-
1
-
-
46149104377
-
Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution
-
[1] Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:1 (2008), 25–36.
-
(2008)
Cell
, vol.134
, Issue.1
, pp. 25-36
-
-
Carroll, S.B.1
-
2
-
-
84906935775
-
Absence of a simple code: how transcription factors read the genome
-
[2] Slattery, M., et al. Absence of a simple code: how transcription factors read the genome. Trends Biochem. Sci. 39:9 (2014), 381–399.
-
(2014)
Trends Biochem. Sci.
, vol.39
, Issue.9
, pp. 381-399
-
-
Slattery, M.1
-
3
-
-
84901409283
-
Transcription factors: specific DNA binding and specific gene regulation
-
[3] Todeschini, A.L., Georges, A., Veitia, R.A., Transcription factors: specific DNA binding and specific gene regulation. Trends Genet. 30:6 (2014), 211–219.
-
(2014)
Trends Genet.
, vol.30
, Issue.6
, pp. 211-219
-
-
Todeschini, A.L.1
Georges, A.2
Veitia, R.A.3
-
4
-
-
84899453734
-
Evolution of transcription factor binding in metazoans—mechanisms and functional implications
-
[4] Villar, D., Flicek, P., Odom, D.T., Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat. Rev. Genet. 15:4 (2014), 221–233.
-
(2014)
Nat. Rev. Genet.
, vol.15
, Issue.4
, pp. 221-233
-
-
Villar, D.1
Flicek, P.2
Odom, D.T.3
-
5
-
-
84911470871
-
Conservation of trans-acting circuitry during mammalian regulatory evolution
-
[5] Stergachis, A.B., et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515:7527 (2014), 365–370.
-
(2014)
Nature
, vol.515
, Issue.7527
, pp. 365-370
-
-
Stergachis, A.B.1
-
6
-
-
84911939594
-
Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution
-
[6] Vierstra, J., et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346:6212 (2014), 1007–1012.
-
(2014)
Science
, vol.346
, Issue.6212
, pp. 1007-1012
-
-
Vierstra, J.1
-
7
-
-
84879911829
-
The evolution of lineage-specific regulatory activities in the human embryonic limb
-
[7] Cotney, J., et al. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154:1 (2013), 185–196.
-
(2013)
Cell
, vol.154
, Issue.1
, pp. 185-196
-
-
Cotney, J.1
-
8
-
-
84924561748
-
Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis
-
[8] Reilly, S.K., et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347:6226 (2015), 1155–1159.
-
(2015)
Science
, vol.347
, Issue.6226
, pp. 1155-1159
-
-
Reilly, S.K.1
-
9
-
-
84904250693
-
Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period
-
[9] Tena, J.J., et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24:7 (2014), 1075–1085.
-
(2014)
Genome Res.
, vol.24
, Issue.7
, pp. 1075-1085
-
-
Tena, J.J.1
-
10
-
-
84922295278
-
Enhancer evolution across 20 mammalian species
-
[10] Villar, D., et al. Enhancer evolution across 20 mammalian species. Cell 160:3 (2015), 554–566.
-
(2015)
Cell
, vol.160
, Issue.3
, pp. 554-566
-
-
Villar, D.1
-
11
-
-
38849112675
-
Genomic regulatory blocks underlie extensive microsynteny conservation in insects
-
[11] Engstrom, P.G., et al. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res. 17:12 (2007), 1898–1908.
-
(2007)
Genome Res.
, vol.17
, Issue.12
, pp. 1898-1908
-
-
Engstrom, P.G.1
-
12
-
-
80054787751
-
Contrasting 5′ and 3′ evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures
-
[12] Irimia, M., et al. Contrasting 5′ and 3′ evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures. Genome Biol. Evol. 3 (2011), 551–564.
-
(2011)
Genome Biol. Evol.
, vol.3
, pp. 551-564
-
-
Irimia, M.1
-
13
-
-
84870512646
-
Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints
-
[13] Irimia, M., et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22:12 (2012), 2356–2367.
-
(2012)
Genome Res.
, vol.22
, Issue.12
, pp. 2356-2367
-
-
Irimia, M.1
-
14
-
-
34248153777
-
Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates
-
[14] Kikuta, H., et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17:5 (2007), 545–555.
-
(2007)
Genome Res.
, vol.17
, Issue.5
, pp. 545-555
-
-
Kikuta, H.1
-
15
-
-
84887450841
-
Deep conservation of cis-regulatory elements in metazoans
-
[15] Maeso, I., et al. Deep conservation of cis-regulatory elements in metazoans. Philos. Trans. R. Soc. London, Ser. B: Biol. Sci., 368(1632), 2013, 20130020.
