메뉴 건너뛰기




Volumn 57, Issue , 2016, Pages 2-10

Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework

Author keywords

Chromatin environment; Cis regulation; Enhancer evolution; Enhancer overprinting; Transcription factor binding site (TFBS); Transposable element

Indexed keywords

CHROMATIN; CONCEPTUAL FRAMEWORK; DNA SEQUENCE; DNA STRUCTURE; ENHANCER REGION; GENE CONTROL; GENE EXPRESSION; MODEL; TRANSPOSON; ANIMAL; BIOLOGICAL MODEL; GENETICS; GENOME; HUMAN; MOLECULAR EVOLUTION; REGULATORY SEQUENCE;

EID: 84950150832     PISSN: 10849521     EISSN: 10963634     Source Type: Journal    
DOI: 10.1016/j.semcdb.2015.12.003     Document Type: Review
Times cited : (14)

References (110)
  • 1
    • 46149104377 scopus 로고    scopus 로고
    • Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution
    • [1] Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:1 (2008), 25–36.
    • (2008) Cell , vol.134 , Issue.1 , pp. 25-36
    • Carroll, S.B.1
  • 2
    • 84906935775 scopus 로고    scopus 로고
    • Absence of a simple code: how transcription factors read the genome
    • [2] Slattery, M., et al. Absence of a simple code: how transcription factors read the genome. Trends Biochem. Sci. 39:9 (2014), 381–399.
    • (2014) Trends Biochem. Sci. , vol.39 , Issue.9 , pp. 381-399
    • Slattery, M.1
  • 3
    • 84901409283 scopus 로고    scopus 로고
    • Transcription factors: specific DNA binding and specific gene regulation
    • [3] Todeschini, A.L., Georges, A., Veitia, R.A., Transcription factors: specific DNA binding and specific gene regulation. Trends Genet. 30:6 (2014), 211–219.
    • (2014) Trends Genet. , vol.30 , Issue.6 , pp. 211-219
    • Todeschini, A.L.1    Georges, A.2    Veitia, R.A.3
  • 4
    • 84899453734 scopus 로고    scopus 로고
    • Evolution of transcription factor binding in metazoans—mechanisms and functional implications
    • [4] Villar, D., Flicek, P., Odom, D.T., Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat. Rev. Genet. 15:4 (2014), 221–233.
    • (2014) Nat. Rev. Genet. , vol.15 , Issue.4 , pp. 221-233
    • Villar, D.1    Flicek, P.2    Odom, D.T.3
  • 5
    • 84911470871 scopus 로고    scopus 로고
    • Conservation of trans-acting circuitry during mammalian regulatory evolution
    • [5] Stergachis, A.B., et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515:7527 (2014), 365–370.
    • (2014) Nature , vol.515 , Issue.7527 , pp. 365-370
    • Stergachis, A.B.1
  • 6
    • 84911939594 scopus 로고    scopus 로고
    • Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution
    • [6] Vierstra, J., et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346:6212 (2014), 1007–1012.
    • (2014) Science , vol.346 , Issue.6212 , pp. 1007-1012
    • Vierstra, J.1
  • 7
    • 84879911829 scopus 로고    scopus 로고
    • The evolution of lineage-specific regulatory activities in the human embryonic limb
    • [7] Cotney, J., et al. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154:1 (2013), 185–196.
    • (2013) Cell , vol.154 , Issue.1 , pp. 185-196
    • Cotney, J.1
  • 8
    • 84924561748 scopus 로고    scopus 로고
    • Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis
    • [8] Reilly, S.K., et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347:6226 (2015), 1155–1159.
    • (2015) Science , vol.347 , Issue.6226 , pp. 1155-1159
    • Reilly, S.K.1
  • 9
    • 84904250693 scopus 로고    scopus 로고
    • Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period
    • [9] Tena, J.J., et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24:7 (2014), 1075–1085.
    • (2014) Genome Res. , vol.24 , Issue.7 , pp. 1075-1085
    • Tena, J.J.1
  • 10
    • 84922295278 scopus 로고    scopus 로고
    • Enhancer evolution across 20 mammalian species
    • [10] Villar, D., et al. Enhancer evolution across 20 mammalian species. Cell 160:3 (2015), 554–566.
    • (2015) Cell , vol.160 , Issue.3 , pp. 554-566
    • Villar, D.1
  • 11
    • 38849112675 scopus 로고    scopus 로고
    • Genomic regulatory blocks underlie extensive microsynteny conservation in insects
    • [11] Engstrom, P.G., et al. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res. 17:12 (2007), 1898–1908.
    • (2007) Genome Res. , vol.17 , Issue.12 , pp. 1898-1908
    • Engstrom, P.G.1
  • 12
    • 80054787751 scopus 로고    scopus 로고
    • Contrasting 5′ and 3′ evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures
    • [12] Irimia, M., et al. Contrasting 5′ and 3′ evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures. Genome Biol. Evol. 3 (2011), 551–564.
