메뉴 건너뛰기




Volumn 910, Issue , 2012, Pages 165-194

Predictive cheminformatics in drug discovery: Statistical modeling for analysis of micro-array and gene expression data

Author keywords

Bioinformatics; Cheminformatics; Data mining; High throughput screening; Micro array; Molecular modeling; Molecular similarity; QSAR

Indexed keywords

ARTICLE; BIOLOGY; CHEMICAL DATABASE; DRUG DEVELOPMENT; GENE EXPRESSION PROFILING; METHODOLOGY; MICROARRAY ANALYSIS; STATISTICAL MODEL; STRUCTURE ACTIVITY RELATION;

EID: 84864837998     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-61779-965-5_9     Document Type: Article
Times cited : (7)

References (145)
  • 2
    • 33748847737 scopus 로고    scopus 로고
    • The Life Sciences Semantic Web is full of creeps!
    • DOI 10.1093/bib/bbl025
    • Good BM, Wilkinson MD (2006) The life sciences semantic web is full of creeps. Brief Bioinform 7:275-286 (Pubitemid 44417949)
    • (2006) Briefings in Bioinformatics , vol.7 , Issue.3 , pp. 275-286
    • Good, B.M.1    Wilkinson, M.D.2
  • 4
    • 0034332545 scopus 로고    scopus 로고
    • Ontology-based knowledge representation for bioinformatics
    • Stevens R, Goble CA, Bechhofer S (2000) Ontology-based knowledge representation for bioinformatics. Brief Bioinform 1:398-414
    • (2000) Brief Bioinform , vol.1 , pp. 398-414
    • Stevens, R.1    Goble, C.A.2    Bechhofer, S.3
  • 6
    • 0034040680 scopus 로고    scopus 로고
    • An ontology for biological function based on molecular interactions
    • Karp PD (2000) An ontology for biological function based on molecular interactions. Bioinformatics 16:269-285 (Pubitemid 30352854)
    • (2000) Bioinformatics , vol.16 , Issue.3 , pp. 269-285
    • Karp, P.D.1
  • 8
    • 5344268130 scopus 로고    scopus 로고
    • Annotating and mining the ligand-target chemogenomics knowledge space
    • DOI 10.1016/S1741-8364(04)02408-4, PII S1741836404024084
    • Schuffenhauer A, Jacoby E (2004) Annotating and mining the ligand-target chemogenomics knowledge space. Drug Discov Today 2:190-200 (Pubitemid 39349125)
    • (2004) Drug Discovery Today: BIOSILICO , vol.2 , Issue.5 , pp. 190-200
    • Schuffenhauer, A.1    Jacoby, E.2
  • 9
    • 33748792021 scopus 로고    scopus 로고
    • Bioontologies: Current trends and future directions
    • Bodenreider O, Stevens R (2007) Bioontologies: current trends and future directions. Brief Bioinform 7:256-274.
    • (2007) Brief Bioinform , vol.7 , pp. 256-274
    • Bodenreider, O.1    Stevens, R.2
  • 12
    • 70450181710 scopus 로고    scopus 로고
    • How to recognize and workaround pitfalls in QSAR studies: A critical review
    • Scior T, Medina-Franco JL, Do QT et al (2009) How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem 16:4297-4313.
    • (2009) Curr Med Chem , vol.16 , pp. 4297-4313
    • Scior, T.1    Medina-Franco, J.L.2    Do, Q.T.3
  • 13
    • 58149095139 scopus 로고    scopus 로고
    • Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity
    • Zvinavashe E, Murk AJ, Rietjens IMCM (2008) Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Chem Res Toxicol 21:2229-2236.
    • (2008) Chem Res Toxicol , vol.21 , pp. 2229-2236
    • Zvinavashe, E.1    Murk, A.J.2    Rietjens, I.M.C.M.3
  • 14
    • 20544451024 scopus 로고    scopus 로고
    • An approach toward the problem of outliers in QSAR
    • DOI 10.1016/j.bmc.2005.05.002, PII S0968089605003998
    • Verma RP, Hansch C (2005) An approach toward the problem of outliers in QSAR. Bioorg Med Chem 13:4597-4621. (Pubitemid 40848339)
    • (2005) Bioorganic and Medicinal Chemistry , vol.13 , Issue.15 , pp. 4597-4621
    • Verma, R.P.1    Hansch, C.2
  • 15
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs - Why QSAR often disappoints
    • DOI 10.1021/ci060117s
    • Maggiora GM (2006) On outliers and activity cliffs-why QSAR often disappoints. J Chem Inf Model 46:1535. (Pubitemid 44185680)
    • (2006) Journal of Chemical Information and Modeling , vol.46 , Issue.4 , pp. 1535
    • Maggiora, G.M.1
  • 16
    • 52049089197 scopus 로고    scopus 로고
    • De fi nition and detection of outliers in chemical space
    • Casalegno M, Sello G, Benfenati E (2008) De fi nition and detection of outliers in chemical space. J Chem Inf Model 48:1592-1601.
    • (2008) J Chem Inf Model , vol.48 , pp. 1592-1601
    • Casalegno, M.1    Sello, G.2    Benfenati, E.3
  • 17
    • 44249108095 scopus 로고    scopus 로고
    • Utilizing high throughput screening data for predictive toxicology models: Protocols and application to MLSCN assays
    • Guha R, Schürer S (2008) Utilizing high throughput screening data for predictive toxicology models: protocols and application to MLSCN assays. J Comput Aided Mol Des 22:367-384.
    • (2008) J Comput Aided Mol des , vol.22 , pp. 367-384
    • Guha, R.1    Schürer, S.2
  • 18
    • 27744590591 scopus 로고    scopus 로고
    • QSAR applicability domain estimation by projection of the training set in descriptor space: A review
    • Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicability domain estimation by projection of the training set in descriptor space: a review. Altern Lab Anim 33:445-459. (Pubitemid 41613738)
    • (2005) ATLA Alternatives to Laboratory Animals , vol.33 , Issue.5 , pp. 445-459
    • Jaworska, J.1    Nikolova-Jeliazkova, N.2    Aldenberg, T.3
  • 20
    • 0036589313 scopus 로고    scopus 로고
    • Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection
    • DOI 10.1023/A:1020869118689
    • Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357-369. (Pubitemid 35414668)
    • (2002) Journal of Computer-Aided Molecular Design , vol.16 , Issue.5-6 , pp. 357-369
    • Golbraikh, A.1    Tropsha, A.2
  • 21
    • 67949118928 scopus 로고    scopus 로고
    • How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR)
    • Dearden JC, Cronin MTD, Kaiser KLE (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241-266.