-
(2013)
Philos. Trans. R. Soc. London, Ser. B: Biol. Sci.
, vol.368
, Issue.1632
, pp. 20130020
-
-
Maeso, I.1
-
16
-
-
84859541999
-
An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement
-
[16] Maeso, I., et al. An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. Genome Res. 22:4 (2012), 642–655.
-
(2012)
Genome Res.
, vol.22
, Issue.4
, pp. 642-655
-
-
Maeso, I.1
-
17
-
-
4944260940
-
The regulatory content of intergenic DNA shapes genome architecture
-
[17] Nelson, C.E., Hersh, B.M., Carroll, S.B., The regulatory content of intergenic DNA shapes genome architecture. Genome Biol., 5(4), 2004, R25.
-
(2004)
Genome Biol.
, vol.5
, Issue.4
, pp. R25
-
-
Nelson, C.E.1
Hersh, B.M.2
Carroll, S.B.3
-
18
-
-
0034893582
-
Rapid evolution of cis-regulatory sequences via local point mutations
-
[18] Stone, J.R., Wray, G.A., Rapid evolution of cis-regulatory sequences via local point mutations. Mol. Biol. Evol. 18:9 (2001), 1764–1770.
-
(2001)
Mol. Biol. Evol.
, vol.18
, Issue.9
, pp. 1764-1770
-
-
Stone, J.R.1
Wray, G.A.2
-
19
-
-
76149132685
-
Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?
-
[19] Georges, A.B., et al. Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?. FASEB J. 24:2 (2010), 346–356.
-
(2010)
FASEB J.
, vol.24
, Issue.2
, pp. 346-356
-
-
Georges, A.B.1
-
20
-
-
84922313916
-
Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways
-
[20] Ballester, B., et al. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways. Elife, 3, 2014, e02626.
-
(2014)
Elife
, vol.3
, pp. e02626
-
-
Ballester, B.1
-
21
-
-
34547633677
-
Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing
-
[21] Robertson, G., et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4:8 (2007), 651–657.
-
(2007)
Nat. Methods
, vol.4
, Issue.8
, pp. 651-657
-
-
Robertson, G.1
-
22
-
-
84871844925
-
DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila
-
[22] Fisher, W.W., et al. DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 109:52 (2012), 21330–21335.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, Issue.52
, pp. 21330-21335
-
-
Fisher, W.W.1
-
23
-
-
84887463729
-
Beyond the ENCODE project: using genomics and epigenomics strategies to study enhancer evolution
-
[23] Sakabe, N.J., Nobrega, M.A., Beyond the ENCODE project: using genomics and epigenomics strategies to study enhancer evolution. Philos. Trans. R. Soc. London, Ser. B Biol. Sci., 368(1632), 2013, 20130022.
-
(2013)
Philos. Trans. R. Soc. London, Ser. B Biol. Sci.
, vol.368
, Issue.1632
, pp. 20130022
-
-
Sakabe, N.J.1
Nobrega, M.A.2
-
24
-
-
84895806401
-
Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants
-
[24] Pasquali, L., et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46:2 (2014), 136–143.
-
(2014)
Nat. Genet.
, vol.46
, Issue.2
, pp. 136-143
-
-
Pasquali, L.1
-
25
-
-
84891775539
-
Simulations of enhancer evolution provide mechanistic insights into gene regulation
-
[25] Duque, T., et al. Simulations of enhancer evolution provide mechanistic insights into gene regulation. Mol. Biol. Evol. 31:1 (2014), 184–200.
-
(2014)
Mol. Biol. Evol.
, vol.31
, Issue.1
, pp. 184-200
-
-
Duque, T.1
-
26
-
-
84979851536
-
What does it take to evolve an enhancer?. A simulation-based study of factors influencing the emergence of combinatorial regulation
-
[26] Duque, T., Sinha, S., What does it take to evolve an enhancer?. A simulation-based study of factors influencing the emergence of combinatorial regulation. Genome Biol. Evol. 7:6 (2015), 1415–1431.
-
(2015)
Genome Biol. Evol.
, vol.7
, Issue.6
, pp. 1415-1431
-
-
Duque, T.1
Sinha, S.2
-
27
-
-
84937031367
-
Unraveling determinants of transcription factor binding outside the core binding site
-
[27] Levo, M., et al. Unraveling determinants of transcription factor binding outside the core binding site. Genome Res. 25:7 (2015), 1018–1029.
-
(2015)
Genome Res.
