메뉴 건너뛰기




Volumn 10, Issue 1, 2014, Pages

Machine Learning Estimates of Natural Product Conformational Energies

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATION THEORY; DENSITY FUNCTIONAL THEORY; ECONOMIC AND SOCIAL EFFECTS; LEARNING SYSTEMS; MOLECULAR DYNAMICS; POTENTIAL ENERGY; QUANTUM CHEMISTRY;

EID: 84896695700     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1003400     Document Type: Article
Times cited : (41)

References (58)
  • 1
    • 1242338103 scopus 로고    scopus 로고
    • Conformational sampling for the impatient
    • Tai K, (2004) Conformational sampling for the impatient. Biophys Chem 107: 213-220.
    • (2004) Biophys Chem , vol.107 , pp. 213-220
    • Tai, K.1
  • 2
    • 80054950510 scopus 로고    scopus 로고
    • Molecular dynamics simulations and drug discovery
    • Durrant JD, McCammon JA, (2011) Molecular dynamics simulations and drug discovery. BMC Biology 9: 71.
    • (2011) BMC Biology , vol.9 , pp. 71
    • Durrant, J.D.1    McCammon, J.A.2
  • 3
    • 80053512754 scopus 로고    scopus 로고
    • Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
    • Behler J, (2011) Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys Chem Chem Phys 13: 17930-17955.
    • (2011) Phys Chem Chem Phys , vol.13 , pp. 17930-17955
    • Behler, J.1
  • 5
    • 24044446158 scopus 로고    scopus 로고
    • Archazolid and apicularen: Novel specific V-ATPase inhibitors
    • Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, et al. (2005) Archazolid and apicularen: Novel specific V-ATPase inhibitors. BMC Biochem 6: 13.
    • (2005) BMC Biochem , vol.6 , pp. 13
    • Huss, M.1    Sasse, F.2    Kunze, B.3    Jansen, R.4    Steinmetz, H.5
  • 6
    • 0037588871 scopus 로고    scopus 로고
    • Archazolids, new cytotoxic macrolactones from Archangium gephyra (myxobacteria). Production, isolation, physico-chemical and biological properties
    • Sasse F, Steinmetz H, Höfle G, Reichenbach H, (2003) Archazolids, new cytotoxic macrolactones from Archangium gephyra (myxobacteria). Production, isolation, physico-chemical and biological properties. J Antibiot 56: 520-525.
    • (2003) J Antibiot , vol.56 , pp. 520-525
    • Sasse, F.1    Steinmetz, H.2    Höfle, G.3    Reichenbach, H.4
  • 7
    • 59149095897 scopus 로고    scopus 로고
    • Inhibitors of V-ATPases: old and new players
    • Huss M, Wieczorek H, (2009) Inhibitors of V-ATPases: old and new players. J Exp Biol 212: 341-346.
    • (2009) J Exp Biol , vol.212 , pp. 341-346
    • Huss, M.1    Wieczorek, H.2
  • 8
    • 17844369968 scopus 로고    scopus 로고
    • Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae
    • Murata T, Yamato I, Kakinuma Y, Leslie AGW, Walker JE, (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308: 654-659.
    • (2005) Science , vol.308 , pp. 654-659
    • Murata, T.1    Yamato, I.2    Kakinuma, Y.3    Leslie, A.G.W.4    Walker, J.E.5
  • 9
    • 45549091464 scopus 로고    scopus 로고
    • Simultaneous determination of the conformation and relative configuration of Archazolide A by using nuclear Overhauser effects, j couplings, and residual dipolar couplings
    • Farès C, Hassfeld J, Menche D, Carlomagno T, (2008) Simultaneous determination of the conformation and relative configuration of Archazolide A by using nuclear Overhauser effects, j couplings, and residual dipolar couplings. Angew Chem Int Ed 47: 3722-3726.
    • (2008) Angew Chem Int Ed , vol.47 , pp. 3722-3726
    • Farès, C.1    Hassfeld, J.2    Menche, D.3    Carlomagno, T.4
  • 13
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA, (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108: 058301.
