메뉴 건너뛰기




Volumn 10, Issue 4, 2015, Pages 12-25

Learning in Nonstationary Environments: A Survey

Author keywords

[No Author keywords available]

Indexed keywords

CELLULAR TELEPHONE SYSTEMS; E-LEARNING; EMBEDDED SYSTEMS;

EID: 84945281802     PISSN: 1556603X     EISSN: None     Source Type: Journal    
DOI: 10.1109/MCI.2015.2471196     Document Type: Review
Times cited : (747)

References (134)
  • 1
    • 84908019121 scopus 로고    scopus 로고
    • Big data opportunities and challenges: Discussions from data analytics perspectives
    • Nov.
    • Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, "Big data opportunities and challenges: Discussions from data analytics perspectives," IEEE Comput. Intell. Mag., vol. 9, no. 4, pp. 62-74, Nov.
    • (2014) IEEE Comput. Intell. Mag. , vol.9 , Issue.4 , pp. 62-74
    • Zhou, Z.-H.1    Chawla, N.V.2    Jin, Y.3    Williams, G.J.4
  • 2
    • 84904605380 scopus 로고    scopus 로고
    • Computational intelligence challenges and applications on large-scale astronomical time series databases
    • Aug.
    • P. Huijse, P. A. Estevez, P. Protopapas, J. C. Principe, and P. Zegers, "Computational intelligence challenges and applications on large-scale astronomical time series databases," IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 27-39, Aug.
    • (2014) IEEE Comput. Intell. Mag. , vol.9 , Issue.3 , pp. 27-39
    • Huijse, P.1    Estevez, P.A.2    Protopapas, P.3    Principe, J.C.4    Zegers, P.5
  • 3
  • 5
    • 85052723106 scopus 로고    scopus 로고
    • National Research Council Washington, D.C.: National Academies Press
    • National Research Council, Frontiers in Massive Data Analysis. Washington, D.C.: National Academies Press
    • (2013) Frontiers in Massive Data Analysis
  • 10
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • Oct.
    • R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary environments," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1517-1531, Oct.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 13
    • 84942770326 scopus 로고    scopus 로고
    • Comparative study between incremental and ensemble learning on data streams: Case study
    • June
    • W. Zang, P. Zhang, C. Zhou, and L. Guo, "Comparative study between incremental and ensemble learning on data streams: Case study," J. Big Data, vol. 1, no. 5, pp. 1-16, June
    • (2014) J. Big Data. , vol.1 , Issue.5 , pp. 1-16
    • Zang, W.1    Zhang, P.2    Zhou, C.3    Guo, L.4
  • 14
    • 0035521110 scopus 로고    scopus 로고
    • Learn++: An incremental learning algorithm for supervised neural networks
    • Nov.
    • R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Trans. Syst. Man Cybern., vol. 31, no. 4, pp. 497-508, Nov.
    • (2001) IEEE Trans. Syst. Man Cybern. , vol.31 , Issue.4 , pp. 497-508
    • Polikar, R.1    Udpa, L.2    Udpa, S.S.3    Honavar, V.4
  • 17
    • 84973857317 scopus 로고
    • ART 2: Self-organization of stable category recognition codes for analog input patterns
    • Dec.
    • G. Carpenter and S. Grossberg, "ART 2: Self-organization of stable category recognition codes for analog input patterns," Appl. Opt., vol. 26, no. 23, pp. 4919-4930, Dec.
    • (1987) Appl. Opt. , vol.26 , Issue.23 , pp. 4919-4930
    • Carpenter, G.1    Grossberg, S.2
  • 18
    • 0742323983 scopus 로고    scopus 로고
    • A general framework for mining massive data streams
    • P. Domingos and G. Hulten, "A general framework for mining massive data streams," J. Comput. Graph. Stat., vol. 12, no. 4, pp. 945-949
    • (2003) J. Comput. Graph. Stat. , vol.12 , Issue.4 , pp. 945-949
    • Domingos, P.1    Hulten, G.2
  • 21
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Apr.
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr.
    • (1996) Mach. Learn. , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 24
