메뉴 건너뛰기




Volumn 7632 LNBI, Issue , 2012, Pages 14-25

Machine learning scoring functions based on random forest and support vector regression

Author keywords

chemical informatics; machine learning; molecular docking; scoring functions; structural bioinformatics

Indexed keywords

BINDING AFFINITIES; CHEMICAL BIOLOGY; CHEMICAL INFORMATICS; COMPUTATIONAL PREDICTIONS; DRUG DISCOVERY; EXPERIMENTAL CONDITIONS; FUNCTIONAL FORMS; INTERMOLECULAR INTERACTIONS; MACROMOLECULAR TARGETS; MOLECULAR DOCKING; RANDOM FORESTS; REGRESSION MODEL; SCORING FUNCTIONS; STRUCTURAL BIOINFORMATICS; STRUCTURAL BIOLOGY; STRUCTURAL DATA; STRUCTURE-BASED; SUPPORT VECTOR REGRESSION (SVR);

EID: 84868679998     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-34123-6_2     Document Type: Conference Paper
Times cited : (21)

References (34)
  • 1
    • 40349087133 scopus 로고    scopus 로고
    • Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go
    • Moitessier, N., et al.: Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol. 153, S7-S26 (2008)
    • (2008) Br. J. Pharmacol. , vol.153
    • Moitessier, N.1
  • 2
    • 33750898990 scopus 로고    scopus 로고
    • Molecular mechanics methods for predicting protein-ligand binding
    • Huang, N., et al.: Molecular mechanics methods for predicting protein-ligand binding. Phys. Chem. Chem. Phys. 8, 5166-5177 (2006)
    • (2006) Phys. Chem. Chem. Phys. , vol.8 , pp. 5166-5177
    • Huang, N.1
  • 3
    • 0000823044 scopus 로고    scopus 로고
    • BLEEP - Potential of mean force describing protein-ligand interactions: I. Generating potential
    • Mitchell, J.B.O., et al.: BLEEP - potential of mean force describing protein-ligand interactions: I. Generating potential. J. Comput. Chem. 20, 1165-1176 (1999)
    • (1999) J. Comput. Chem. , vol.20 , pp. 1165-1176
    • Mitchell, J.B.O.1
  • 4
    • 60349109713 scopus 로고    scopus 로고
    • Computational evaluation of protein-small molecule binding
    • Guvench, O., MacKerell Jr., A.D.: Computational evaluation of protein-small molecule binding. Curr. Opin. Struct. Biol. 19, 56-61 (2009)
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 56-61
    • Guvench, O.1    MacKerell Jr., A.D.2
  • 5
    • 77955663115 scopus 로고    scopus 로고
    • Prediction of protein - Ligand binding affinity by free energy simulations: Assumptions, pitfalls and expectations
    • Michel, J., Essex, J.W.: Prediction of protein - ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J. Comput. Aided Mol. Des. 24, 639-658 (2010)
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 639-658
    • Michel, J.1    Essex, J.W.2
  • 6
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester, P.J., Mitchell, J.B.O.: A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26, 1169-1175 (2010)
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 7
    • 84857456082 scopus 로고    scopus 로고
    • Limiting assumptions in structure-based design: Binding entropy
    • Marshall, G.R.: Limiting assumptions in structure-based design: binding entropy. J. Comput. Aided Mol. Des. 26(1), 3-8 (2012)
    • (2012) J. Comput. Aided Mol. Des. , vol.26 , Issue.1 , pp. 3-8
    • Marshall, G.R.1
  • 8
    • 77950022453 scopus 로고    scopus 로고
    • Non-additivity of functional group contributions in protein-ligand binding: A comprehensive study by crystallography and isothermal titration calorimetry
    • Baum, B., Muley, L., Smolinski, M., Heine, A., Hangauer, D., Klebe, G.: Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. J. Mol. Biol. 397, 1042-1054 (2010)
    • (2010) J. Mol. Biol. , vol.397 , pp. 1042-1054
    • Baum, B.1    Muley, L.2    Smolinski, M.3    Heine, A.4    Hangauer, D.5    Klebe, G.6
  • 9
    • 79960880477 scopus 로고    scopus 로고
    • Definition of the hydrogen bond (IUPAC Recommendations 2011)
    • Arunan, E., et al.: Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry 83, 1637-1641 (2011)
    • (2011) Pure and Applied Chemistry , vol.83 , pp. 1637-1641
    • Arunan, E.1
  • 10
    • 81055130316 scopus 로고    scopus 로고
    • Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase
    • Snyder, P.W., et al.: Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proceedings of the National Academy of Sciences 108, 17889-17894 (2011)
    • (2011) Proceedings of the National Academy of Sciences , vol.108 , pp. 17889-17894
    • Snyder, P.W.1
  • 11
    • 77956166424 scopus 로고    scopus 로고
    • Docking to Erlotinib Off-Targets Leads to Inhibitors of Lung Cancer Cell Proliferation with Suitable in Vitro Pharmacokinetics
    • Li, L., Li, J., Khanna, M., Jo, I., Baird, J.P., Meroueh, S.O.: Docking to Erlotinib Off-Targets Leads to Inhibitors of Lung Cancer Cell Proliferation with Suitable in Vitro Pharmacokinetics. ACS Med. Chem. Lett. 1(5), 229-233 (2010)
    • (2010) ACS Med. Chem. Lett. , vol.1 , Issue.5 , pp. 229-233
    • Li, L.1    Li, J.2    Khanna, M.3    Jo, I.4    Baird, J.P.5    Meroueh, S.O.6
  • 12
    • 77958585233 scopus 로고    scopus 로고
    • NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes
    • Durrant, J.D., McCammon, J.A.: NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes. J. Chem. Inf. Model. 50(10), 1865-1871 (2010)
    • (2010) J. Chem. Inf. Model. , vol.50 , Issue.10 , pp. 1865-1871
    • Durrant, J.D.1    McCammon, J.A.2
  • 13