    • (2012) Phys Rev Lett , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.R.3    von Lilienfeld, O.A.4
  • 14
    • 84862891798 scopus 로고    scopus 로고
    • Optimizing transition states via kernel-based machine learning
    • Pozun ZD, Hansen K, Sheppard D, Rupp M, Müller KR, et al. (2012) Optimizing transition states via kernel-based machine learning. J Chem Phys 136: 174101.
    • (2012) J Chem Phys , vol.136 , pp. 174101
    • Pozun, Z.D.1    Hansen, K.2    Sheppard, D.3    Rupp, M.4    Müller, K.R.5
  • 15
    • 0141947503 scopus 로고
    • Potential energy surfaces for macromolecules. a neural network technique
    • Sumpter BG, Noid DW, (1992) Potential energy surfaces for macromolecules. a neural network technique. Chem Phys Lett 192: 455-462.
    • (1992) Chem Phys Lett , vol.192 , pp. 455-462
    • Sumpter, B.G.1    Noid, D.W.2
  • 16
    • 77949425807 scopus 로고    scopus 로고
    • Potential energy surfaces fitted by artificial neural networks
    • Handley CM, Popelier PLA, (2010) Potential energy surfaces fitted by artificial neural networks. J Phys Chem A 114: 3371-3383.
    • (2010) J Phys Chem A , vol.114 , pp. 3371-3383
    • Handley, C.M.1    Popelier, P.L.A.2
  • 18
    • 68949154402 scopus 로고    scopus 로고
    • Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning
    • Handley CM, Hawe GI, Kell DB, Popelier PLA, (2009) Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning. Phys Chem Chem Phys 11: 6365-6376.
    • (2009) Phys Chem Chem Phys , vol.11 , pp. 6365-6376
    • Handley, C.M.1    Hawe, G.I.2    Kell, D.B.3    Popelier, P.L.A.4
  • 19
    • 80855127192 scopus 로고    scopus 로고
    • Intramolecular polarisable multipolar electrostatics from the machine learning method Kriging
    • Mills MJL, Popelier PLA, (2011) Intramolecular polarisable multipolar electrostatics from the machine learning method Kriging. Comput Theor Chem 975: 42-51.
    • (2011) Comput Theor Chem , vol.975 , pp. 42-51
    • Mills, M.J.L.1    Popelier, P.L.A.2
  • 21
    • 84856859897 scopus 로고    scopus 로고
    • Polarisable multipolar electrostatics from the machine learning method Kriging: an application to alanine
    • Mills MJ, Popelier PL, (2012) Polarisable multipolar electrostatics from the machine learning method Kriging: an application to alanine. Theor Chem Accounts Theor Comput.Model (Theor Chim Acta) 131: 1137.
    • (2012) Theor Chem Accounts Theor Comput.Model (Theor Chim Acta) , vol.131 , pp. 1137
    • Mills, M.J.1    Popelier, P.L.2
  • 22
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
    • Bartók AP, Payne MC, Kondor R, Csányi G, (2010) Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104: 136403.
    • (2010) Phys Rev Lett , vol.104 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 24
    • 0842341771 scopus 로고
    • AM1: a new general purpose quantum mechanical molecular model
    • Dewar M, Zoebisch E, Healy E, Stewart J, (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107: 3902-3909.
    • (1985) J Am Chem Soc , vol.107 , pp. 3902-3909
    • Dewar, M.1    Zoebisch, E.2    Healy, E.3    Stewart, J.4
  • 26
    • 0035903517 scopus 로고    scopus 로고
    • Rational molecular design and EPC synthesis of a type VI β-turn inducing peptide mimetic
    • Hoffmann T, Lanig H, Waibel R, Gmeiner P, (2001) Rational molecular design and EPC synthesis of a type VI β-turn inducing peptide mimetic. Angew Chem Int Ed 40: 3361-3364.