    • (2009) SAR QSAR Environ Res , vol.20 , pp. 241-266
    • Dearden, J.C.1    Cronin, M.T.D.2    Kaiser, K.L.E.3
  • 22
    • 33845550710 scopus 로고
    • Multivariate quantitative structure-activity relationships (QSAR): Conditions for their applicability
    • Wold S, Dunn WJ (1983) Multivariate quantitative structure-activity relationships (QSAR): conditions for their applicability. J Chem Inf Comput Sci 23:6-13.
    • (1983) J Chem Inf Comput Sci , vol.23 , pp. 6-13
    • Wold, S.1    Dunn, W.J.2
  • 24
    • 0038724207 scopus 로고    scopus 로고
    • The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models
    • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69-77. (Pubitemid 36717473)
    • (2003) QSAR and Combinatorial Science , vol.22 , Issue.1 , pp. 69-77
    • Tropsha, A.1    Gramatica, P.2    Gombar, V.K.3
  • 25
    • 34250628103 scopus 로고    scopus 로고
    • Principles of QSAR models validation: Internal and external
    • DOI 10.1002/qsar.200610151
    • Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694-701. (Pubitemid 46932857)
    • (2007) QSAR and Combinatorial Science , vol.26 , Issue.5 , pp. 694-701
    • Gramatica, P.1
  • 27
    • 84987100711 scopus 로고
    • Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies
    • Cramer RD, Bunce JD, Patterson DE et al (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. QSAR 7:18-25.
    • (1988) QSAR , vol.7 , pp. 18-25
    • Cramer, R.D.1    Bunce, J.D.2    Patterson, D.E.3
  • 28
    • 33845277149 scopus 로고    scopus 로고
    • QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles
    • DOI 10.1021/tx0601509
    • Liu H, Papa E, Gramatica P (2006) QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol 19:1540-1548. (Pubitemid 44863497)
    • (2006) Chemical Research in Toxicology , vol.19 , Issue.11 , pp. 1540-1548
    • Liu, H.1    Papa, E.2    Gramatica, P.3
  • 29
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476-488.
    • (2010) Mol Inf , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 31
    • 0023965741 scopus 로고
    • Smiles, a chemical language and information system. I. Introduction to methodology and encoding rules
    • Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31-36. (Pubitemid 18574254)
    • (1988) Journal of Chemical Information and Computer Sciences , vol.28 , Issue.1 , pp. 31-36
    • Weininger, D.1
  • 32
    • 0031024171 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • DOI 10.1016/S0169-409X(96)00423-1, PII S0169409X96004231
    • Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3-25. (Pubitemid 27046991)
    • (1997) Advanced Drug Delivery Reviews , vol.23 , Issue.1-3 , pp. 3-25
    • Lipinski, C.A.1    Lombardo, F.2    Dominy, B.W.3    Feeney, P.J.4
  • 33
    • 0001290045 scopus 로고    scopus 로고
    • PROSITE: A documented database using patterns and pro fi les as motif descriptors
    • Sigrist CJA, Cerutti L, Hulo N et al (2002) PROSITE: a documented database using patterns and pro fi les as motif descriptors. Brief Bioinform 3:265-274.
    • (2002) Brief Bioinform , vol.3 , pp. 265-274
    • Sigrist, C.J.A.1    Cerutti, L.2    Hulo, N.3
  • 34
    • 0028773281 scopus 로고
    • A framework for the DNA-protein recognition code of the probe helix in transcription factors: The chemical and stereochemical rules
    • Suzuki M (1994) A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. Structure 2:317-326.
    • (1994) Structure , vol.2 , pp. 317-326
    • Suzuki, M.1
  • 35
    • 0028609064 scopus 로고
    • DNA recognition code of transcription factors in the helix-turnhelix, probe helix, hormone receptor and zinc fi nger families
    • Suzuki M, Yagi N (1994) DNA recognition code of transcription factors in the helix-turnhelix, probe helix, hormone receptor and zinc fi nger families. Proc Natl Acad Sci USA 91:12357-12361.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 12357-12361
    • Suzuki, M.1    Yagi, N.2
  • 36
    • 0032524713 scopus 로고    scopus 로고
    • Quantitative parameters for amino acid-base interaction: Implications for prediction of protein-DNA binding sites
    • DOI 10.1093/nar/26.10.2306
    • Mandel-Gutfreund Y, Margalit H (1998) Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. Nucleic Acids Res 26:2306-2312. (Pubitemid 28297328)
    • (1998) Nucleic Acids Research , vol.26 , Issue.10 , pp. 2306-2312
    • Mandel-Gutfreund, Y.1    Margalit, H.2
  • 37
    • 0023286275 scopus 로고
    • New scoring matrix for amino acid residue exchanges based on residue characteristic physical parameters
    • Rao JKM (1987) New scoring matrix for amino acid residue exchanges based on residue characteristic physical parameters. Int J Pept Protein Res 29:276-281.
    • (1987) Int J Pept Protein Res , vol.29 , pp. 276-281
    • Rao, J.K.M.1
  • 38
    • 0016197604 scopus 로고
    • Amino acid difference formula to help explain protein evolution
    • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862-864.
    • (1974) Science , vol.185 , pp. 862-864
    • Grantham, R.1
  • 40
    • 0024046665 scopus 로고
    • Cluster analysis of amino acid indices for prediction of protein structure and function
    • Nakai K, Kidera A, Kanehisa M (1988) Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng 2:93-100.