    • (2011) Genome Biol. Evol. , vol.3 , pp. 551-564
    • Irimia, M.1
  • 13
    • 84870512646 scopus 로고    scopus 로고
    • Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints
    • [13] Irimia, M., et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22:12 (2012), 2356–2367.
    • (2012) Genome Res. , vol.22 , Issue.12 , pp. 2356-2367
    • Irimia, M.1
  • 14
    • 34248153777 scopus 로고    scopus 로고
    • Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates
    • [14] Kikuta, H., et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17:5 (2007), 545–555.
    • (2007) Genome Res. , vol.17 , Issue.5 , pp. 545-555
    • Kikuta, H.1
  • 15
    • 84887450841 scopus 로고    scopus 로고
    • Deep conservation of cis-regulatory elements in metazoans
    • [15] Maeso, I., et al. Deep conservation of cis-regulatory elements in metazoans. Philos. Trans. R. Soc. London, Ser. B: Biol. Sci., 368(1632), 2013, 20130020.
    • (2013) Philos. Trans. R. Soc. London, Ser. B: Biol. Sci. , vol.368 , Issue.1632 , pp. 20130020
    • Maeso, I.1
  • 16
    • 84859541999 scopus 로고    scopus 로고
    • An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement
    • [16] Maeso, I., et al. An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. Genome Res. 22:4 (2012), 642–655.
    • (2012) Genome Res. , vol.22 , Issue.4 , pp. 642-655
    • Maeso, I.1
  • 17
    • 4944260940 scopus 로고    scopus 로고
    • The regulatory content of intergenic DNA shapes genome architecture
    • [17] Nelson, C.E., Hersh, B.M., Carroll, S.B., The regulatory content of intergenic DNA shapes genome architecture. Genome Biol., 5(4), 2004, R25.
    • (2004) Genome Biol. , vol.5 , Issue.4 , pp. R25
    • Nelson, C.E.1    Hersh, B.M.2    Carroll, S.B.3
  • 18
    • 0034893582 scopus 로고    scopus 로고
    • Rapid evolution of cis-regulatory sequences via local point mutations
    • [18] Stone, J.R., Wray, G.A., Rapid evolution of cis-regulatory sequences via local point mutations. Mol. Biol. Evol. 18:9 (2001), 1764–1770.
    • (2001) Mol. Biol. Evol. , vol.18 , Issue.9 , pp. 1764-1770
    • Stone, J.R.1    Wray, G.A.2
  • 19
    • 76149132685 scopus 로고    scopus 로고
    • Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?
    • [19] Georges, A.B., et al. Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?. FASEB J. 24:2 (2010), 346–356.
    • (2010) FASEB J. , vol.24 , Issue.2 , pp. 346-356
    • Georges, A.B.1
  • 20
    • 84922313916 scopus 로고    scopus 로고
    • Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways
    • [20] Ballester, B., et al. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways. Elife, 3, 2014, e02626.
    • (2014) Elife , vol.3 , pp. e02626
    • Ballester, B.1
  • 21
    • 34547633677 scopus 로고    scopus 로고
    • Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing
    • [21] Robertson, G., et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4:8 (2007), 651–657.
    • (2007) Nat. Methods , vol.4 , Issue.8 , pp. 651-657
    • Robertson, G.1
  • 22
    • 84871844925 scopus 로고    scopus 로고
    • DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila
    • [22] Fisher, W.W., et al. DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 109:52 (2012), 21330–21335.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.52 , pp. 21330-21335
    • Fisher, W.W.1
  • 23
    • 84887463729 scopus 로고    scopus 로고
    • Beyond the ENCODE project: using genomics and epigenomics strategies to study enhancer evolution
    • [23] Sakabe, N.J., Nobrega, M.A., Beyond the ENCODE project: using genomics and epigenomics strategies to study enhancer evolution. Philos. Trans. R. Soc. London, Ser. B Biol. Sci., 368(1632), 2013, 20130022.
    • (2013) Philos. Trans. R. Soc. London, Ser. B Biol. Sci. , vol.368 , Issue.1632 , pp. 20130022
    • Sakabe, N.J.1    Nobrega, M.A.2
  • 24
    • 84895806401 scopus 로고    scopus 로고
    • Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants
    • [24] Pasquali, L., et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46:2 (2014), 136–143.
    • (2014) Nat. Genet. , vol.46 , Issue.2 , pp. 136-143
    • Pasquali, L.1
  • 25
    • 84891775539 scopus 로고    scopus 로고
    • Simulations of enhancer evolution provide mechanistic insights into gene regulation
    • [25] Duque, T., et al. Simulations of enhancer evolution provide mechanistic insights into gene regulation. Mol. Biol. Evol. 31:1 (2014), 184–200.