, vol.25
, Issue.7
, pp. 1018-1029
-
-
Levo, M.1
-
28
-
-
84928033171
-
Quantitative modeling of transcription factor binding specificities using DNA shape
-
[28] Zhou, T., et al. Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl. Acad. Sci. U.S.A. 112:15 (2015), 4654–4659.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, Issue.15
, pp. 4654-4659
-
-
Zhou, T.1
-
29
-
-
84883816536
-
Nucleosome remodeling and epigenetics
-
a017905
-
[29] Becker, P.B., Workman, J.L., Nucleosome remodeling and epigenetics. Cold Spring Harb. Perspect. Biol., 5(9), 2013 a017905.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, Issue.9
-
-
Becker, P.B.1
Workman, J.L.2
-
30
-
-
84892814234
-
Chromatin modifiers and remodellers: regulators of cellular differentiation
-
[30] Chen, T., Dent, S.Y., Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15:2 (2014), 93–100.
-
(2014)
Nat. Rev. Genet.
, vol.15
, Issue.2
, pp. 93-100
-
-
Chen, T.1
Dent, S.Y.2
-
31
-
-
41949113742
-
The enhanceosome
-
[31] Panne, D., The enhanceosome. Curr. Opin. Struct. Biol. 18:2 (2008), 236–242.
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, Issue.2
, pp. 236-242
-
-
Panne, D.1
-
32
-
-
70350741354
-
An ensemble model of competitive multi-factor binding of the genome
-
[32] Wasson, T., Hartemink, A.J., An ensemble model of competitive multi-factor binding of the genome. Genome Res. 19:11 (2009), 2101–2112.
-
(2009)
Genome Res.
, vol.19
, Issue.11
, pp. 2101-2112
-
-
Wasson, T.1
Hartemink, A.J.2
-
33
-
-
84939653808
-
Noncoding RNA-guided recruitment of transcription factors: A prevalent but undocumented mechanism?
-
[33] Lee, N., Steitz, J.A., Noncoding RNA-guided recruitment of transcription factors: A prevalent but undocumented mechanism?. Bioessays 37:9 (2015), 936–941.
-
(2015)
Bioessays
, vol.37
, Issue.9
, pp. 936-941
-
-
Lee, N.1
Steitz, J.A.2
-
35
-
-
84879101308
-
Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach
-
[35] Nolin, F., et al. Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach. Cell. Mol. Life Sci. 70:13 (2013), 2383–2394.
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, Issue.13
, pp. 2383-2394
-
-
Nolin, F.1
-
36
-
-
84888877924
-
Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
-
[36] Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:12 (2013), 1213–1218.
-
(2013)
Nat Methods
, vol.10
, Issue.12
, pp. 1213-1218
-
-
Buenrostro, J.D.1
Giresi, P.G.2
Zaba, L.C.3
Chang, H.Y.4
Greenleaf, W.J.5
-
37
-
-
84865755978
-
The accessible chromatin landscape of the human genome
-
[37] Thurman, R.E., et al. The accessible chromatin landscape of the human genome. Nature 489:7414 (2012), 75–82.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 75-82
-
-
Thurman, R.E.1
-
38
-
-
84867158452
-
Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis
-
[38] Bogdanovic, O., et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22:10 (2012), 2043–2053.
-
(2012)
Genome Res.
, vol.22
, Issue.10
, pp. 2043-2053
-
-
Bogdanovic, O.1
-
39
-
-
84856239091
-
Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development
-
[39] Bonn, S., et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat. Genet. 44:2 (2012), 148–156.
-
(2012)
Nat. Genet.
, vol.44
, Issue.2
, pp. 148-156
-
-
Bonn, S.1
-
40
-
-
80053622239
-
Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency
-
[40] Hawkins, R.D., et al. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency. Cell Res. 21:10 (2011), 1393–1409.
-
(2011)
Cell Res.
, vol.21
, Issue.10
, pp. 1393-1409
-
-
Hawkins, R.D.1
-
41
-
-
79951516056
-
A unique chromatin signature uncovers early developmental enhancers in humans
-
[41] Rada-Iglesias, A., et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:7333 (2011), 279–283.
-
(2011)
Nature
, vol.470
, Issue.7333
, pp. 279-283
-
-
Rada-Iglesias, A.1
-
42
-
-
78650758676
-
Histone H3K27ac separates active from poised enhancers and predicts developmental state
-
[42] Creyghton, M.P., et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U.S.A. 107:50 (2010), 21931–21936.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, Issue.50
, pp. 21931-21936
-
-
Creyghton, M.P.1
-
43
-
-
77952367798
-
Widespread transcription at neuronal activity-regulated enhancers
-
[43] Kim, T.K., et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:7295 (2010), 182–187.