    • (2001) Angew Chem Int Ed , vol.40 , pp. 3361-3364
    • Hoffmann, T.1    Lanig, H.2    Waibel, R.3    Gmeiner, P.4
  • 27
    • 36649013845 scopus 로고    scopus 로고
    • Molecular building kit of fused-proline-derived peptide mimetics allowing specific adjustment of the dihedral ψ angle
    • Einsiedel J, Lanig H, Waibel R, Gmeiner P, (2007) Molecular building kit of fused-proline-derived peptide mimetics allowing specific adjustment of the dihedral ψ angle. J Org Chem 72: 9102-9113.
    • (2007) J Org Chem , vol.72 , pp. 9102-9113
    • Einsiedel, J.1    Lanig, H.2    Waibel, R.3    Gmeiner, P.4
  • 28
    • 0001888675 scopus 로고    scopus 로고
    • MOPAC: A general molecular orbital package
    • Stewart J, (1997) MOPAC: A general molecular orbital package. Quant Chem Prog Exch 10: 86.
    • (1997) Quant Chem Prog Exch , vol.10 , pp. 86
    • Stewart, J.1
  • 29
    • 4243539377 scopus 로고
    • Electronic structure calculations on workstation computers: The program system turbomole
    • Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C, (1989) Electronic structure calculations on workstation computers: The program system turbomole. Chem Phys Lett 162: 165-169.
    • (1989) Chem Phys Lett , vol.162 , pp. 165-169
    • Ahlrichs, R.1    Bär, M.2    Häser, M.3    Horn, H.4    Kölmel, C.5
  • 30
    • 33750315193 scopus 로고    scopus 로고
    • Stereochemical determination of archazolid A and B, highly potent vacuolar-type ATPase inhibitors from the myxobacterium Archangium gephyra
    • Hassfeld J, Farés C, Steinmetz H, Carlomagno T, Menche D, (2006) Stereochemical determination of archazolid A and B, highly potent vacuolar-type ATPase inhibitors from the myxobacterium Archangium gephyra. Org Lett 8: 4751-4754.
    • (2006) Org Lett , vol.8 , pp. 4751-4754
    • Hassfeld, J.1    Farés, C.2    Steinmetz, H.3    Carlomagno, T.4    Menche, D.5
  • 31
    • 84865464829 scopus 로고    scopus 로고
    • Understanding the inhibitory effect of highly potent and selective archazolides binding to the vacuolar ATPase
    • Dreisigacker S, Latek D, Bockelmann S, Huss M, Wieczorek H, et al. (2012) Understanding the inhibitory effect of highly potent and selective archazolides binding to the vacuolar ATPase. J Chem Inf Model 52: 2265-2272.
    • (2012) J Chem Inf Model , vol.52 , pp. 2265-2272
    • Dreisigacker, S.1    Latek, D.2    Bockelmann, S.3    Huss, M.4    Wieczorek, H.5
  • 32
    • 33847147698 scopus 로고    scopus 로고
    • Design, synthesis, and biological evaluation of novel analogues of archazolid: A highly potent simplified V-ATPase inhibitor
    • Menche D, Hassfeld J, Sasse F, Huss M, Wieczorek H, (2007) Design, synthesis, and biological evaluation of novel analogues of archazolid: A highly potent simplified V-ATPase inhibitor. Bioorg Med Chem Lett 17: 1732-1735.
    • (2007) Bioorg Med Chem Lett , vol.17 , pp. 1732-1735
    • Menche, D.1    Hassfeld, J.2    Sasse, F.3    Huss, M.4    Wieczorek, H.5
  • 33
    • 33845379303 scopus 로고
    • Atom pairs as molecular features in structureactivity studies: definition and applications
    • Carhart RE, Smith DH, Venkataraghavan R, (1985) Atom pairs as molecular features in structureactivity studies: definition and applications. J Chem Inform Comput Sci 25: 64-73.