    • 0026373254 scopus 로고
    • ARTMAP: A self-organizing neural network architecture for fast supervised learning and pattern recognition
    • G. Carpenter, S. Grossberg, and J. Reynolds, "ARTMAP: A self-organizing neural network architecture for fast supervised learning and pattern recognition," in Proc. Int. Joint Conf. Neural Networks, 1991, pp. 863-868.
    • (1991) Proc. Int. Joint Conf. Neural Networks , pp. 863-868
    • Carpenter, G.1    Grossberg, S.2    Reynolds, J.3
  • 25
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • Sept.
    • G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, and D. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 698-713, Sept.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 698-713
    • Carpenter, G.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.4    Rosen, D.5
  • 26
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • Feb.
    • N. Littlestone and M. K. Warmuth, "The weighted majority algorithm," Inform. Comput., vol. 108, no. 2, pp. 212-261, Feb.
    • (1994) Inform. Comput. , vol.108 , Issue.2 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.K.2
  • 29
  • 30
    • 34249047899 scopus 로고    scopus 로고
    • Covariate shift adaptation by importance weighted cross validation
    • May
    • M. Sugiyama, M. Krauledat, and K. R. Müller, "Covariate shift adaptation by importance weighted cross validation," J. Mach. Learn. Res., vol. 8, pp. 985-1005, May
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 985-1005
    • Sugiyama, M.1    Krauledat, M.2    Müller, K.R.3
  • 31
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Oct.
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowledge Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct.
    • (2010) IEEE Trans. Knowledge Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 35
    • 1942483164 scopus 로고    scopus 로고
    • Ph.D. dissertation, Univ. California, Berkeley, CA
    • N. Oza, "On-line ensemble learning," Ph.D. dissertation, Univ. California, Berkeley, CA
    • (2001) On-line Ensemble Learning
    • Oza, N.1
  • 36
    • 78650162978 scopus 로고    scopus 로고
    • Sentiment knowledge discovery in Twitter streaming data
    • A. Bifet and E. Frank, "Sentiment knowledge discovery in Twitter streaming data," in Proc. Int. Conf. Discovery Science, 2010, pp. 1-15.
    • (2010) Proc. Int. Conf. Discovery Science , pp. 1-15
    • Bifet, A.1    Frank, E.2
  • 38
    • 84861967883 scopus 로고    scopus 로고
    • Predicting microbial distributions in space and time
    • N. Fierer and J. Ladau, "Predicting microbial distributions in space and time," Nature Methods, vol. 9, no. 6, pp. 549-551
    • (2012) Nature Methods. , vol.9 , Issue.6 , pp. 549-551
    • Fierer, N.1    Ladau, J.2
  • 39
    • 57749121230 scopus 로고    scopus 로고
    • Just-in-time adaptive classifiers-part II: Designing the classifier
    • Dec.
    • C. Alippi and M. Roveri, "Just-in-time adaptive classifiers-part II: Designing the classifier," IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2053-2064, Dec.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.12 , pp. 2053-2064
    • Alippi, C.1    Roveri, M.2
  • 48
    • 33750739280 scopus 로고    scopus 로고
    • Kalman filters and adaptive windows for learning in data streams
    • A. Bifet and R. Gavalda, "Kalman filters and adaptive windows for learning in data streams," in Proc. Int. Conf. Discovery Science, 2006, pp. 29-40.
    • (2006) Proc. Int. Conf. Discovery Science , pp. 29-40
    • Bifet, A.1    Gavalda, R.2
  • 49
    • 84945269322 scopus 로고    scopus 로고
    • An adaptive cusum-based test for signal change detection
    • C. Alippi and M. Roveri, "An adaptive cusum-based test for signal change detection," in Proc. Int. Symp. Circuits Systems, 2006, pp. 1-4.
    • (2006) Proc. Int. Symp. Circuits Systems , pp. 1-4