    • (2014) Mol. Biol. Evol. , vol.31 , Issue.1 , pp. 184-200
    • Duque, T.1
  • 26
    • 84979851536 scopus 로고    scopus 로고
    • What does it take to evolve an enhancer?. A simulation-based study of factors influencing the emergence of combinatorial regulation
    • [26] Duque, T., Sinha, S., What does it take to evolve an enhancer?. A simulation-based study of factors influencing the emergence of combinatorial regulation. Genome Biol. Evol. 7:6 (2015), 1415–1431.
    • (2015) Genome Biol. Evol. , vol.7 , Issue.6 , pp. 1415-1431
    • Duque, T.1    Sinha, S.2
  • 27
    • 84937031367 scopus 로고    scopus 로고
    • Unraveling determinants of transcription factor binding outside the core binding site
    • [27] Levo, M., et al. Unraveling determinants of transcription factor binding outside the core binding site. Genome Res. 25:7 (2015), 1018–1029.
    • (2015) Genome Res. , vol.25 , Issue.7 , pp. 1018-1029
    • Levo, M.1
  • 28
    • 84928033171 scopus 로고    scopus 로고
    • Quantitative modeling of transcription factor binding specificities using DNA shape
    • [28] Zhou, T., et al. Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl. Acad. Sci. U.S.A. 112:15 (2015), 4654–4659.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , Issue.15 , pp. 4654-4659
    • Zhou, T.1
  • 30
    • 84892814234 scopus 로고    scopus 로고
    • Chromatin modifiers and remodellers: regulators of cellular differentiation
    • [30] Chen, T., Dent, S.Y., Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15:2 (2014), 93–100.
    • (2014) Nat. Rev. Genet. , vol.15 , Issue.2 , pp. 93-100
    • Chen, T.1    Dent, S.Y.2
  • 31
    • 41949113742 scopus 로고    scopus 로고
    • The enhanceosome
    • [31] Panne, D., The enhanceosome. Curr. Opin. Struct. Biol. 18:2 (2008), 236–242.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , Issue.2 , pp. 236-242
    • Panne, D.1
  • 32
    • 70350741354 scopus 로고    scopus 로고
    • An ensemble model of competitive multi-factor binding of the genome
    • [32] Wasson, T., Hartemink, A.J., An ensemble model of competitive multi-factor binding of the genome. Genome Res. 19:11 (2009), 2101–2112.
    • (2009) Genome Res. , vol.19 , Issue.11 , pp. 2101-2112
    • Wasson, T.1    Hartemink, A.J.2
  • 33
    • 84939653808 scopus 로고    scopus 로고
    • Noncoding RNA-guided recruitment of transcription factors: A prevalent but undocumented mechanism?
    • [33] Lee, N., Steitz, J.A., Noncoding RNA-guided recruitment of transcription factors: A prevalent but undocumented mechanism?. Bioessays 37:9 (2015), 936–941.
    • (2015) Bioessays , vol.37 , Issue.9 , pp. 936-941
    • Lee, N.1    Steitz, J.A.2
  • 34
  • 35
    • 84879101308 scopus 로고    scopus 로고
    • Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach
    • [35] Nolin, F., et al. Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach. Cell. Mol. Life Sci. 70:13 (2013), 2383–2394.
    • (2013) Cell. Mol. Life Sci. , vol.70 , Issue.13 , pp. 2383-2394
    • Nolin, F.1
  • 36
    • 84888877924 scopus 로고    scopus 로고
    • Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
    • [36] Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:12 (2013), 1213–1218.
    • (2013) Nat Methods , vol.10 , Issue.12 , pp. 1213-1218
    • Buenrostro, J.D.1    Giresi, P.G.2    Zaba, L.C.3    Chang, H.Y.4    Greenleaf, W.J.5
  • 37
    • 84865755978 scopus 로고    scopus 로고
    • The accessible chromatin landscape of the human genome
    • [37] Thurman, R.E., et al. The accessible chromatin landscape of the human genome. Nature 489:7414 (2012), 75–82.
    • (2012) Nature , vol.489 , Issue.7414 , pp. 75-82
    • Thurman, R.E.1
  • 38
    • 84867158452 scopus 로고    scopus 로고
    • Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis
    • [38] Bogdanovic, O., et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22:10 (2012), 2043–2053.
    • (2012) Genome Res. , vol.22 , Issue.10 , pp. 2043-2053
    • Bogdanovic, O.1
  • 39
    • 84856239091 scopus 로고    scopus 로고
    • Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development
    • [39] Bonn, S., et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat. Genet. 44:2 (2012), 148–156.
    • (2012) Nat. Genet. , vol.44 , Issue.2 , pp. 148-156
    • Bonn, S.1
  • 40
    • 80053622239 scopus 로고    scopus 로고
    • Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency
    • [40] Hawkins, R.D., et al. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency. Cell Res. 21:10 (2011), 1393–1409.
    • (2011) Cell Res. , vol.21 , Issue.10 , pp. 1393-1409
    • Hawkins, R.D.1
  • 41
    • 79951516056 scopus 로고    scopus 로고
    • A unique chromatin signature uncovers early developmental enhancers in humans
    • [41] Rada-Iglesias, A., et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:7333 (2011), 279–283.