    • (1985) J Chem Inform Comput Sci , vol.25 , pp. 64-73
    • Carhart, R.E.1    Smith, D.H.2    Venkataraghavan, R.3
  • 34
    • 0030278229 scopus 로고    scopus 로고
    • Locating biologically active compounds in medium-sized heterogeneous datasets by topological autocorrelation vectors: Dopamine and benzodiazepine agonists
    • Bauknecht H, Zell A, Bayer H, Levi P, Wagener M, et al. (1996) Locating biologically active compounds in medium-sized heterogeneous datasets by topological autocorrelation vectors: Dopamine and benzodiazepine agonists. J Chem Inform Comput Sci 36: 1205-1213.
    • (1996) J Chem Inform Comput Sci , vol.36 , pp. 1205-1213
    • Bauknecht, H.1    Zell, A.2    Bayer, H.3    Levi, P.4    Wagener, M.5
  • 35
  • 37
  • 38
    • 84882415695 scopus 로고    scopus 로고
    • Assessment and validation of machine learning methods for predicting molecular atomization energies
    • Hansen K, Montavon G, Biegler F, Fazli S, Rupp M, et al. (2013) Assessment and validation of machine learning methods for predicting molecular atomization energies. J Chem Theor Comput 9: 3543-3556.
    • (2013) J Chem Theor Comput , vol.9 , pp. 3543-3556
    • Hansen, K.1    Montavon, G.2    Biegler, F.3    Fazli, S.4    Rupp, M.5
  • 39
    • 0015417054 scopus 로고
    • Chance correlations in structure-activity studies using multiple regression analysis
    • Topliss JG, Costello RJ, (1972) Chance correlations in structure-activity studies using multiple regression analysis. J Med Chem 15: 1066-1068.
    • (1972) J Med Chem , vol.15 , pp. 1066-1068
    • Topliss, J.G.1    Costello, R.J.2
  • 40
    • 70349464514 scopus 로고    scopus 로고
    • Distance phenomena in high-dimensional chemical descriptor spaces: Consequences for similarity-based approaches
    • Rupp M, Schneider P, Schneider G, (2009) Distance phenomena in high-dimensional chemical descriptor spaces: Consequences for similarity-based approaches. J Comput Chem 30: 2285-2296.
    • (2009) J Comput Chem , vol.30 , pp. 2285-2296
    • Rupp, M.1    Schneider, P.2    Schneider, G.3
  • 41
    • 37349097759 scopus 로고    scopus 로고
    • y-randomization and its variants in QSPR/QSAR
    • Rücker C, Rücker G, Meringer M, (2007) y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 47: 2345-2357.
    • (2007) J Chem Inf Model , vol.47 , pp. 2345-2357
    • Rücker, C.1    Rücker, G.2    Meringer, M.3
  • 42
    • 0342929614 scopus 로고
    • Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
    • Torrie GM, Valleau JP, (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys 23: 187-199.
    • (1977) J Comput Phys , vol.23 , pp. 187-199
    • Torrie, G.M.1    Valleau, J.P.2
  • 43
  • 44
    • 19744381314 scopus 로고    scopus 로고
    • "learn on the fly": A hybrid classical and quantum-mechanical molecular dynamics simulation
    • Csányi G, Albaret T, Payne MC, Vita AD, (2004) "learn on the fly": A hybrid classical and quantum-mechanical molecular dynamics simulation. Phys Rev Lett 93: 175503.
    • (2004) Phys Rev Lett , vol.93 , pp. 175503
    • Csányi, G.1    Albaret, T.2    Payne, M.C.3    Vita, A.D.4
  • 45
    • 37349048522 scopus 로고    scopus 로고
    • On some aspects of validation of predictive quantitative structure-activity relationship models
    • Roy K, (2007) On some aspects of validation of predictive quantitative structure-activity relationship models. Expert Opin Drug Discov 2: 1567-1577.