    • Alippi, C.1    Roveri, M.2
  • 50
    • 48949116228 scopus 로고    scopus 로고
    • Just-in-time adaptive classif iers-Part I: Detecting nonstationary changes
    • July
    • C. Alippi and M. Roveri, "Just-in-time adaptive classif iers-Part I: Detecting nonstationary changes," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1145-1153, July
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.7 , pp. 1145-1153
    • Alippi, C.1    Roveri, M.2
  • 53
    • 43549086207 scopus 로고    scopus 로고
    • Real-time data mining of non-stationary data streams from sensor networks
    • July
    • L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, "Real-time data mining of non-stationary data streams from sensor networks," Inform. Fusion, vol. 9, no. 3, pp. 344-353, July
    • (2008) Inform. Fusion. , vol.9 , Issue.3 , pp. 344-353
    • Cohen, L.1    Avrahami-Bakish, G.2    Last, M.3    Kandel, A.4    Kipersztok, O.5
  • 55
    • 70449408148 scopus 로고    scopus 로고
    • Learning, detecting, understanding, and predicting concept changes
    • K. Nishida and K. Yamauchi, "Learning, detecting, understanding, and predicting concept changes," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 2280-
    • (2009) Proc. Int. Joint Conf. Neural Networks , pp. 2280-2287
    • Nishida, K.1    Yamauchi, K.2
  • 57
    • 38149140915 scopus 로고    scopus 로고
    • Detecting concept drift using statistical testing
    • Berlin, Germany: Springer-Verlag
    • K. Nishida and K. Yamauchi, "Detecting concept drift using statistical testing," in Discovery Science. Berlin, Germany: Springer-Verlag, 2007, pp. 264-269.
    • (2007) Discovery Science , pp. 264-269
    • Nishida, K.1    Yamauchi, K.2
  • 58
    • 1642519908 scopus 로고    scopus 로고
    • The changepoint model for statistical process control
    • Oct.
    • D. M. Hawkins, Q. Peihua, and W. K. Chang, "The changepoint model for statistical process control," J. Qual. Technol., vol. 35, no. 4, pp. 355-366, Oct.
    • (2003) J. Qual. Technol. , vol.35 , Issue.4 , pp. 355-366
    • Hawkins, D.M.1    Peihua, Q.2    Chang, W.K.3
  • 59
    • 81555201641 scopus 로고    scopus 로고
    • Nonparametric monitoring of data streams for changes in location and scale
    • G. J. Ross, D. K. Tasoulis, and N. M. Adams, "Nonparametric monitoring of data streams for changes in location and scale," Technometrics, vol. 53, no. 4, pp. 379-389
    • (2011) Technometrics. , vol.53 , Issue.4 , pp. 379-389
    • Ross, G.J.1    Tasoulis, D.K.2    Adams, N.M.3
  • 60
    • 0000090155 scopus 로고
    • Sequential tests of statistical hypotheses
    • June
    • A. Wald, "Sequential tests of statistical hypotheses," Ann. Math. Stat., vol. 16, no. 2, pp. 117-186, June
    • (1945) Ann. Math. Stat. , vol.16 , Issue.2 , pp. 117-186
    • Wald, A.1
  • 63
    • 84910150798 scopus 로고    scopus 로고
    • Detecting concept change in dynamic data streams
    • Jan.
    • R. Pears, S. Sakthithasan, and Y. S. Koh, "Detecting concept change in dynamic data streams," Mach. Learn., vol. 97, no. 3, pp. 259-293, Jan.
    • (2014) Mach. Learn. , vol.97 , Issue.3 , pp. 259-293
    • Pears, R.1    Sakthithasan, S.2    Koh, Y.S.3
  • 65
    • 80051790497 scopus 로고    scopus 로고
    • A just-in-time adaptive classification system based on the intersection of confidence intervals rule
    • Oct.
    • C. Alippi, G. Boracchi, and M. Roveri, "A just-in-time adaptive classification system based on the intersection of confidence intervals rule," Neural Netw., vol. 24, no. 8, pp. 791-800, Oct.
    • (2011) Neural Netw. , vol.24 , Issue.8 , pp. 791-800
    • Alippi, C.1    Boracchi, G.2    Roveri, M.3
  • 67
    • 84908480433 scopus 로고    scopus 로고
    • A cognitive monitoring system for contaminant detection in intelligent buildings
    • July