    • (2011) Nature , vol.470 , Issue.7333 , pp. 279-283
    • Rada-Iglesias, A.1
  • 42
    • 78650758676 scopus 로고    scopus 로고
    • Histone H3K27ac separates active from poised enhancers and predicts developmental state
    • [42] Creyghton, M.P., et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U.S.A. 107:50 (2010), 21931–21936.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , Issue.50 , pp. 21931-21936
    • Creyghton, M.P.1
  • 43
    • 77952367798 scopus 로고    scopus 로고
    • Widespread transcription at neuronal activity-regulated enhancers
    • [43] Kim, T.K., et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:7295 (2010), 182–187.
    • (2010) Nature , vol.465 , Issue.7295 , pp. 182-187
    • Kim, T.K.1
  • 44
    • 70249088327 scopus 로고    scopus 로고
    • Genomic views of distant-acting enhancers
    • [44] Visel, A., Rubin, E.M., Pennacchio, L.A., Genomic views of distant-acting enhancers. Nature 461:7261 (2009), 199–205.
    • (2009) Nature , vol.461 , Issue.7261 , pp. 199-205
    • Visel, A.1    Rubin, E.M.2    Pennacchio, L.A.3
  • 45
    • 65549104157 scopus 로고    scopus 로고
    • Histone modifications at human enhancers reflect global cell-type-specific gene expression
    • [45] Heintzman, N.D., et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:7243 (2009), 108–112.
    • (2009) Nature , vol.459 , Issue.7243 , pp. 108-112
    • Heintzman, N.D.1
  • 46
    • 33847334699 scopus 로고    scopus 로고
    • Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
    • [46] Heintzman, N.D., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39:3 (2007), 311–318.
    • (2007) Nat. Genet. , vol.39 , Issue.3 , pp. 311-318
    • Heintzman, N.D.1
  • 47
    • 84898713767 scopus 로고    scopus 로고
    • Evolutionary conservation of the eumetazoan gene regulatory landscape
    • [47] Schwaiger, M., et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24:4 (2014), 639–650.
    • (2014) Genome Res. , vol.24 , Issue.4 , pp. 639-650
    • Schwaiger, M.1
  • 48
    • 84940390239 scopus 로고    scopus 로고
    • Architectural and functional commonalities between enhancers and promoters
    • [48] Kim, T.K., Shiekhattar, R., Architectural and functional commonalities between enhancers and promoters. Cell 162:5 (2015), 948–959.
    • (2015) Cell , vol.162 , Issue.5 , pp. 948-959
    • Kim, T.K.1    Shiekhattar, R.2
  • 49
    • 84925684704 scopus 로고    scopus 로고
    • Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model
    • [49] Andersson, R., Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. Bioessays 37:3 (2015), 314–323.
    • (2015) Bioessays , vol.37 , Issue.3 , pp. 314-323
    • Andersson, R.1
  • 50
    • 84935896803 scopus 로고    scopus 로고
    • Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila
    • [50] Koshikawa, S., et al. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 112:24 (2015), 7524–7529.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , Issue.24 , pp. 7524-7529
    • Koshikawa, S.1
  • 51
    • 84926420296 scopus 로고    scopus 로고
    • Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex
    • [51] Boyd, J.L., et al. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol. 25:6 (2015), 772–779.
    • (2015) Curr. Biol. , vol.25 , Issue.6 , pp. 772-779
    • Boyd, J.L.1
  • 52
    • 84884631699 scopus 로고    scopus 로고
    • Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity
    • [52] Rogers, W.A., et al. Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity. PLoS Genet., 9(8), 2013, e1003740.
    • (2013) PLoS Genet. , vol.9 , Issue.8 , pp. e1003740
    • Rogers, W.A.1
  • 53
    • 84861223461 scopus 로고    scopus 로고
    • Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer
    • [53] Pearson, J.C., Watson, J.D., Crews, S.T., Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer. Dev. Biol. 366:2 (2012), 420–432.
    • (2012) Dev. Biol. , vol.366 , Issue.2 , pp. 420-432
    • Pearson, J.C.1    Watson, J.D.2    Crews, S.T.3
  • 54
    • 79959944339 scopus 로고    scopus 로고
    • Evolutionary origin of a novel gene expression pattern through cooption of the latent activities of existing regulatory sequences
    • [54] Rebeiz, M., et al. Evolutionary origin of a novel gene expression pattern through cooption of the latent activities of existing regulatory sequences. Proc. Natl. Acad. Sci. U.S.A. 108:25 (2011), 10036–10043.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , Issue.25 , pp. 10036-10043
    • Rebeiz, M.1
  • 55
    • 51149097366 scopus 로고    scopus 로고
    • Human-specific gain of function in a developmental enhancer
    • [55] Prabhakar, S., et al. Human-specific gain of function in a developmental enhancer. Science 321:5894 (2008), 1346–1350.