    • (1988) Protein Eng , vol.2 , pp. 93-100
    • Nakai, K.1    Kidera, A.2    Kanehisa, M.3
  • 41
    • 0029922443 scopus 로고    scopus 로고
    • Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins
    • Tomii K, Kanehisa M (1996) Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 9:27-36. (Pubitemid 26099761)
    • (1996) Protein Engineering , vol.9 , Issue.1 , pp. 27-36
    • Tomii, K.1    Kanehisa, M.2
  • 42
    • 34249687092 scopus 로고    scopus 로고
    • POPI: Predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties
    • DOI 10.1093/bioinformatics/btm061
    • Tung C-W, Ho S-Y (2007) POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics 23:942-949. (Pubitemid 47050580)
    • (2007) Bioinformatics , vol.23 , Issue.8 , pp. 942-949
    • Tung, C.-W.1    Ho, S.-Y.2
  • 43
    • 26944502019 scopus 로고    scopus 로고
    • Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs)
    • DOI 10.1093/nar/gki885
    • Rausch C, Weber T, Kohlbacher O et al (2005) Speci fi city prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799-5808. (Pubitemid 41742599)
    • (2005) Nucleic Acids Research , vol.33 , Issue.18 , pp. 5799-5808
    • Rausch, C.1    Weber, T.2    Kohlbacher, O.3    Wohlleben, W.4    Huson, D.H.5
  • 44
    • 25444506574 scopus 로고    scopus 로고
    • PSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties
    • Sarda D, Chua GH, Li K-B et al (2005) pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties. BMC Bioinform 6:152.
    • (2005) BMC Bioinform , vol.6 , pp. 152
    • Sarda, D.1    Chua, G.H.2    Li, K.-B.3
  • 45
    • 34447321808 scopus 로고    scopus 로고
    • Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM
    • DOI 10.1016/j.patrec.2007.04.001, PII S0167865507001158
    • Mundra P, Kumar M, Kumar KK et al (2007) Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recognit Lett 28:1610-1615. (Pubitemid 47058614)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.13 , pp. 1610-1615
    • Mundra, P.1    Kumar, M.2    Kumar, K.K.3    Jayaraman, V.K.4    Kulkarni, B.D.5
  • 46
    • 3242881590 scopus 로고    scopus 로고
    • CRASP: A program for analysis of coordinated substitutions in multiple alignments of protein sequences
    • DOI 10.1093/nar/gkh451
    • Afonnikov DA, Kolchanov NA (2004) CRASP: a program for analysis of coordinated substitutions in multiple alignments of protein sequences. Nucleic Acids Res 32:W64-W68. (Pubitemid 38997302)
    • (2004) Nucleic Acids Research , vol.32 , Issue.WEB SERVER ISS.
    • Afonnikov, D.A.1    Kolchanov, N.A.2
  • 47
    • 34248181215 scopus 로고    scopus 로고
    • Predicting the protein SUMO modification sites based on Properties Sequential Forward Selection (PSFS)
    • DOI 10.1016/j.bbrc.2007.04.097, PII S0006291X07008042
    • Liu B, Li S, Wang Y et al (2007) Predicting the protein SUMO modi fi cation sites based on Properties Sequential Forward Selection (PSFS). Biochem Biophys Res Commun 358:136-139. (Pubitemid 46719092)
    • (2007) Biochemical and Biophysical Research Communications , vol.358 , Issue.1 , pp. 136-139
    • Liu, B.1    Li, S.2    Wang, Y.3    Lu, L.4    Li, Y.5    Cai, Y.6
  • 48
    • 0036187913 scopus 로고    scopus 로고
    • Extensive feature detection of N-terminal protein sorting signals
    • Bannai H, Tamada Y, Maruyama O et al (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298-305. (Pubitemid 34183107)
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 298-305
    • Bannai, H.1    Tamada, Y.2    Maruyama, O.3    Nakai, K.4    Miyano, S.5
  • 49
    • 0033151954 scopus 로고    scopus 로고
    • Recognition of a protein fold in the context of the SCOP classification
    • DOI 10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K
    • Dubchak I, Muchnick I, Mayor C et al (1999) Recognition of a protein fold in the context of the Structural Classi fi cation of Proteins (SCOP) classi fi cation. Proteins 35:401-407. (Pubitemid 29264836)
    • (1999) Proteins: Structure, Function and Genetics , vol.35 , Issue.4 , pp. 401-407
    • Dubchak, I.1    Muchnik, I.2    Mayor, C.3    Dralyuk, I.4    Kim, S.-H.5
  • 50
    • 0029047319 scopus 로고
    • Prediction of protein folding class using global description of amino acid sequence
    • Dubchak I, Muchnik I, Holbrook SR et al (1995) Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci USA 92:8700-8704
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 8700-8704
    • Dubchak, I.1    Muchnik, I.2    Holbrook, S.R.3
  • 51
    • 0042622243 scopus 로고    scopus 로고
    • SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence
    • DOI 10.1093/nar/gkg600
    • Cai CZ, Han LY, Ji ZL et al (2003) SVM-Prot: web-based support vector machine software for functional classi fi cation of a protein from its primary sequence. Nucleic Acids Res 31:3692-3697. (Pubitemid 37442225)
    • (2003) Nucleic Acids Research , vol.31 , Issue.13 , pp. 3692-3697
    • Cai, C.Z.1    Han, L.Y.2    Ji, Z.L.3    Chen, X.4    Chen, Y.Z.5
  • 52
    • 0037196307 scopus 로고    scopus 로고
    • Support vector machines for predicting HIV protease cleavage sites in protein
    • Cai YD, Liu XJ, Xu XB et al (2002) Support vector machines for predicting HIV protease cleavage sites in protein. J Comput Chem 23:267-274.
    • (2002) J Comput Chem , vol.23 , pp. 267-274
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3
  • 53
    • 20444389765 scopus 로고    scopus 로고
    • Prediction of protein subcellular location using a combined feature of sequence
    • Gao Q-B, Wang Z-Z, Yan C et al (2005) Prediction of protein subcellular location using a combined feature of sequence. FEBS Lett 579:3444.
    • (2005) FEBS Lett , vol.579 , pp. 3444
    • Gao, Q.-B.1    Wang, Z.-Z.2    Yan, C.3
  • 56
    • 0034784262 scopus 로고    scopus 로고
    • The connectivity index 25 years after
    • Randic M (2001) The connectivity index 25 years after. J Mol Graph Model 20:19-35.
