
Powers, T.10
-
113
-
-
15044350668
-
The expanding TOR signaling network
-
D. E. Martin, M. N. Hall, The expanding TOR signaling network. Curr. Opin. Cell Biol. 17, 158-166 (2005).
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 158-166
-
-
Martin, D.E.1
Hall, M.N.2
-
114
-
-
0030451563
-
Yeast protein serine/threonine phosphatases: Multiple roles and diverse regulation
-
M. J. Stark, Yeast protein serine/threonine phosphatases: Multiple roles and diverse regulation. Yeast 12, 1647-1675 (1996).
-
(1996)
Yeast
, vol.12
, pp. 1647-1675
-
-
Stark, M.J.1
-
115
-
-
0035930339
-
TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway
-
E. Jacinto, B. Guo, K. T. Arndt, T. Schmelzle, M. N. Hall, TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol. Cell 8, 1017-1026 (2001).
-
(2001)
Mol. Cell
, vol.8
, pp. 1017-1026
-
-
Jacinto, E.1
Guo, B.2
Arndt, K.T.3
Schmelzle, T.4
Hall, M.N.5
-
116
-
-
0347758480
-
GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs
-
Z. Hilioti, D. A. Gallagher, S. T. Low-Nam, P. Ramaswamy, P. Gajer, T. J. Kingsbury, C. J. Birchwood, A. Levchenko, K. W. Cunningham, GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev. 18, 35-47 (2004).
-
(2004)
Genes Dev.
, vol.18
, pp. 35-47
-
-
Hilioti, Z.1
Gallagher, D.A.2
Low-Nam, S.T.3
Ramaswamy, P.4
Gajer, P.5
Kingsbury, T.J.6
Birchwood, C.J.7
Levchenko, A.8
Cunningham, K.W.9
-
117
-
-
77951586030
-
The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe
-
W. H. Kang, Y. H. Park, H. M. Park, The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J. Biol. Chem. 285, 13797-13806 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13797-13806
-
-
Kang, W.H.1
Park, Y.H.2
Park, H.M.3
-
118
-
-
0032529291
-
Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae
-
A. M. Page, K. Davis, C. Molineux, R. D. Kolodner, A. W. Johnson, Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 26, 3707-3716 (1998).
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 3707-3716
-
-
Page, A.M.1
Davis, K.2
Molineux, C.3
Kolodner, R.D.4
Johnson, A.W.5
-
119
-
-
84870790194
-
A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation
-
J. E. Braun, V. Truffault, A. Boland, E. Huntzinger, C. T. Chang, G. Haas, O.Weichenrieder, M. Coles, E. Izaurralde, A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat. Struct. Mol. Biol. 19, 1324-1331 (2012).
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1324-1331
-
-
Braun, J.E.1
Truffault, V.2
Boland, A.3
Huntzinger, E.4
Chang, C.T.5
Haas, G.6
Weichenrieder, O.7
Coles, M.8
Izaurralde, E.9
-
120
-
-
80052642129
-
The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics
-
J. S. Carroll, S. E. Munchel, K. Weis, The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J. Cell Biol. 194, 527-537 (2011).
-
(2011)
J. Cell Biol.
, vol.194
, pp. 527-537
-
-
Carroll, J.S.1
Munchel, S.E.2
Weis, K.3
-
121
-
-
0035674477
-
The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
-
J. M. Coller, M. Tucker, U. Sheth, M. A. Valencia-Sanchez, R. Parker, The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717-1727 (2001).
-
(2001)
RNA
, vol.7
, pp. 1717-1727
-
-
Coller, J.M.1
Tucker, M.2
Sheth, U.3
Valencia-Sanchez, M.A.4
Parker, R.5
-
122
-
-
79961016813
-
Intermolecular interactions within the abundant DEAD-box protein Dhh1 regulate its activity in vivo
-
A. Dutta, S. Zheng, D. Jain, C. E. Cameron, J. C. Reese, Intermolecular interactions within the abundant DEAD-box protein Dhh1 regulate its activity in vivo. J. Biol. Chem. 286, 27454-27470 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27454-27470
-
-
Dutta, A.1
Zheng, S.2
Jain, D.3
Cameron, C.E.4
Reese, J.C.5
-
123
-
-
0037013898
-
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
-
N. Fischer, K. Weis, The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788-2797 (2002).
-
(2002)
EMBO J.