-
(2010)
Nature
, vol.465
, Issue.7295
, pp. 182-187
-
-
Kim, T.K.1
-
44
-
-
70249088327
-
Genomic views of distant-acting enhancers
-
[44] Visel, A., Rubin, E.M., Pennacchio, L.A., Genomic views of distant-acting enhancers. Nature 461:7261 (2009), 199–205.
-
(2009)
Nature
, vol.461
, Issue.7261
, pp. 199-205
-
-
Visel, A.1
Rubin, E.M.2
Pennacchio, L.A.3
-
45
-
-
65549104157
-
Histone modifications at human enhancers reflect global cell-type-specific gene expression
-
[45] Heintzman, N.D., et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:7243 (2009), 108–112.
-
(2009)
Nature
, vol.459
, Issue.7243
, pp. 108-112
-
-
Heintzman, N.D.1
-
46
-
-
33847334699
-
Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
-
[46] Heintzman, N.D., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39:3 (2007), 311–318.
-
(2007)
Nat. Genet.
, vol.39
, Issue.3
, pp. 311-318
-
-
Heintzman, N.D.1
-
47
-
-
84898713767
-
Evolutionary conservation of the eumetazoan gene regulatory landscape
-
[47] Schwaiger, M., et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24:4 (2014), 639–650.
-
(2014)
Genome Res.
, vol.24
, Issue.4
, pp. 639-650
-
-
Schwaiger, M.1
-
48
-
-
84940390239
-
Architectural and functional commonalities between enhancers and promoters
-
[48] Kim, T.K., Shiekhattar, R., Architectural and functional commonalities between enhancers and promoters. Cell 162:5 (2015), 948–959.
-
(2015)
Cell
, vol.162
, Issue.5
, pp. 948-959
-
-
Kim, T.K.1
Shiekhattar, R.2
-
49
-
-
84925684704
-
Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model
-
[49] Andersson, R., Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. Bioessays 37:3 (2015), 314–323.
-
(2015)
Bioessays
, vol.37
, Issue.3
, pp. 314-323
-
-
Andersson, R.1
-
50
-
-
84935896803
-
Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila
-
[50] Koshikawa, S., et al. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 112:24 (2015), 7524–7529.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, Issue.24
, pp. 7524-7529
-
-
Koshikawa, S.1
-
51
-
-
84926420296
-
Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex
-
[51] Boyd, J.L., et al. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol. 25:6 (2015), 772–779.
-
(2015)
Curr. Biol.
, vol.25
, Issue.6
, pp. 772-779
-
-
Boyd, J.L.1
-
52
-
-
84884631699
-
Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity
-
[52] Rogers, W.A., et al. Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity. PLoS Genet., 9(8), 2013, e1003740.
-
(2013)
PLoS Genet.
, vol.9
, Issue.8
, pp. e1003740
-
-
Rogers, W.A.1
-
53
-
-
84861223461
-
Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer
-
[53] Pearson, J.C., Watson, J.D., Crews, S.T., Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer. Dev. Biol. 366:2 (2012), 420–432.
-
(2012)
Dev. Biol.
, vol.366
, Issue.2
, pp. 420-432
-
-
Pearson, J.C.1
Watson, J.D.2
Crews, S.T.3
-
54
-
-
79959944339
-
Evolutionary origin of a novel gene expression pattern through cooption of the latent activities of existing regulatory sequences
-
[54] Rebeiz, M., et al. Evolutionary origin of a novel gene expression pattern through cooption of the latent activities of existing regulatory sequences. Proc. Natl. Acad. Sci. U.S.A. 108:25 (2011), 10036–10043.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, Issue.25
, pp. 10036-10043
-
-
Rebeiz, M.1
-
55
-
-
51149097366
-
Human-specific gain of function in a developmental enhancer
-
[55] Prabhakar, S., et al. Human-specific gain of function in a developmental enhancer. Science 321:5894 (2008), 1346–1350.
-
(2008)
Science
, vol.321
, Issue.5894
, pp. 1346-1350
-
-
Prabhakar, S.1
-
56
-
-
82455192847
-
De novo genesis of enhancers in vertebrates
-
[56] Eichenlaub, M.P., Ettwiller, L., De novo genesis of enhancers in vertebrates. PLoS Biol., 9(11), 2011, e1001188.
-
(2011)
PLoS Biol.