    • (2008) Science , vol.321 , Issue.5894 , pp. 1346-1350
    • Prabhakar, S.1
  • 56
    • 82455192847 scopus 로고    scopus 로고
    • De novo genesis of enhancers in vertebrates
    • [56] Eichenlaub, M.P., Ettwiller, L., De novo genesis of enhancers in vertebrates. PLoS Biol., 9(11), 2011, e1001188.
    • (2011) PLoS Biol. , vol.9 , Issue.11 , pp. e1001188
    • Eichenlaub, M.P.1    Ettwiller, L.2
  • 57
    • 77950352433 scopus 로고    scopus 로고
    • Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons
    • [57] Dong, X., et al. Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons. Nucleic Acids Res. 38:4 (2010), 1071–1085.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.4 , pp. 1071-1085
    • Dong, X.1
  • 58
    • 84861456609 scopus 로고    scopus 로고
    • Coding exons function as tissue-specific enhancers of nearby genes
    • [58] Birnbaum, R.Y., et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res. 22:6 (2012), 1059–1068.
    • (2012) Genome Res. , vol.22 , Issue.6 , pp. 1059-1068
    • Birnbaum, R.Y.1
  • 59
    • 23744502709 scopus 로고    scopus 로고
    • A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts
    • [59] de la Calle-Mustienes, E., et al. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 15:8 (2005), 1061–1072.
    • (2005) Genome Res. , vol.15 , Issue.8 , pp. 1061-1072
    • de la Calle-Mustienes, E.1
  • 60
    • 74249085481 scopus 로고    scopus 로고
    • Early evolution of conserved regulatory sequences associated with development in vertebrates
    • [60] McEwen, G.K., et al. Early evolution of conserved regulatory sequences associated with development in vertebrates. PLoS Genet., 5(12), 2009, e1000762.
    • (2009) PLoS Genet. , vol.5 , Issue.12 , pp. e1000762
    • McEwen, G.K.1
  • 61
    • 0037154273 scopus 로고    scopus 로고
    • Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome
    • [61] Berman, B.P., et al. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl. Acad. Sci. U.S.A. 99:2 (2002), 757–762.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , Issue.2 , pp. 757-762
    • Berman, B.P.1
  • 62
    • 77951874066 scopus 로고    scopus 로고
    • Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers
    • [62] Gotea, V., et al. Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res. 20:5 (2010), 565–577.
    • (2010) Genome Res. , vol.20 , Issue.5 , pp. 565-577
    • Gotea, V.1
  • 63
    • 84863404645 scopus 로고    scopus 로고
    • Evolutionary origins of transcription factor binding site clusters
    • [63] He, X., Duque, T.S., Sinha, S., Evolutionary origins of transcription factor binding site clusters. Mol. Biol. Evol. 29:3 (2012), 1059–1070.
    • (2012) Mol. Biol. Evol. , vol.29 , Issue.3 , pp. 1059-1070
    • He, X.1    Duque, T.S.2    Sinha, S.3
  • 64
    • 84914674878 scopus 로고    scopus 로고
    • Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells
    • [64] Allo, M., et al. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proc. Natl. Acad. Sci. U.S.A. 111:44 (2014), 15622–15629.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , Issue.44 , pp. 15622-15629
    • Allo, M.1
  • 65
    • 35248882434 scopus 로고    scopus 로고
    • The random versus fragile breakage models of chromosome evolution: a matter of resolution
    • [65] Becker, T.S., Lenhard, B., The random versus fragile breakage models of chromosome evolution: a matter of resolution. Mol. Genet. Genomics 278:5 (2007), 487–491.
    • (2007) Mol. Genet. Genomics , vol.278 , Issue.5 , pp. 487-491
    • Becker, T.S.1    Lenhard, B.2
  • 66
    • 62249204977 scopus 로고    scopus 로고
    • Big genomes facilitate the comparative identification of regulatory elements
    • [66] Peterson, B.K., et al. Big genomes facilitate the comparative identification of regulatory elements. PLoS ONE, 4(3), 2009, e4688.
    • (2009) PLoS ONE , vol.4 , Issue.3 , pp. e4688
    • Peterson, B.K.1
  • 67
    • 84855297335 scopus 로고    scopus 로고
    • A decade of 3C technologies: insights into nuclear organization
    • [67] de Wit, E., de Laat, W., A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26:1 (2012), 11–24.
    • (2012) Genes Dev. , vol.26 , Issue.1 , pp. 11-24
    • de Wit, E.1    de Laat, W.2
  • 68
    • 84988931974 scopus 로고    scopus 로고
    • Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture
    • [68] Dekker, J., Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenet. Chromatin, 7(1), 2014, 25.
    • (2014) Epigenet. Chromatin , vol.7 , Issue.1 , pp. 25
    • Dekker, J.1
  • 69
    • 84902212007 scopus 로고    scopus 로고
    • The 3D genome in transcriptional regulation and pluripotency
    • [69] Gorkin, D.U., Leung, D., Ren, B., The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14:6 (2014), 762–775.