    • (2001) J Mol Graph Model , vol.20 , pp. 19-35
    • Randic, M.1
  • 57
    • 37249009571 scopus 로고    scopus 로고
    • Kernel approach to molecular similarity based on iterative graph similarity
    • DOI 10.1021/ci700274r
    • Rupp M, Proschak E, Schneider G (2007) Kernel approach to molecular similarity based on iterative graph similarity. J Chem Inf Model 47:2280-2286. (Pubitemid 350275094)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.6 , pp. 2280-2286
    • Rupp, M.1    Proschak, E.2    Schneider, G.3
  • 58
    • 0034874330 scopus 로고    scopus 로고
    • Accurate prediction of protein secondary structural content
    • Lin Z, Pan XM (2001) Accurate prediction of protein secondary structural content. J Protein Chem 20:217-220.
    • (2001) J Protein Chem , vol.20 , pp. 217-220
    • Lin, Z.1    Pan, X.M.2
  • 59
    • 18344391868 scopus 로고    scopus 로고
    • Prediction of membrane protein types by incorporating amphipathic effects
    • Chou KC, Cai YD (2005) Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model 45:407-413.
    • (2005) J Chem Inf Model , vol.45 , pp. 407-413
    • Chou, K.C.1    Cai, Y.D.2
  • 62
    • 0035891173 scopus 로고    scopus 로고
    • Prediction of protein retention in ion-exchange systems using molecular descriptors obtained from crystal structure
    • DOI 10.1021/ac010797s
    • Mazza CB, Sukumar N, Breneman CM et al (2001) Prediction of protein retention in ionexchange systems using molecular descriptors obtained from crystal structure. Anal Chem 73:5457-5461. (Pubitemid 33108555)
    • (2001) Analytical Chemistry , vol.73 , Issue.22 , pp. 5457-5461
    • Mazza, C.B.1    Sukumar, N.2    Breneman, C.M.3    Cramer, S.M.4
  • 63
    • 0027976928 scopus 로고
    • The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: De novo design of an idealized leader peptidase cleavage site
    • Schneider G, Wrede P (1994) The rational design of amino acid sequences by arti fi cial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophys J 66:335-344. (Pubitemid 24058452)
    • (1994) Biophysical Journal , vol.66 , Issue.2 , pp. 335-344
    • Schneider, G.1    Wrede, P.2
  • 64
    • 0023751431 scopus 로고
    • Comparative molecular fi eld analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
    • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular fi eld analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959-5967.
    • (1988) J Am Chem Soc , vol.110 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 65
    • 14944348527 scopus 로고    scopus 로고
    • A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction
    • DOI 10.1021/jm040163o
    • Rush TS, Grant JA, Mosyak L et al (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48:1489-1495. (Pubitemid 40364556)
    • (2005) Journal of Medicinal Chemistry , vol.48 , Issue.5 , pp. 1489-1495
    • Rush III, T.S.1    Grant, J.A.2    Mosyak, L.3    Nicholls, A.4
  • 66
    • 0027212858 scopus 로고
    • Molecular shape comparison of angiotensin II receptor antagonists
    • DOI 10.1021/jm00061a014
    • Masek BB, Merchant A, Matthew JB (1993) Molecular shape comparison of angiotensin II receptor antagonists. J Med Chem 36:1230-1238. (Pubitemid 23159297)
    • (1993) Journal of Medicinal Chemistry , vol.36 , Issue.9 , pp. 1230-1238
    • Masek, B.B.1    Merchant, A.2    Matthew, J.B.3
  • 67
    • 0028851251 scopus 로고
    • Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks
    • Wagener M, Sadowski J, Gasteiger J (1995) Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks. J Am Chem Soc 117:7769-7775.
    • (1995) J Am Chem Soc , vol.117 , pp. 7769-7775
    • Wagener, M.1    Sadowski, J.2    Gasteiger, J.3
  • 68
    • 34547260921 scopus 로고    scopus 로고
    • Ultrafast shape recognition to search compound databases for similar molecular shapes
    • DOI 10.1002/jcc.20681
    • Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28:1711-1723. (Pubitemid 47146547)
    • (2007) Journal of Computational Chemistry , vol.28 , Issue.10 , pp. 1711-1723
    • Ballester, P.J.1    Richards, W.G.2
  • 69
    • 36349009372 scopus 로고    scopus 로고
    • Ultrafast shape recognition for similarity search in molecular databases
    • Ballester PJ, Richards WG (2007) Ultrafast shape recognition for similarity search in molecular databases. Proc R Soc A 463: 1307-1321.
    • (2007) Proc R Soc A , vol.463 , pp. 1307-1321
    • Ballester, P.J.1    Richards, W.G.2
  • 71
    • 13844306520 scopus 로고    scopus 로고
    • Enrichment of ligands for the serotonin receptor using the shape signatures approach
    • DOI 10.1021/ci049746x
    • Nagarajan K, Zauhar R, Welsh WJ (2005) Enrichment of ligands for the serotonin receptor using the shape signatures approach. J Chem Inf Model 45:49-57. (Pubitemid 40736955)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.1 , pp. 49-57
    • Nagarajan, K.1    Zauhar, R.2    Welsh, W.J.3
  • 72
    • 0345735309 scopus 로고    scopus 로고
    • Shape signatures: A new approach to computer-aided ligand- and receptor-based drug design
    • DOI 10.1021/jm030242k
    • Zauhar RJ, Moyna G, Tian L et al (2003) Shape signatures, a new approach to computer-aided ligand-and receptor-based drug design. J Med Chem 46:5674-5690. (Pubitemid 37543318)
    • (2003) Journal of Medicinal Chemistry , vol.46 , Issue.26 , pp. 5674-5690
    • Zauhar, R.J.1    Moyna, G.2    Tian, L.3    Li, Z.4    Welsh, W.J.5
  • 73
    • 0034710718 scopus 로고    scopus 로고
    • GRid-INdependent Descriptors (GRIND): A novel class of alignment-independent threedimensional molecular descriptors
    • Pastor M, Cruciani G, McLay I et al (2000) GRid-INdependent Descriptors (GRIND): a novel class of alignment-independent threedimensional molecular descriptors. J Med Chem 43:3233-3243.