, vol.9
, Issue.11
, pp. e1001188
-
-
Eichenlaub, M.P.1
Ettwiller, L.2
-
57
-
-
77950352433
-
Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons
-
[57] Dong, X., et al. Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons. Nucleic Acids Res. 38:4 (2010), 1071–1085.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.4
, pp. 1071-1085
-
-
Dong, X.1
-
58
-
-
84861456609
-
Coding exons function as tissue-specific enhancers of nearby genes
-
[58] Birnbaum, R.Y., et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res. 22:6 (2012), 1059–1068.
-
(2012)
Genome Res.
, vol.22
, Issue.6
, pp. 1059-1068
-
-
Birnbaum, R.Y.1
-
59
-
-
23744502709
-
A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts
-
[59] de la Calle-Mustienes, E., et al. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 15:8 (2005), 1061–1072.
-
(2005)
Genome Res.
, vol.15
, Issue.8
, pp. 1061-1072
-
-
de la Calle-Mustienes, E.1
-
60
-
-
74249085481
-
Early evolution of conserved regulatory sequences associated with development in vertebrates
-
[60] McEwen, G.K., et al. Early evolution of conserved regulatory sequences associated with development in vertebrates. PLoS Genet., 5(12), 2009, e1000762.
-
(2009)
PLoS Genet.
, vol.5
, Issue.12
, pp. e1000762
-
-
McEwen, G.K.1
-
61
-
-
0037154273
-
Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome
-
[61] Berman, B.P., et al. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl. Acad. Sci. U.S.A. 99:2 (2002), 757–762.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, Issue.2
, pp. 757-762
-
-
Berman, B.P.1
-
62
-
-
77951874066
-
Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers
-
[62] Gotea, V., et al. Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res. 20:5 (2010), 565–577.
-
(2010)
Genome Res.
, vol.20
, Issue.5
, pp. 565-577
-
-
Gotea, V.1
-
63
-
-
84863404645
-
Evolutionary origins of transcription factor binding site clusters
-
[63] He, X., Duque, T.S., Sinha, S., Evolutionary origins of transcription factor binding site clusters. Mol. Biol. Evol. 29:3 (2012), 1059–1070.
-
(2012)
Mol. Biol. Evol.
, vol.29
, Issue.3
, pp. 1059-1070
-
-
He, X.1
Duque, T.S.2
Sinha, S.3
-
64
-
-
84914674878
-
Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells
-
[64] Allo, M., et al. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proc. Natl. Acad. Sci. U.S.A. 111:44 (2014), 15622–15629.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, Issue.44
, pp. 15622-15629
-
-
Allo, M.1
-
65
-
-
35248882434
-
The random versus fragile breakage models of chromosome evolution: a matter of resolution
-
[65] Becker, T.S., Lenhard, B., The random versus fragile breakage models of chromosome evolution: a matter of resolution. Mol. Genet. Genomics 278:5 (2007), 487–491.
-
(2007)
Mol. Genet. Genomics
, vol.278
, Issue.5
, pp. 487-491
-
-
Becker, T.S.1
Lenhard, B.2
-
66
-
-
62249204977
-
Big genomes facilitate the comparative identification of regulatory elements
-
[66] Peterson, B.K., et al. Big genomes facilitate the comparative identification of regulatory elements. PLoS ONE, 4(3), 2009, e4688.
-
(2009)
PLoS ONE
, vol.4
, Issue.3
, pp. e4688
-
-
Peterson, B.K.1
-
67
-
-
84855297335
-
A decade of 3C technologies: insights into nuclear organization
-
[67] de Wit, E., de Laat, W., A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26:1 (2012), 11–24.
-
(2012)
Genes Dev.
, vol.26
, Issue.1
, pp. 11-24
-
-
de Wit, E.1
de Laat, W.2
-
68
-
-
84988931974
-
Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture
-
[68] Dekker, J., Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenet. Chromatin, 7(1), 2014, 25.
-
(2014)
Epigenet. Chromatin
, vol.7
, Issue.1
, pp. 25
-
-
Dekker, J.1
-
69
-
-
84902212007
-
The 3D genome in transcriptional regulation and pluripotency
-
[69] Gorkin, D.U., Leung, D., Ren, B., The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14:6 (2014), 762–775.
-
(2014)
Cell Stem Cell
, vol.14
, Issue.6
, pp. 762-775
-
-
Gorkin, D.U.1
Leung, D.2
Ren, B.3
-
70
-
-
84899415536
-
CTCF: an architectural protein bridging genome topology and function
-
[70] Ong, C.T., Corces, V.G., CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15:4 (2014), 234–246.