    • (2014) Cell Stem Cell , vol.14 , Issue.6 , pp. 762-775
    • Gorkin, D.U.1    Leung, D.2    Ren, B.3
  • 70
    • 84899415536 scopus 로고    scopus 로고
    • CTCF: an architectural protein bridging genome topology and function
    • [70] Ong, C.T., Corces, V.G., CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15:4 (2014), 234–246.
    • (2014) Nat. Rev. Genet. , vol.15 , Issue.4 , pp. 234-246
    • Ong, C.T.1    Corces, V.G.2
  • 71
    • 84878188440 scopus 로고    scopus 로고
    • Chromatin insulators: linking genome organization to cellular function
    • [71] Phillips-Cremins, J.E., Corces, V.G., Chromatin insulators: linking genome organization to cellular function. Mol. Cell 50:4 (2013), 461–474.
    • (2013) Mol. Cell , vol.50 , Issue.4 , pp. 461-474
    • Phillips-Cremins, J.E.1    Corces, V.G.2
  • 72
    • 84935924135 scopus 로고    scopus 로고
    • Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders
    • [72] Gomez-Marin, C., et al. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. Proc. Natl. Acad. Sci. U.S.A. 112:24 (2015), 7542–7547.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , Issue.24 , pp. 7542-7547
    • Gomez-Marin, C.1
  • 73
    • 84919949716 scopus 로고    scopus 로고
    • A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
    • [73] Rao, S.S., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:7 (2014), 1665–1680.
    • (2014) Cell , vol.159 , Issue.7 , pp. 1665-1680
    • Rao, S.S.1
  • 74
    • 81855227640 scopus 로고    scopus 로고
    • A regulatory archipelago controls Hox genes transcription in digits
    • [74] Montavon, T., et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 147:5 (2011), 1132–1145.
    • (2011) Cell , vol.147 , Issue.5 , pp. 1132-1145
    • Montavon, T.1
  • 75
    • 34249943590 scopus 로고    scopus 로고
    • Transgenic analysis of Hoxd gene regulation during digit development
    • [75] Gonzalez, F., Duboule, D., Spitz, F., Transgenic analysis of Hoxd gene regulation during digit development. Dev. Biol. 306:2 (2007), 847–859.
    • (2007) Dev. Biol. , vol.306 , Issue.2 , pp. 847-859
    • Gonzalez, F.1    Duboule, D.2    Spitz, F.3
  • 76
    • 84927641804 scopus 로고    scopus 로고
    • In search of the determinants of enhancer-promoter interaction specificity
    • [76] van Arensbergen, J., van Steensel, B., Bussemaker, H.J., In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 24:11 (2014), 695–702.
    • (2014) Trends Cell Biol. , vol.24 , Issue.11 , pp. 695-702
    • van Arensbergen, J.1    van Steensel, B.2    Bussemaker, H.J.3
  • 77
    • 0038613098 scopus 로고    scopus 로고
    • A global control region defines a chromosomal regulatory landscape containing the HoxD cluster
    • [77] Spitz, F., Gonzalez, F., Duboule, D., A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113:3 (2003), 405–417.
    • (2003) Cell , vol.113 , Issue.3 , pp. 405-417
    • Spitz, F.1    Gonzalez, F.2    Duboule, D.3
  • 78
    • 84882611819 scopus 로고    scopus 로고
    • Ancient cis-regulatory constraints and the evolution of genome architecture
    • [78] Irimia, M., et al. Ancient cis-regulatory constraints and the evolution of genome architecture. Trends Genet. 29:9 (2013), 521–528.
    • (2013) Trends Genet. , vol.29 , Issue.9 , pp. 521-528
    • Irimia, M.1
  • 79
    • 51149097760 scopus 로고    scopus 로고
    • Shadow enhancers as a source of evolutionary novelty
    • [79] Hong, J.W., Hendrix, D.A., Levine, M.S., Shadow enhancers as a source of evolutionary novelty. Science, 321(5894), 2008, 1314.
    • (2008) Science , vol.321 , Issue.5894 , pp. 1314
    • Hong, J.W.1    Hendrix, D.A.2    Levine, M.S.3
  • 80
    • 79955859947 scopus 로고    scopus 로고
    • An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation
    • [80] Tena, J.J., et al. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat. Commun., 2, 2011, 310.
    • (2011) Nat. Commun. , vol.2 , pp. 310
    • Tena, J.J.1
  • 81
    • 84860381359 scopus 로고    scopus 로고
    • Transcription factories: genetic programming in three dimensions
    • [81] Edelman, L.B., Fraser, P., Transcription factories: genetic programming in three dimensions. Curr. Opin. Genet. Dev. 22:2 (2012), 110–114.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , Issue.2 , pp. 110-114
    • Edelman, L.B.1    Fraser, P.2
  • 82
    • 82255164379 scopus 로고    scopus 로고
    • Transcription factories in the context of the nuclear and genome organization
    • [82] Razin, S.V., et al. Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res. 39:21 (2011), 9085–9092.