, vol.21
, pp. 2788-2797
-
-
Fischer, N.1
Weis, K.2
-
124
-
-
84863688029
-
The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement
-
T. Sweet, C. Kovalak, J. Coller, The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLOS Biol. 10, e1001342 (2012).
-
(2012)
PLOS Biol.
, vol.10
, pp. e1001342
-
-
Sweet, T.1
Kovalak, C.2
Coller, J.3
-
125
-
-
0037169544
-
Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase
-
L. Maillet, M. A. Collart, Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase. J. Biol. Chem. 277, 2835-2842 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 2835-2842
-
-
Maillet, L.1
Collart, M.A.2
-
126
-
-
84861419478
-
Activation of 5′-3′ exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast
-
F. Sinturel, D. Bréchemier-Baey, M. Kiledjian, C. Condon, L. Bénard, Activation of 5′-3′ exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast. Proc. Natl. Acad. Sci. U.S.A. 109, 8264-8269 (2012).
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8264-8269
-
-
Sinturel, F.1
Bréchemier-Baey, D.2
Kiledjian, M.3
Condon, C.4
Bénard, L.5
-
127
-
-
84860706859
-
mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription
-
K. Brannan, H. Kim, B. Erickson, K. Glover-Cutter, S. Kim, N. Fong, L. Kiemele, K. Hansen, R. Davis, J. Lykke-Andersen, D. L. Bentley, mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311-324 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 311-324
-
-
Brannan, K.1
Kim, H.2
Erickson, B.3
Glover-Cutter, K.4
Kim, S.5
Fong, N.6
Kiemele, L.7
Hansen, K.8
Davis, R.9
Lykke-Andersen, J.10
Bentley, D.L.11
-
128
-
-
0032775010
-
Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines
-
M. Knop, K. Siegers, G. Pereira, W. Zachariae, B. Winsor, K. Nasmyth, E. Schiebel, Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines. Yeast 15, 963-972 (1999).
-
(1999)
Yeast
, vol.15
, pp. 963-972
-
-
Knop, M.1
Siegers, K.2
Pereira, G.3
Zachariae, W.4
Winsor, B.5
Nasmyth, K.6
Schiebel, E.7
-
129
-
-
0036275447
-
Getting started with yeast
-
F. Sherman, Getting started with yeast. Methods Enzymol. 350, 3-41 (2002).
-
(2002)
Methods Enzymol.
, vol.350
, pp. 3-41
-
-
Sherman, F.1
-
130
-
-
79953836180
-
Activator-independent transcription of Snf1-dependent genes in mutants lacking histone tails
-
J. J. Infante, G. L. Law, I. T. Wang, H. W. Chang, E. T. Young, Activator-independent transcription of Snf1-dependent genes in mutants lacking histone tails. Mol. Microbiol. 80, 407-422 (2011).
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 407-422
-
-
Infante, J.J.1
Law, G.L.2
Wang, I.T.3
Chang, H.W.4
Young, E.T.5
-
131
-
-
33644792045
-
Yeast transformation by the LiAc/SS Carrier DNA/PEG method
-
R. D. Gietz, R. A. Woods, Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol. Biol. 313, 107-120 (2006).
-
(2006)
Methods Mol. Biol.
, vol.313
, pp. 107-120
-
-
Gietz, R.D.1
Woods, R.A.2
-
132
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
R. S. Sikorski, P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27 (1989).
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
133
-
-
0000857494
-
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database
-
J. K. Eng, A. L. McCormack, J. R. Yates, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J.Am. Soc. Mass Spectrom. 5, 976-989 (1994).