-
(2014)
Nat. Rev. Genet.
, vol.15
, Issue.4
, pp. 234-246
-
-
Ong, C.T.1
Corces, V.G.2
-
71
-
-
84878188440
-
Chromatin insulators: linking genome organization to cellular function
-
[71] Phillips-Cremins, J.E., Corces, V.G., Chromatin insulators: linking genome organization to cellular function. Mol. Cell 50:4 (2013), 461–474.
-
(2013)
Mol. Cell
, vol.50
, Issue.4
, pp. 461-474
-
-
Phillips-Cremins, J.E.1
Corces, V.G.2
-
72
-
-
84935924135
-
Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders
-
[72] Gomez-Marin, C., et al. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. Proc. Natl. Acad. Sci. U.S.A. 112:24 (2015), 7542–7547.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, Issue.24
, pp. 7542-7547
-
-
Gomez-Marin, C.1
-
73
-
-
84919949716
-
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
-
[73] Rao, S.S., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:7 (2014), 1665–1680.
-
(2014)
Cell
, vol.159
, Issue.7
, pp. 1665-1680
-
-
Rao, S.S.1
-
74
-
-
81855227640
-
A regulatory archipelago controls Hox genes transcription in digits
-
[74] Montavon, T., et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 147:5 (2011), 1132–1145.
-
(2011)
Cell
, vol.147
, Issue.5
, pp. 1132-1145
-
-
Montavon, T.1
-
75
-
-
34249943590
-
Transgenic analysis of Hoxd gene regulation during digit development
-
[75] Gonzalez, F., Duboule, D., Spitz, F., Transgenic analysis of Hoxd gene regulation during digit development. Dev. Biol. 306:2 (2007), 847–859.
-
(2007)
Dev. Biol.
, vol.306
, Issue.2
, pp. 847-859
-
-
Gonzalez, F.1
Duboule, D.2
Spitz, F.3
-
76
-
-
84927641804
-
In search of the determinants of enhancer-promoter interaction specificity
-
[76] van Arensbergen, J., van Steensel, B., Bussemaker, H.J., In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 24:11 (2014), 695–702.
-
(2014)
Trends Cell Biol.
, vol.24
, Issue.11
, pp. 695-702
-
-
van Arensbergen, J.1
van Steensel, B.2
Bussemaker, H.J.3
-
77
-
-
0038613098
-
A global control region defines a chromosomal regulatory landscape containing the HoxD cluster
-
[77] Spitz, F., Gonzalez, F., Duboule, D., A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113:3 (2003), 405–417.
-
(2003)
Cell
, vol.113
, Issue.3
, pp. 405-417
-
-
Spitz, F.1
Gonzalez, F.2
Duboule, D.3
-
78
-
-
84882611819
-
Ancient cis-regulatory constraints and the evolution of genome architecture
-
[78] Irimia, M., et al. Ancient cis-regulatory constraints and the evolution of genome architecture. Trends Genet. 29:9 (2013), 521–528.
-
(2013)
Trends Genet.
, vol.29
, Issue.9
, pp. 521-528
-
-
Irimia, M.1
-
79
-
-
51149097760
-
Shadow enhancers as a source of evolutionary novelty
-
[79] Hong, J.W., Hendrix, D.A., Levine, M.S., Shadow enhancers as a source of evolutionary novelty. Science, 321(5894), 2008, 1314.
-
(2008)
Science
, vol.321
, Issue.5894
, pp. 1314
-
-
Hong, J.W.1
Hendrix, D.A.2
Levine, M.S.3
-
80
-
-
79955859947
-
An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation
-
[80] Tena, J.J., et al. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat. Commun., 2, 2011, 310.
-
(2011)
Nat. Commun.
, vol.2
, pp. 310
-
-
Tena, J.J.1
-
81
-
-
84860381359
-
Transcription factories: genetic programming in three dimensions
-
[81] Edelman, L.B., Fraser, P., Transcription factories: genetic programming in three dimensions. Curr. Opin. Genet. Dev. 22:2 (2012), 110–114.
-
(2012)
Curr. Opin. Genet. Dev.
, vol.22
, Issue.2
, pp. 110-114
-
-
Edelman, L.B.1
Fraser, P.2
-
82
-
-
82255164379
-
Transcription factories in the context of the nuclear and genome organization
-
[82] Razin, S.V., et al. Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res. 39:21 (2011), 9085–9092.
-
(2011)
Nucleic Acids Res.