    • (2011) Nucleic Acids Res. , vol.39 , Issue.21 , pp. 9085-9092
    • Razin, S.V.1
  • 83
    • 70149102036 scopus 로고    scopus 로고
    • Conservation of enhancer location in divergent insects
    • [83] Cande, J., Goltsev, Y., Levine, M.S., Conservation of enhancer location in divergent insects. Proc. Natl. Acad. Sci. U.S.A. 106:34 (2009), 14414–14419.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.34 , pp. 14414-14419
    • Cande, J.1    Goltsev, Y.2    Levine, M.S.3
  • 84
    • 46249134068 scopus 로고    scopus 로고
    • Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation
    • [84] Hare, E.E., et al. Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet., 4(6), 2008, e1000106.
    • (2008) PLoS Genet. , vol.4 , Issue.6 , pp. e1000106
    • Hare, E.E.1
  • 85
    • 84980048055 scopus 로고    scopus 로고
    • Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches
    • [85] Martinez-Morales, J.R., Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches. Brief. Funct. Genom., 2015, 10.1093/bfgp/elv032.
    • (2015) Brief. Funct. Genom.
    • Martinez-Morales, J.R.1
  • 86
    • 80455144479 scopus 로고    scopus 로고
    • Pioneer transcription factors: establishing competence for gene expression
    • [86] Zaret, K.S., Carroll, J.S., Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25:21 (2011), 2227–2241.
    • (2011) Genes Dev. , vol.25 , Issue.21 , pp. 2227-2241
    • Zaret, K.S.1    Carroll, J.S.2
  • 87
    • 45749086679 scopus 로고    scopus 로고
    • The amphioxus genome and the evolution of the chordate karyotype
    • [87] Putnam, N.H., et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453:7198 (2008), 1064–1071.
    • (2008) Nature , vol.453 , Issue.7198 , pp. 1064-1071
    • Putnam, N.H.1
  • 88
    • 33645519275 scopus 로고    scopus 로고
    • Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis
    • [88] McEwen, G.K., et al. Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. Genome Res. 16:4 (2006), 451–465.
    • (2006) Genome Res. , vol.16 , Issue.4 , pp. 451-465
    • McEwen, G.K.1
  • 89
    • 47649129807 scopus 로고    scopus 로고
    • Convergent evolution of clustering of Iroquois homeobox genes across metazoans
    • [89] Irimia, M., Maeso, I., Garcia-Fernandez, J., Convergent evolution of clustering of Iroquois homeobox genes across metazoans. Mol. Biol. Evol. 25:8 (2008), 1521–1525.
    • (2008) Mol. Biol. Evol. , vol.25 , Issue.8 , pp. 1521-1525
    • Irimia, M.1    Maeso, I.2    Garcia-Fernandez, J.3
  • 90
    • 33646544748 scopus 로고    scopus 로고
    • Evolutionary genomics of the recently duplicated amphioxus Hairy genes
    • [90] Jimenez-Delgado, S., et al. Evolutionary genomics of the recently duplicated amphioxus Hairy genes. Int. J. Biol. Sci. 2:2 (2006), 66–72.
    • (2006) Int. J. Biol. Sci. , vol.2 , Issue.2 , pp. 66-72
    • Jimenez-Delgado, S.1
  • 91
    • 84901651635 scopus 로고    scopus 로고
    • Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance
    • [91] Fort, A., et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46:6 (2014), 558–566.
    • (2014) Nat. Genet. , vol.46 , Issue.6 , pp. 558-566
    • Fort, A.1
  • 92
    • 84876799419 scopus 로고    scopus 로고
    • Transposable elements as genetic regulatory substrates in early development
    • [92] Gifford, W.D., Pfaff, S.L., Macfarlan, T.S., Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23:5 (2013), 218–226.
    • (2013) Trends Cell Biol. , vol.23 , Issue.5 , pp. 218-226
    • Gifford, W.D.1    Pfaff, S.L.2    Macfarlan, T.S.3
  • 93
    • 84863458292 scopus 로고    scopus 로고
    • Embryonic stem cell potency fluctuates with endogenous retrovirus activity
    • [93] Macfarlan, T.S., et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:7405 (2012), 57–63.
    • (2012) Nature , vol.487 , Issue.7405 , pp. 57-63
    • Macfarlan, T.S.1
  • 94
    • 84863393570 scopus 로고    scopus 로고
    • Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages
    • [94] Schmidt, D., et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:1–2 (2012), 335–348.
    • (2012) Cell , vol.148 , Issue.1-2 , pp. 335-348
    • Schmidt, D.1
  • 95
    • 77954100084 scopus 로고    scopus 로고
    • Transposable elements have rewired the core regulatory network of human embryonic stem cells
    • [95] Kunarso, G., et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42:7 (2010), 631–634.