    • (2000) J Med Chem , vol.43 , pp. 3233-3243
    • Pastor, M.1    Cruciani, G.2    McLay, I.3
  • 74
    • 2942592378 scopus 로고    scopus 로고
    • QSAR and QSPR based solely on surface properties?
    • DOI 10.1016/j.jmgm.2004.03.012, PII S1093326304000270, Bioactive Discovery in the New Millennium
    • Clark T (2004) QSAR and QSPR based solely on surface properties? J Mol Graph Model 22:519-525. (Pubitemid 38746577)
    • (2004) Journal of Molecular Graphics and Modelling , vol.22 , Issue.6 , pp. 519-525
    • Clark, T.1
  • 75
    • 1842759737 scopus 로고    scopus 로고
    • New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them
    • Ehresmann B, Groot MJd, Alex A et al (2004) New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them. J Chem Inf Comput Sci 44:658-668.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 658-668
    • Ehresmann, B.1    Groot, M.J.D.2    Alex, A.3
  • 76
    • 61449202735 scopus 로고    scopus 로고
    • Ultrafast shape recognition: Evaluating a new ligand-based virtual screening technology
    • Ballester PJ, Finn PW, Richards WG (2009) Ultrafast shape recognition: evaluating a new ligand-based virtual screening technology. J Mol Graph Model 27:836-845.
    • (2009) J Mol Graph Model , vol.27 , pp. 836-845
    • Ballester, P.J.1    Finn, P.W.2    Richards, W.G.3
  • 77
    • 0038226895 scopus 로고    scopus 로고
    • DNA sequence and structure: Direct and indirect recognition in protein-DNA binding
    • Steffen NR, Murphy SD, Tolleri L et al (2002) DNA sequence and structure: direct and indirect recognition in protein-DNA binding. Bioinformatics 18:22-30.
    • (2002) Bioinformatics , vol.18 , pp. 22-30
    • Steffen, N.R.1    Murphy, S.D.2    Tolleri, L.3
  • 78
    • 0024280427 scopus 로고    scopus 로고
    • An ab-initio molecular orbital study on the sequence-dependency of DNAconformation: An evaluation of intra-and inter-strand stacking interaction energy
    • Aida M (1998) An ab-initio molecular orbital study on the sequence-dependency of DNAconformation: an evaluation of intra-and inter-strand stacking interaction energy. J Theor Biol 130:327-335.
    • (1998) J Theor Biol , vol.130 , pp. 327-335
    • Aida, M.1
  • 79
    • 0033120215 scopus 로고    scopus 로고
    • Structure-based prediction of DNA target sites by regulatory proteins
    • DOI 10.1002/(SICI)1097-0134(19990401)35:1<114::AID-PROT11>3.0.CO;2- T
    • Kono H, Sarai A (1999) Structure-based prediction of DNA target sites by regulatory proteins. Proteins 35:114-131. (Pubitemid 29128158)
    • (1999) Proteins: Structure, Function and Genetics , vol.35 , Issue.1 , pp. 114-131
    • Kono, H.1    Sarai, A.2
  • 80
    • 0033532946 scopus 로고    scopus 로고
    • Free-energy maps of base-amino acid interactions for DNA-protein recognition
    • Pichierri F, Aida M, Gromiha MM et al (1999) Free-energy maps of base-amino acid interactions for DNA-protein recognition. J Am Chem Soc 121:6152-6157.
    • (1999) J Am Chem Soc , vol.121 , pp. 6152-6157
    • Pichierri, F.1    Aida, M.2    Gromiha, M.M.3
  • 82
    • 0037341579 scopus 로고    scopus 로고
    • Transferable atom equivalent multi-centered multipole expansion method
    • Whitehead CE, Breneman CM, Sukumar N et al (2003) Transferable atom equivalent multi-centered multipole expansion method. J Comput Chem 24:512-529.
    • (2003) J Comput Chem , vol.24 , pp. 512-529
    • Whitehead, C.E.1    Breneman, C.M.2    Sukumar, N.3
  • 85
    • 0037068532 scopus 로고    scopus 로고
    • Do structurally similar molecules have similar biological activity?
    • DOI 10.1021/jm020155c
    • Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350-4358. (Pubitemid 35025581)
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.19 , pp. 4350-4358
    • Martin, Y.C.1    Kofron, J.L.2    Traphagen, L.M.3
  • 86
    • 42149090634 scopus 로고    scopus 로고
    • Structure - Activity landscape index: Identifying and quantifying activity cliffs
    • DOI 10.1021/ci7004093
    • Guha R, Van Drie JH (2008) Structure-activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48:646-658. (Pubitemid 351535432)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.3 , pp. 646-658
    • Guha, R.1    Van Drie, J.H.2
  • 87
    • 36148989137 scopus 로고    scopus 로고
    • SAR Index: Quantifying the nature of structure-activity relationships
    • DOI 10.1021/jm0705713
    • Peltason L, Bajorath J (2007) SAR index: quantifying the nature of structure-activity relationships. J Med Chem 50:5571-5578. (Pubitemid 350106013)
    • (2007) Journal of Medicinal Chemistry , vol.50 , Issue.23 , pp. 5571-5578
    • Peltason, L.1    Bajorath, J.2
  • 88
    • 77954082092 scopus 로고    scopus 로고
    • Rationalizing three-dimensional activity landscapes and the in fl uence of molecular representations on landscape topology and the formation of activity cliffs
    • Peltason L, Iyer P, Bajorath J (2010) Rationalizing three-dimensional activity landscapes and the in fl uence of molecular representations on landscape topology and the formation of activity cliffs. J Chem Inf Model 50:1021-1033.