, vol.39
, Issue.21
, pp. 9085-9092
-
-
Razin, S.V.1
-
83
-
-
70149102036
-
Conservation of enhancer location in divergent insects
-
[83] Cande, J., Goltsev, Y., Levine, M.S., Conservation of enhancer location in divergent insects. Proc. Natl. Acad. Sci. U.S.A. 106:34 (2009), 14414–14419.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, Issue.34
, pp. 14414-14419
-
-
Cande, J.1
Goltsev, Y.2
Levine, M.S.3
-
84
-
-
46249134068
-
Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation
-
[84] Hare, E.E., et al. Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet., 4(6), 2008, e1000106.
-
(2008)
PLoS Genet.
, vol.4
, Issue.6
, pp. e1000106
-
-
Hare, E.E.1
-
85
-
-
84980048055
-
Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches
-
[85] Martinez-Morales, J.R., Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches. Brief. Funct. Genom., 2015, 10.1093/bfgp/elv032.
-
(2015)
Brief. Funct. Genom.
-
-
Martinez-Morales, J.R.1
-
86
-
-
80455144479
-
Pioneer transcription factors: establishing competence for gene expression
-
[86] Zaret, K.S., Carroll, J.S., Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25:21 (2011), 2227–2241.
-
(2011)
Genes Dev.
, vol.25
, Issue.21
, pp. 2227-2241
-
-
Zaret, K.S.1
Carroll, J.S.2
-
87
-
-
45749086679
-
The amphioxus genome and the evolution of the chordate karyotype
-
[87] Putnam, N.H., et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453:7198 (2008), 1064–1071.
-
(2008)
Nature
, vol.453
, Issue.7198
, pp. 1064-1071
-
-
Putnam, N.H.1
-
88
-
-
33645519275
-
Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis
-
[88] McEwen, G.K., et al. Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. Genome Res. 16:4 (2006), 451–465.
-
(2006)
Genome Res.
, vol.16
, Issue.4
, pp. 451-465
-
-
McEwen, G.K.1
-
89
-
-
47649129807
-
Convergent evolution of clustering of Iroquois homeobox genes across metazoans
-
[89] Irimia, M., Maeso, I., Garcia-Fernandez, J., Convergent evolution of clustering of Iroquois homeobox genes across metazoans. Mol. Biol. Evol. 25:8 (2008), 1521–1525.
-
(2008)
Mol. Biol. Evol.
, vol.25
, Issue.8
, pp. 1521-1525
-
-
Irimia, M.1
Maeso, I.2
Garcia-Fernandez, J.3
-
90
-
-
33646544748
-
Evolutionary genomics of the recently duplicated amphioxus Hairy genes
-
[90] Jimenez-Delgado, S., et al. Evolutionary genomics of the recently duplicated amphioxus Hairy genes. Int. J. Biol. Sci. 2:2 (2006), 66–72.
-
(2006)
Int. J. Biol. Sci.
, vol.2
, Issue.2
, pp. 66-72
-
-
Jimenez-Delgado, S.1
-
91
-
-
84901651635
-
Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance
-
[91] Fort, A., et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46:6 (2014), 558–566.
-
(2014)
Nat. Genet.
, vol.46
, Issue.6
, pp. 558-566
-
-
Fort, A.1
-
92
-
-
84876799419
-
Transposable elements as genetic regulatory substrates in early development
-
[92] Gifford, W.D., Pfaff, S.L., Macfarlan, T.S., Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23:5 (2013), 218–226.
-
(2013)
Trends Cell Biol.
, vol.23
, Issue.5
, pp. 218-226
-
-
Gifford, W.D.1
Pfaff, S.L.2
Macfarlan, T.S.3
-
93
-
-
84863458292
-
Embryonic stem cell potency fluctuates with endogenous retrovirus activity
-
[93] Macfarlan, T.S., et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:7405 (2012), 57–63.
-
(2012)
Nature
, vol.487
, Issue.7405
, pp. 57-63
-
-
Macfarlan, T.S.1
-
94
-
-
84863393570
-
Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages
-
[94] Schmidt, D., et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:1–2 (2012), 335–348.
-
(2012)
Cell
, vol.148
, Issue.1-2
, pp. 335-348
-
-
Schmidt, D.1
-
95
-
-
77954100084
-
Transposable elements have rewired the core regulatory network of human embryonic stem cells
-
[95] Kunarso, G., et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42:7 (2010), 631–634.
-
(2010)
Nat. Genet.
, vol.42
, Issue.7
, pp. 631-634
-
-
Kunarso, G.1
-
96
-
-
71749094924
-
Transposable elements in gene regulation and in the evolution of vertebrate genomes
-
[96] Bourque, G., Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr. Opin. Genet. Dev. 19:6 (2009), 607–612.