    • 80051984855 scopus 로고    scopus 로고
    • 'Leave-Cluster-Out Cross-Validation is appropriate for scoring functions derived from diverse protein data sets': Significance for the validation of scoring functions
    • Comments on
    • Ballester, P.J., Mitchell, J.B.O.: Comments on 'Leave-Cluster-Out Cross-Validation is appropriate for scoring functions derived from diverse protein data sets': Significance for the validation of scoring functions. J. Chem. Inf. Model. 51, 1739-1741 (2011)
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1739-1741
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 14
    • 84862795414 scopus 로고    scopus 로고
    • Structure-Based Virtual Screening for Drug Discovery: A Problem-Centric Review
    • Cheng, T., Li, Q., Zhou, Z., Wang, Y., Bryant, S.H.: Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review. The AAPS Journal 14(1), 133-141 (2012)
    • (2012) The AAPS Journal , vol.14 , Issue.1 , pp. 133-141
    • Cheng, T.1    Li, Q.2    Zhou, Z.3    Wang, Y.4    Bryant, S.H.5
  • 15
    • 79952178127 scopus 로고    scopus 로고
    • A Machine Learning-Based Method to Improve Docking Scoring Functions and its Application to Drug Repurposing
    • Kinnings, S.L., Liu, N., Tonge, P.J., Jackson, R.M., Xie, L., Bourne, P.E.: A Machine Learning-Based Method to Improve Docking Scoring Functions and its Application to Drug Repurposing. J. Chem. Inf. Model. 51, 408-419 (2011)
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 16
    • 77649229098 scopus 로고    scopus 로고
    • Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures
    • Das, S., Krein, M.P., Breneman, C.M.: Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures. J. Chem. Inf. Model. 50, 298-308 (2010)
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 298-308
    • Das, S.1    Krein, M.P.2    Breneman, C.M.3
  • 17
    • 80053313926 scopus 로고    scopus 로고
    • Support Vector Regression Scoring of Receptor-Ligand Complexes for Rank-Ordering and Virtual Screening of Chemical Libraries
    • Li, L., Wang, B., Meroueh, S.O.: Support Vector Regression Scoring of Receptor-Ligand Complexes for Rank-Ordering and Virtual Screening of Chemical Libraries. J. Chem. Inf. Model. 51, 2132-2138 (2011)
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 18
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function
    • Durrant, J.D., McCammon, J.A.: NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function. J. Chem. Inf. Model. 51(11), 2897-2903 (2011)
    • (2011) J. Chem. Inf. Model. , vol.51 , Issue.11 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 19
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L.: Random Forests. Mach. Learn. 45, 5-32 (2001)
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 21
    • 36749002607 scopus 로고    scopus 로고
    • A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming
    • Amini, A., et al.: A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming. Proteins 69, 823-831 (2007)
    • (2007) Proteins , vol.69 , pp. 823-831
    • Amini, A.1
  • 23
    • 66149103553 scopus 로고    scopus 로고
    • Comparative Assessment of Scoring Functions on a Diverse Test Set
    • Cheng, T., Li, X., Li, Y., Liu, Z., Wang, R.: Comparative Assessment of Scoring Functions on a Diverse Test Set. J. Chem. Inf. Model. 49, 1079-1093 (2009)
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 24
    • 37349097759 scopus 로고    scopus 로고
    • y-Randomization and its variants in QSPR/QSAR
    • Rucker, C., Rucker, G., Meringer, M.: y-Randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model. 47, 2345-2357 (2007)
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 2345-2357
    • Rucker, C.1    Rucker, G.2    Meringer, M.3
  • 26
    • 52249113723 scopus 로고    scopus 로고
    • SFCscore: Scoring functions for affinity prediction of protein-ligand complexes
    • Sotriffer, C.A., Sanschagrin, P., Matter, H., Klebe, G.: SFCscore: scoring functions for affinity prediction of protein-ligand complexes. Proteins 73, 395-419 (2008)
    • (2008) Proteins , vol.73 , pp. 395-419
    • Sotriffer, C.A.1    Sanschagrin, P.2    Matter, H.3    Klebe, G.4
  • 28
    • 0002714543 scopus 로고    scopus 로고
    • Making large-Scale SVM Learning Practical
    • Schölkopf, B., Burges, C., Smola, A. (eds.) MIT Press
    • Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press (1999)
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 29
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S.C., Gelatt, D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671-680 (1983)
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.C.1    Gelatt, D.2    Vecchi, M.P.3
  • 31
    • 84868706764 scopus 로고    scopus 로고
    • last accessed November 2, 2011
    • CSAR, http://www.csardock.org (last accessed November 2, 2011).
  • 32
    • 84859746909 scopus 로고    scopus 로고
    • last accessed November 2, 2011
    • The PDBbind database, http://www.pdbbind-cn.org/ (last accessed November 2, 2011).
    • The PDBbind Database
  • 33
    • 0033954256 scopus 로고    scopus 로고
    • The Protein Data Bank
    • Berman, H.M., et al.: The Protein Data Bank. Nucleic Acids Res. 28, 235-242 (2000)
    • (2000) Nucleic Acids Res , vol.28 , pp. 235-242
    • Berman, H.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.