-
(1994)
J.Am. Soc. Mass Spectrom.
, vol.5
, pp. 976-989
-
-
Eng, J.K.1
McCormack, A.L.2
Yates, J.R.3
-
134
-
-
33746930864
-
A uniform proteomics MS/MS analysis platform utilizing open XML file formats
-
A. Keller, J. Eng, N. Zhang, X. J. Li, R. Aebersold, A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 1, 2005.0017 (2005).
-
(2005)
Mol. Syst. Biol.
, vol.1
, pp. 2005.0017
-
-
Keller, A.1
Eng, J.2
Zhang, N.3
Li, X.J.4
Aebersold, R.5
-
135
-
-
42249108173
-
OpenMS - An open-source software framework for mass spectrometry
-
M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, A. Zerck, K. Reinert, O. Kohlbacher, OpenMS - An open-source software framework for mass spectrometry. BMC Bioinformatics 9, 163 (2008).
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 163
-
-
Sturm, M.1
Bertsch, A.2
Gröpl, C.3
Hildebrandt, A.4
Hussong, R.5
Lange, E.6
Pfeifer, N.7
Schulz-Trieglaff, O.8
Zerck, A.9
Reinert, K.10
Kohlbacher, O.11
-
136
-
-
84868676090
-
Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress
-
Y. J. Lee, G. R. Jeschke, F. M. Roelants, J. Thorner, B. E. Turk, Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol. Cell. Biol. 32, 4705-4717 (2012).
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 4705-4717
-
-
Lee, Y.J.1
Jeschke, G.R.2
Roelants, F.M.3
Thorner, J.4
Turk, B.E.5
-
137
-
-
79959314190
-
Preparation of yeast RNA
-
F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl, Eds. Wiley, New York, chap. 13, unit 13.12
-
M. A. Collart, S. Oliviero, Preparation of yeast RNA, in Current Protocols in Molecular Biology, F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl, Eds. (Wiley, New York, 2001), chap. 13, unit 13.12.
-
(2001)
Current Protocols in Molecular Biology
-
-
Collart, M.A.1
Oliviero, S.2
-
138
-
-
0034696569
-
Evolution of a glucose-regulated ADH gene in the genus Saccharomyces
-
E. T. Young, J. Sloan, B. Miller, N. Li, K. van Riper, K. M. Dombek, Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Gene 245, 299-309 (2000).
-
(2000)
Gene
, vol.245
, pp. 299-309
-
-
Young, E.T.1
Sloan, J.2
Miller, B.3
Li, N.4
Van Riper, K.5
Dombek, K.M.6
-
139
-
-
0020645052
-
Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast
-
L. Guarente, Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181-191 (1983).
-
(1983)
Methods Enzymol.
, vol.101
, pp. 181-191
-
-
Guarente, L.1
-
140
-
-
34249778657
-
A semisynthetic epitope for kinase substrates
-
J. J. Allen, M. Li, C. S. Brinkworth, J. L. Paulson, D. Wang, A. Hübner, W. H. Chou, R. J. Davis, A. L. Burlingame, R. O. Messing, C. D. Katayama, S. M. Hedrick, K. M. Shokat, A semisynthetic epitope for kinase substrates. Nat. Methods 4, 511-516 (2007).
-
(2007)
Nat. Methods
, vol.4
, pp. 511-516
-
-
Allen, J.J.1
Li, M.2
Brinkworth, C.S.3
Paulson, J.L.4
Wang, D.5
Hübner, A.6
Chou, W.H.7
Davis, R.J.8
Burlingame, A.L.9
Messing, R.O.10
Katayama, C.D.11
Hedrick, S.M.12
Shokat, K.M.13
-
141
-
-
33746197428
-
Adaptive linear step-up procedures that control the false discovery rate
-
Y. Benjamini, A. Krieger, D. Yekutieli, Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491-507 (2006).
-
(2006)
Biometrika
, vol.93
, pp. 491-507
-
-
Benjamini, Y.1
Krieger, A.2
Yekutieli, D.3
|