    • (2010) J Chem Inf Model , vol.50 , pp. 1021-1033
    • Peltason, L.1    Iyer, P.2    Bajorath, J.3
  • 89
  • 90
    • 1842532337 scopus 로고    scopus 로고
    • Chemogenomics: An emerging strategy for rapid target and drug discovery
    • DOI 10.1038/nrg1317
    • Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5:262-275. (Pubitemid 38435622)
    • (2004) Nature Reviews Genetics , vol.5 , Issue.4 , pp. 262-275
    • Bredel, M.1    Jacoby, E.2
  • 91
    • 4043121114 scopus 로고    scopus 로고
    • Computational chemogenomics approaches to systematic knowledge-based drug discovery
    • Mestres J (2004) Computational chemogenomics approaches to systematic knowledgebased drug discovery. Curr Opin Drug Discov Dev 7:304-313. (Pubitemid 44120947)
    • (2004) Current Opinion in Drug Discovery and Development , vol.7 , Issue.3 , pp. 304-313
    • Mestres, J.1
  • 92
    • 34548319109 scopus 로고    scopus 로고
    • Chemogenomic approaches to drug discovery: Similar receptors bind similar ligands
    • DOI 10.1038/sj.bjp.0707308, PII 0707308
    • Klabunde T (2007) Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. Br J Pharmacol 152:5-7. (Pubitemid 47339899)
    • (2007) British Journal of Pharmacology , vol.152 , Issue.1 , pp. 5-7
    • Klabunde, T.1
  • 93
    • 34548317031 scopus 로고    scopus 로고
    • Chemogenomic approaches to rational drug design
    • DOI 10.1038/sj.bjp.0707307, PII 0707307
    • Rognan D (2007) Chemogenomic approaches to rational drug design. Br J Pharmacol 152:38-52. (Pubitemid 47339898)
    • (2007) British Journal of Pharmacology , vol.152 , Issue.1 , pp. 38-52
    • Rognan, D.1
  • 94
    • 33646251585 scopus 로고    scopus 로고
    • Chemometric analysis of ligand receptor complementarity: Identifying Complementary Ligands Based on Receptor Information (CoLiBRI)
    • Oloff S, Zhang S, Sukumar N et al (2006) Chemometric analysis of ligand receptor complementarity: identifying Complementary Ligands Based on Receptor Information (CoLiBRI). J Chem Inf Model 46:844-851.
    • (2006) J Chem Inf Model , vol.46 , pp. 844-851
    • Oloff, S.1    Zhang, S.2    Sukumar, N.3
  • 95
    • 44449139387 scopus 로고    scopus 로고
    • Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments
    • DOI 10.1073/pnas.0704422105
    • Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent pro fi le-pro fi le alignments. Proc Natl Acad Sci USA 105:5441-5446. (Pubitemid 351753882)
    • (2008) Proceedings of the National Academy of Sciences of the United States of America , vol.105 , Issue.14 , pp. 5441-5446
    • Xie, L.1    Bourne, P.E.2
  • 96
    • 77954266960 scopus 로고    scopus 로고
    • SMAP-WS: A parallel web service for structural proteomewide ligand-binding site comparison
    • Ren J, Xie L, Li WW et al (2010) SMAP-WS: a parallel web service for structural proteomewide ligand-binding site comparison. Nucleic Acids Res 38:W441-W444.
    • (2010) Nucleic Acids Res , vol.38
    • Ren, J.1    Xie, L.2    Li, W.W.3
  • 97
    • 68249144628 scopus 로고    scopus 로고
    • Drug discovery using chemical systems biology: Repositioning the safe medicine comtan to treat multi-drug and extensively drug resistant tuberculosis
    • Kinnings SL, Liu N, Buchmeier N et al (2009) Drug discovery using chemical systems biology: repositioning the safe medicine comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol 5:e1000423.
    • (2009) PLoS Comput Biol , vol.5
    • Kinnings, S.L.1    Liu, N.2    Buchmeier, N.3
  • 98
    • 77649229098 scopus 로고    scopus 로고
    • Binding af fi nity prediction with propertyencoded shape distribution signatures
    • Das S, Krein MP, Breneman CM (2010) Binding af fi nity prediction with propertyencoded shape distribution signatures. J Chem Inf Model 50:298-308.
    • (2010) J Chem Inf Model , vol.50 , pp. 298-308
    • Das, S.1    Krein, M.P.2    Breneman, C.M.3
  • 99
    • 77956040404 scopus 로고    scopus 로고
    • Predicting polypharmacology by binding site similarity: From kinases to the protein universe
    • Milletti F, Vulpetti A (2010) Predicting polypharmacology by binding site similarity: from kinases to the protein universe. J Chem Inf Model 50:1418-1431
    • (2010) J Chem Inf Model , vol.50 , pp. 1418-1431
    • Milletti, F.1    Vulpetti, A.2
  • 100
    • 71849099675 scopus 로고    scopus 로고
    • PubChem BioAssays as a data source for predictive models
    • Chen B, Wild DJ (2010) PubChem BioAssays as a data source for predictive models. J Mol Graph Model 28:420-426
    • (2010) J Mol Graph Model , vol.28 , pp. 420-426
    • Chen, B.1    Wild, D.J.2
  • 101
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: The next paradigm in drug discovery
    • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682-690
    • (2008) Nat Chem Biol , vol.4 , pp. 682-690
    • Hopkins, A.L.1
  • 102
    • 53549123322 scopus 로고    scopus 로고
    • Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices
    • Wawer M, Peltason L, Weskamp N et al (2008) Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem 51:6075-6084
    • (2008) J Med Chem , vol.51 , pp. 6075-6084
    • Wawer, M.1    Peltason, L.2    Weskamp, N.3
  • 104
    • 0029240364 scopus 로고
    • Predicting ligand binding to proteins by af fi nity fi ngerprinting
    • Kauvar LM, Higgins DL, Villar HO et al (1995) Predicting ligand binding to proteins by af fi nity fi ngerprinting. Chem Biol 2:107-118
    • (1995) Chem Biol , vol.2 , pp. 107-118
    • Kauvar, L.M.1    Higgins, D.L.2    Villar, H.O.3
  • 106
    • 34547156051 scopus 로고    scopus 로고
    • A measure of domain of applicability for QSAR modelling based on intelligent K-means clustering
    • DOI 10.1002/qsar.200630086
    • Stanforth RW, Kolossov E, Mirkin B (2007) A measure of domain of applicability for QSAR modelling based on intelligent K-means clustering. QSAR Comb Sci 26:837-844 (Pubitemid 47121260)