    • (2007) Expert Opin Drug Discov , vol.2 , pp. 1567-1577
    • Roy, K.1
  • 46
    • 34548159310 scopus 로고    scopus 로고
    • Machine learning models for lipophilicity and their domain of applicability
    • Schroeter T, Schwaighofer A, Mika S, Laak AT, Suelzle D, et al. (2007) Machine learning models for lipophilicity and their domain of applicability. Mol Pharm 4: 524-538.
    • (2007) Mol Pharm , vol.4 , pp. 524-538
    • Schroeter, T.1    Schwaighofer, A.2    Mika, S.3    Laak, A.T.4    Suelzle, D.5
  • 47
    • 68949137209 scopus 로고    scopus 로고
    • Technical Report 1648, University of Wisconsin-Madison, Madison, Wisconsin, USA
    • Settles B (2009) Active learning literature survey. Technical Report 1648, University of Wisconsin-Madison, Madison, Wisconsin, USA.
    • (2009) Active learning literature survey
    • Settles, B.1
  • 48
    • 79960954694 scopus 로고    scopus 로고
    • Comparison of the performance of dispersion-corrected density functional theory for weak hydrogen bonds
    • Hujo W, Grimme S, (2011) Comparison of the performance of dispersion-corrected density functional theory for weak hydrogen bonds. Phys Chem Chem Phys 13: 13942-13950.
    • (2011) Phys Chem Chem Phys , vol.13 , pp. 13942-13950
    • Hujo, W.1    Grimme, S.2
  • 49
    • 77951680464 scopus 로고    scopus 로고
    • A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    • Grimme S, Antony J, Ehrlich S, Krieg H, (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132: 154104.
    • (2010) J Chem Phys , vol.132 , pp. 154104
    • Grimme, S.1    Antony, J.2    Ehrlich, S.3    Krieg, H.4
  • 50
    • 0037195718 scopus 로고    scopus 로고
    • Two distinct conformers of the cyclic heptapeptide phakellistatin 2 isolated from the Fijian marine sponge Stylotella aurantium
    • Tabudravu JN, Jaspars M, Morris LA, Kettenes-van den Bosch J, Smith N, (2002) Two distinct conformers of the cyclic heptapeptide phakellistatin 2 isolated from the Fijian marine sponge Stylotella aurantium. J Org Chem 67: 8593-8601.
    • (2002) J Org Chem , vol.67 , pp. 8593-8601
    • Tabudravu, J.N.1    Jaspars, M.2    Morris, L.A.3    Kettenes-van den Bosch, J.4    Smith, N.5
  • 52
    • 82455205704 scopus 로고    scopus 로고
    • Neighborhood-preserving visualization of adaptive structure-activity landscapes: Application to drug discovery
    • Reutlinger M, Guba W, Martin RE, Alanine AI, Hoffmann T, et al. (2011) Neighborhood-preserving visualization of adaptive structure-activity landscapes: Application to drug discovery. Angew Chem Int Ed 50: 11633-11636.
    • (2011) Angew Chem Int Ed , vol.50 , pp. 11633-11636
    • Reutlinger, M.1    Guba, W.2    Martin, R.E.3    Alanine, A.I.4    Hoffmann, T.5
  • 53
    • 0000570382 scopus 로고
    • On estimating regression
    • Nadaraya EA, (1964) On estimating regression. Theor Probab Appl 9: 141-142.
    • (1964) Theor Probab Appl , vol.9 , pp. 141-142
    • Nadaraya, E.A.1
  • 54
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson GS, (1964) Smooth regression analysis. Sankhyā 26: 359-372.
    • (1964) Sankhyā , vol.26 , pp. 359-372
    • Watson, G.S.1
  • 56
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • In: Jordan MI, editor, MIT Press
    • Williams CKI (1998) Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In: Jordan MI, editor, Learning in Graphical Models, MIT Press. pp. 599-621.
    • (1998) Learning in Graphical Models , pp. 599-621
    • Williams, C.K.I.1
  • 57
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • Seeger M, (2004) Gaussian processes for machine learning. I J Neural Syst 14: 69-106.
    • (2004) I J Neural Syst , vol.14 , pp. 69-106
    • Seeger, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.