    • (2010) Nat. Genet. , vol.42 , Issue.7 , pp. 631-634
    • Kunarso, G.1
  • 96
    • 71749094924 scopus 로고    scopus 로고
    • Transposable elements in gene regulation and in the evolution of vertebrate genomes
    • [96] Bourque, G., Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr. Opin. Genet. Dev. 19:6 (2009), 607–612.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , Issue.6 , pp. 607-612
    • Bourque, G.1
  • 97
    • 55549117831 scopus 로고    scopus 로고
    • Evolution of the mammalian transcription factor binding repertoire via transposable elements
    • [97] Bourque, G., et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18:11 (2008), 1752–1762.
    • (2008) Genome Res. , vol.18 , Issue.11 , pp. 1752-1762
    • Bourque, G.1
  • 98
    • 84911936991 scopus 로고    scopus 로고
    • Widespread contribution of transposable elements to the innovation of gene regulatory networks
    • [98] Sundaram, V., et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24:12 (2014), 1963–1976.
    • (2014) Genome Res. , vol.24 , Issue.12 , pp. 1963-1976
    • Sundaram, V.1
  • 99
    • 84952876465 scopus 로고    scopus 로고
    • The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes
    • MDNA3-0061-2014
    • [99] Richardson, S.R., et al. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol. Spectr., 3(2), 2015 MDNA3-0061-2014.
    • (2015) Microbiol. Spectr. , vol.3 , Issue.2
    • Richardson, S.R.1
  • 100
    • 80055010534 scopus 로고    scopus 로고
    • Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals
    • [100] Lynch, V.J., et al. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43:11 (2011), 1154–1159.
    • (2011) Nat. Genet. , vol.43 , Issue.11 , pp. 1154-1159
    • Lynch, V.J.1
  • 101
    • 84925778794 scopus 로고    scopus 로고
    • A family of transposable elements co-opted into developmental enhancers in the mouse neocortex
    • [101] Notwell, J.H., et al. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun., 6, 2015, 6644.
    • (2015) Nat. Commun. , vol.6 , pp. 6644
    • Notwell, J.H.1
  • 102
    • 84922820231 scopus 로고    scopus 로고
    • Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy
    • [102] Lynch, V.J., et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10:4 (2015), 551–561.
    • (2015) Cell Rep. , vol.10 , Issue.4 , pp. 551-561
    • Lynch, V.J.1
  • 103
    • 84887418594 scopus 로고    scopus 로고
    • Enhancer turnover and conserved regulatory function in vertebrate evolution
    • [103] Domene, S., et al. Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos. Trans. R. Soc. London, Ser. B Biol. Sci., 368(1632), 2013, 20130027.
    • (2013) Philos. Trans. R. Soc. London, Ser. B Biol. Sci. , vol.368 , Issue.1632 , pp. 20130027
    • Domene, S.1
  • 104
    • 84861320913 scopus 로고    scopus 로고
    • Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements
    • [104] Emera, D., et al. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol. Biol. Evol. 29:1 (2012), 239–247.
    • (2012) Mol. Biol. Evol. , vol.29 , Issue.1 , pp. 239-247
    • Emera, D.1
  • 105
    • 41949093041 scopus 로고    scopus 로고
    • Possible involvement of SINEs in mammalian-specific brain formation
    • [105] Sasaki, T., et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl. Acad. Sci. U.S.A. 105:11 (2008), 4220–4225.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , Issue.11 , pp. 4220-4225
    • Sasaki, T.1
  • 106
    • 33646928347 scopus 로고    scopus 로고
    • A distal enhancer and an ultraconserved exon are derived from a novel retroposon
    • [106] Bejerano, G., et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:7089 (2006), 87–90.
    • (2006) Nature , vol.441 , Issue.7089 , pp. 87-90
    • Bejerano, G.1
  • 107
    • 84924533047 scopus 로고    scopus 로고
    • Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
    • [107] Vietri Rudan, M., et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10:8 (2015), 1297–1309.
    • (2015) Cell Rep. , vol.10 , Issue.8 , pp. 1297-1309
    • Vietri Rudan, M.1
  • 108
    • 84927699805 scopus 로고    scopus 로고
    • An Integrative Breakage Model of genome architecture, reshuffling and evolution: the Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity
    • [108] Farre, M., Robinson, T.J., Ruiz-Herrera, A., An Integrative Breakage Model of genome architecture, reshuffling and evolution: the Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays 37:5 (2015), 479–488.
    • (2015) Bioessays , vol.37 , Issue.5 , pp. 479-488
    • Farre, M.1    Robinson, T.J.2    Ruiz-Herrera, A.3
  • 109
    • 84861679502 scopus 로고    scopus 로고
    • Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties
    • [109] Irimia, M., et al. Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties. Sci. Rep.(2), 2012, 433.
    • (2012) Sci. Rep. , Issue.2 , pp. 433
    • Irimia, M.1
  • 110
    • 0042810698 scopus 로고    scopus 로고
    • A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly
    • [110] Lettice, L.A., et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12:14 (2003), 1725–1735.
    • (2003) Hum. Mol. Genet. , vol.12 , Issue.14 , pp. 1725-1735
    • Lettice, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.