    • (2007) QSAR and Combinatorial Science , vol.26 , Issue.7 , pp. 837-844
    • Stanforth, R.W.1    Kolossov, E.2    Mirkin, B.3
  • 107
    • 0028397273 scopus 로고
    • Comparison of three different approaches to the property prediction problem
    • Kerzic D, Blazic BJ, Batagelj V (1994) Comparison of three different approaches to the property prediction problem. J Chem Inf Comput Sci 34:391-394
    • (1994) J Chem Inf Comput Sci , vol.34 , pp. 391-394
    • Kerzic, D.1    Blazic, B.J.2    Batagelj, V.3
  • 109
    • 0025981114 scopus 로고
    • An application of unsupervised neural network methodology kohonen topology-preserving mapping to QSAR analysis
    • Rose VS, Croall IF, Mac fi e HJH (1991) An application of unsupervised neural network methodology kohonen topology-preserving mapping to QSAR analysis. QSAR 10:6-15
    • (1991) QSAR , vol.10 , pp. 6-15
    • Rose, V.S.1    Croall, I.F.2    Mac Fi, E.H.J.H.3
  • 110
    • 33746256595 scopus 로고    scopus 로고
    • Megavariate analysis of environmental QSAR data. Part I - A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD)
    • DOI 10.1007/s11030-006-9024-6
    • Eriksson L, Andersson P, Johansson E et al (2006) Megavariate analysis of environmental QSAR data. Part I: A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol Divers 10:169-186 (Pubitemid 44092207)
    • (2006) Molecular Diversity , vol.10 , Issue.2 , pp. 169-186
    • Eriksson, L.1    Andersson, P.L.2    Johansson, E.3    Tysklind, M.4
  • 111
    • 56049095031 scopus 로고    scopus 로고
    • On the interpretation and interpretability of quantitative structure-activity relationship models
    • Guha R (2008) On the interpretation and interpretability of quantitative structure-activity relationship models. J Comput Aided Mol Des 22:857-871
    • (2008) J Comput Aided Mol des , vol.22 , pp. 857-871
    • Guha, R.1
  • 112
    • 0018709674 scopus 로고
    • Chance factors in studies of quantitative structure-activity relationships
    • DOI 10.1021/jm00196a017
    • Topliss JG, Edwards RP (1979) Chance factors in studies of quantitative-structure property relationships. J Med Chem 22:1238-1244 (Pubitemid 10237430)
    • (1979) Journal of Medicinal Chemistry , vol.22 , Issue.10 , pp. 1238-1244
    • Topliss, J.G.1    Edwards, R.P.2
  • 113
    • 85162676194 scopus 로고
    • PLS regression methods
    • Hoskuldson A (1988) PLS regression methods. J Chemometrics 2:211
    • (1988) J Chemometrics , vol.2 , pp. 211
    • Hoskuldson, A.1
  • 114
    • 85152373811 scopus 로고
    • Notes on the history and nature of Partial Least-Squares (PLS) modelling
    • Geladi P (1988) Notes on the history and nature of Partial Least-Squares (PLS) modelling. J Chemometrics 2:231
    • (1988) J Chemometrics , vol.2 , pp. 231
    • Geladi, P.1
  • 115
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classi fi cation of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classi fi cation of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 116
    • 0002116138 scopus 로고
    • New approaches to QSAR: Neural networks and machine learning
    • King R, Hirst J, Sternberg M (1993) New approaches to QSAR: neural networks and machine learning. Perspect Drug Discov Des 1:279-290
    • (1993) Perspect Drug Discov des , vol.1 , pp. 279-290
    • King, R.1    Hirst, J.2    Sternberg, M.3
  • 117
    • 0030900210 scopus 로고    scopus 로고
    • Neural network modeling for estimation of the aqueous solubility of structurally related drugs
    • DOI 10.1021/js960358m
    • Huuskonen J, Salo M, Taskinen J et al (1997) Neural network modeling for estimation of the aqueous solubility of structurally related drugs. J Pharm Sci 86:450-454 (Pubitemid 27154760)
    • (1997) Journal of Pharmaceutical Sciences , vol.86 , Issue.4 , pp. 450-454
    • Huuskonen, J.1    Salo, M.2    Taskinen, J.3
  • 120
    • 9444289262 scopus 로고    scopus 로고
    • An introduction to decision tree modeling
    • Myles AJ, Feudale RN, Liu Y et al (2004) An introduction to decision tree modeling. J Chemometrics 18:275-285
    • (2004) J Chemometrics , vol.18 , pp. 275-285
    • Myles, A.J.1    Feudale, R.N.2    Liu, Y.3
  • 121
    • 2442682055 scopus 로고    scopus 로고
    • A hybrid decision tree/genetic algorithm method for data mining
    • Carvalho DR, Freitas AA (2004) A hybrid decision tree/genetic algorithm method for data mining. Inf Sci 163:13-35
    • (2004) Inf Sci , vol.163 , pp. 13-35
    • Carvalho, D.R.1    Freitas, A.A.2
  • 122
    • 33645923096 scopus 로고    scopus 로고
    • Computational methods in developing Quantitative Structure-Activity Relationships (QSAR): A review
    • Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing Quantitative Structure-Activity Relationships (QSAR): a review. Comb Chem High Throughput Screen 9:213-228
    • (2006) Comb Chem High Throughput Screen , vol.9 , pp. 213-228
    • Dudek, A.Z.1    Arodz, T.2    Galvez, J.3
  • 123
    • 33846855555 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 7. prediction of oral absorption by correlation and classification
    • DOI 10.1021/ci600343x
    • Hou T, Wang J, Zhang W et al (2006) ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classi fi cation. J Chem Inf Model 47:208-218 (Pubitemid 46225576)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.1 , pp. 208-218
    • Hou, T.1    Wang, J.2    Zhang, W.3    Xu, X.4
  • 124
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L (2001) Random forests. Mach Learn 45:5-32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 125
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classi fi cation and regression tool for compound classi fi cation and QSAR modeling
    • Svetnik V, Liaw A, Tong C et al (2003) Random forest: a classi fi cation and regression tool for compound classi fi cation and QSAR modeling. J Chem Inf Comput Sci 43:1947-1958