-
(2009)
Curr. Opin. Genet. Dev.
, vol.19
, Issue.6
, pp. 607-612
-
-
Bourque, G.1
-
97
-
-
55549117831
-
Evolution of the mammalian transcription factor binding repertoire via transposable elements
-
[97] Bourque, G., et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18:11 (2008), 1752–1762.
-
(2008)
Genome Res.
, vol.18
, Issue.11
, pp. 1752-1762
-
-
Bourque, G.1
-
98
-
-
84911936991
-
Widespread contribution of transposable elements to the innovation of gene regulatory networks
-
[98] Sundaram, V., et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24:12 (2014), 1963–1976.
-
(2014)
Genome Res.
, vol.24
, Issue.12
, pp. 1963-1976
-
-
Sundaram, V.1
-
99
-
-
84952876465
-
The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes
-
MDNA3-0061-2014
-
[99] Richardson, S.R., et al. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol. Spectr., 3(2), 2015 MDNA3-0061-2014.
-
(2015)
Microbiol. Spectr.
, vol.3
, Issue.2
-
-
Richardson, S.R.1
-
100
-
-
80055010534
-
Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals
-
[100] Lynch, V.J., et al. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43:11 (2011), 1154–1159.
-
(2011)
Nat. Genet.
, vol.43
, Issue.11
, pp. 1154-1159
-
-
Lynch, V.J.1
-
101
-
-
84925778794
-
A family of transposable elements co-opted into developmental enhancers in the mouse neocortex
-
[101] Notwell, J.H., et al. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun., 6, 2015, 6644.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6644
-
-
Notwell, J.H.1
-
102
-
-
84922820231
-
Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy
-
[102] Lynch, V.J., et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10:4 (2015), 551–561.
-
(2015)
Cell Rep.
, vol.10
, Issue.4
, pp. 551-561
-
-
Lynch, V.J.1
-
103
-
-
84887418594
-
Enhancer turnover and conserved regulatory function in vertebrate evolution
-
[103] Domene, S., et al. Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos. Trans. R. Soc. London, Ser. B Biol. Sci., 368(1632), 2013, 20130027.
-
(2013)
Philos. Trans. R. Soc. London, Ser. B Biol. Sci.
, vol.368
, Issue.1632
, pp. 20130027
-
-
Domene, S.1
-
104
-
-
84861320913
-
Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements
-
[104] Emera, D., et al. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol. Biol. Evol. 29:1 (2012), 239–247.
-
(2012)
Mol. Biol. Evol.
, vol.29
, Issue.1
, pp. 239-247
-
-
Emera, D.1
-
105
-
-
41949093041
-
Possible involvement of SINEs in mammalian-specific brain formation
-
[105] Sasaki, T., et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl. Acad. Sci. U.S.A. 105:11 (2008), 4220–4225.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, Issue.11
, pp. 4220-4225
-
-
Sasaki, T.1
-
106
-
-
33646928347
-
A distal enhancer and an ultraconserved exon are derived from a novel retroposon
-
[106] Bejerano, G., et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:7089 (2006), 87–90.
-
(2006)
Nature
, vol.441
, Issue.7089
, pp. 87-90
-
-
Bejerano, G.1
-
107
-
-
84924533047
-
Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
-
[107] Vietri Rudan, M., et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10:8 (2015), 1297–1309.
-
(2015)
Cell Rep.
, vol.10
, Issue.8
, pp. 1297-1309
-
-
Vietri Rudan, M.1
-
108
-
-
84927699805
-
An Integrative Breakage Model of genome architecture, reshuffling and evolution: the Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity
-
[108] Farre, M., Robinson, T.J., Ruiz-Herrera, A., An Integrative Breakage Model of genome architecture, reshuffling and evolution: the Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays 37:5 (2015), 479–488.
-
(2015)
Bioessays
, vol.37
, Issue.5
, pp. 479-488
-
-
Farre, M.1
Robinson, T.J.2
Ruiz-Herrera, A.3
-
109
-
-
84861679502
-
Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties
-
[109] Irimia, M., et al. Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties. Sci. Rep.(2), 2012, 433.
-
(2012)
Sci. Rep.
, Issue.2
, pp. 433
-
-
Irimia, M.1
-
110
-
-
0042810698
-
A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly
-
[110] Lettice, L.A., et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12:14 (2003), 1725–1735.
-
(2003)
Hum. Mol. Genet.
, vol.12
, Issue.14
, pp. 1725-1735
-
-
Lettice, L.A.1
|