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3
  • 126
    • 0037365123 scopus 로고    scopus 로고
    • Decision forest: Combining the predictions of multiple independent decision tree models
    • Tong W, Hong H, Fang H et al (2003) Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 43:525-531
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 525-531
    • Tong, W.1    Hong, H.2    Fang, H.3
  • 127
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 129
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal R, Trejo LJ (2001) Kernel partial least squares regression in reproducing kernel Hilbert space. Mach Learn Res 2:97-123
    • (2001) Mach Learn Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 130
    • 0001907967 scopus 로고    scopus 로고
    • Support vector machines: Hype or hallelujah
    • Bennett K, Campbell C (2000) Support vector machines: hype or hallelujah. SIGKDD Explor 2:1-13
    • (2000) SIGKDD Explor , vol.2 , pp. 1-13
    • Bennett, K.1    Campbell, C.2
  • 132
    • 0034676318 scopus 로고    scopus 로고
    • Classification of multidrug-resistance reversal agents using structure-based descriptors and linear discriminant analysis
    • DOI 10.1021/jm000244u
    • Bakken GA, Jurs PC (2000) Classi fi cation of multidrug-resistance reversal agents using structure-based descriptors and linear discriminant analysis. J Med Chem 43:4534-4541 (Pubitemid 32046878)
    • (2000) Journal of Medicinal Chemistry , vol.43 , Issue.23 , pp. 4534-4541
    • Bakken, G.A.1    Jurs, P.C.2
  • 133
    • 0012297834 scopus 로고    scopus 로고
    • Optimization approaches to semi-supervised learning
    • Ferris MC, Mangasarian OL, Pang JS (eds) . Kluwer Academic, Boston
    • Bennett K, Demiriz A (2000) Optimization approaches to semi-supervised learning. In: Ferris MC, Mangasarian OL, Pang JS (eds) Applications and algorithms of complementarity. Kluwer Academic, Boston
    • (2000) Applications and Algorithms of Complementarity
    • Bennett, K.1    Demiriz, A.2
  • 134
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • DOI 10.1016/S0097-8485(01)00094-8, PII S0097848501000948
    • Burbidge R, Trotter M, Buxton B et al (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5-14 (Pubitemid 33034554)
    • (2001) Computers and Chemistry , vol.26 , Issue.1 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 135
    • 0035150169 scopus 로고    scopus 로고
    • Use of support vector machine in pattern classification: Application to QSAR studies
    • DOI 10.1002/1521-3838(200110)20:3<227::AID-QSAR227>3.0.CO;2-Y
    • Czerminski R, Yasri A, Hartsough D (2001) Use of support vector machine in pattern classi fi cation: application to QSAR studies. QSAR 20:227-240 (Pubitemid 33051752)
    • (2001) Quantitative Structure-Activity Relationships , vol.20 , Issue.3 , pp. 227-240
    • Czermiski, R.1    Yasri, A.2    Hartsough, D.3
  • 136
    • 2442514721 scopus 로고    scopus 로고
    • An optimization perspective on partial least squares
    • Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (eds) . IOS, Amsterdam
    • Bennett KP, Embrechts MJ (2003) An optimization perspective on partial least squares. In: Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (eds) Advances in learningtheory: methods, models and applications. IOS, Amsterdam, pp 227-250
    • (2003) Advances in Learningtheory: Methods, Models and Applications , pp. 227-250
    • Bennett, K.P.1    Embrechts, M.J.2
  • 137
    • 0032291174 scopus 로고    scopus 로고
    • Computationally intelligent data mining for the automated design and discovery of novel pharmaceuticals
    • Embrechts MJ, Robert Kewley J, Breneman C (1998) Computationally intelligent data mining for the automated design and discovery of novel pharmaceuticals. In: Dagli CH, Akay M, Buczak AL, Ersoy O, Fernandex BR (eds) Smart engineering systems: neural networks, fuzzy logic, evolutionary programming, data mining and rough sets, 1st edn. ASME, St. Louis, MO, pp 397-403 (Pubitemid 128724557)
    • (1998) Intelligent Engineering Systems Through Artificial Neural Networks , vol.1998 , pp. 397-403
    • Embrechts, M.J.1    Kewley Jr., R.2    Breneman, C.3
  • 139
    • 36749045167 scopus 로고    scopus 로고
    • Exploring the impact of size of training sets for the development of predictive QSAR models
    • DOI 10.1016/j.chemolab.2007.07.004, PII S0169743907001529
    • Roy PP, Leonard JT, Roy K (2008) Exploring the impact of size of training sets for the development of predictive QSAR models. Chemometrics Intell Lab Syst 90:31-42 (Pubitemid 350213175)
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.90 , Issue.1 , pp. 31-42
    • Roy, P.P.1    Leonard, J.T.2    Roy, K.3
  • 141
    • 1042265247 scopus 로고    scopus 로고
    • Approaches to measure chemical similarity-A review
    • Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity-a review. QSAR Comb Sci 22:1006-1026
    • (2003) QSAR Comb Sci , vol.22 , pp. 1006-1026
    • Nikolova, N.1    Jaworska, J.2
  • 143
    • 78649494564 scopus 로고    scopus 로고
    • Consensus ranking approach to understanding the underlying mechanism with QSAR
    • Shao L, Wu L, Fan X et al (2010) Consensus ranking approach to understanding the underlying mechanism with QSAR. J Chem Inf Model 50:1941-1948
    • (2010) J Chem Inf Model , vol.50 , pp. 1941-1948
    • Shao, L.1    Wu, L.2    Fan, X.3
  • 144
    • 0034294901 scopus 로고    scopus 로고
    • Better decisions through science
    • Swets JA, Dawes RM, Monahan J (2000) Better decisions through science. Sci Am 283:82-87
    • (2000) Sci Am , vol.283 , pp. 82-87
    • Swets, J.A.1    Dawes, R.M.2    Monahan, J.3
  • 145
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861-874
    • (2006) Pattern Recogn Lett , vol.27 , pp. 861-874
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.