    • G. Boracchi, M. Michaelides, and M. Roveri, "A cognitive monitoring system for contaminant detection in intelligent buildings," in Proc. Int. Joint Conf. Neural Networks, July 2014, pp. 69-76.
    • (2014) Proc. Int. Joint Conf. Neural Networks , pp. 69-76
    • Boracchi, G.1    Michaelides, M.2    Roveri, M.3
  • 68
    • 80054760676 scopus 로고    scopus 로고
    • An effective just-in-time adaptive classifier for gradual concept drifts
    • C. Alippi, G. Boracchi, and M. Roveri, "An effective just-in-time adaptive classifier for gradual concept drifts," in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 1675-
    • (2011) Proc. Int. Joint Conf. Neural Networks , pp. 1675-1682
    • Alippi, C.1    Boracchi, G.2    Roveri, M.3
  • 71
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs example weighting
    • Aug.
    • R. Klinkenberg, "Learning drifting concepts: Example selection vs. example weighting," Intell. Data Anal., vol. 8, no. 3, pp. 281-300, Aug.
    • (2004) Intell. Data Anal. , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 72
    • 0022026217 scopus 로고
    • Random sampling with a reservoir
    • Mar.
    • J. S. Vitter, "Random sampling with a reservoir," ACM Trans. Math. Softw., vol. 11, no. 1, pp. 37-57, Mar.
    • (1985) ACM Trans. Math. Softw. , vol.11 , Issue.1 , pp. 37-57
    • Vitter, J.S.1
  • 73
    • 84893850265 scopus 로고    scopus 로고
    • On biased reservoir sampling in the presence of stream evolution
    • C. C. Aggarwal, "On biased reservoir sampling in the presence of stream evolution," in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 607-618.
    • (2006) Proc. 32nd Int. Conf. Very Large Data Bases , pp. 607-618
    • Aggarwal, C.C.1
  • 74
    • 47349093896 scopus 로고    scopus 로고
    • A test paradigm for detecting changes in transactional data streams
    • Berlin, Germany: Springer-Verlag
    • W. Ng and M. Dash, "A test paradigm for detecting changes in transactional data streams," in Database Systems for Advanced Applications. Berlin, Germany: Springer-Verlag, 2008, pp. 204-219.
    • (2008) Database Systems for Advanced Applications , pp. 204-219
    • Ng, W.1    Dash, M.2
  • 77
    • 70349145363 scopus 로고    scopus 로고
    • Ambiguous decision trees for mining concept-drifting data streams
    • Nov.
    • J. Liu, X. Li, and W. Zhong, "Ambiguous decision trees for mining concept-drifting data streams," Pattern Recognit. Lett., vol. 30, no. 15, pp. 1347-1355, Nov.
    • (2009) Pattern Recognit. Lett. , vol.30 , Issue.15 , pp. 1347-1355
    • Liu, J.1    Li, X.2    Zhong, W.3
  • 78
    • 50149120100 scopus 로고    scopus 로고
    • Info-fuzzy algorithms for mining dynamic data streams
    • Sept.
    • L. Cohen, G. Avrahami, M. Last, and A. Kandel, "Info-fuzzy algorithms for mining dynamic data streams," Appl. Soft Comput., vol. 8, no. 4, pp. 1283-1294, Sept.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1283-1294
    • Cohen, L.1    Avrahami, G.2    Last, M.3    Kandel, A.4
  • 79
    • 43549086207 scopus 로고    scopus 로고
    • Real-time data mining of non-stationary data streams from sensor networks
    • July
    • L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, "Real-time data mining of non-stationary data streams from sensor networks," Inform. Fusion, vol. 9, no. 3, pp. 344-353, July
    • (2008) Inform. Fusion. , vol.9 , Issue.3 , pp. 344-353
    • Cohen, L.1    Avrahami-Bakish, G.2    Last, M.3    Kandel, A.4    Kipersztok, O.5
  • 80
    • 84878490532 scopus 로고    scopus 로고
    • Online sequential extreme learning machine in nonstationary environments
    • Sept.
    • Y. Ye, S. Squartini, and F. Piazza, "Online sequential extreme learning machine in nonstationary environments," Neurocomputing, vol. 116, pp. 94-101, Sept.
    • (2013) Neurocomputing. , vol.116 , pp. 94-101
    • Ye, Y.1    Squartini, S.2    Piazza, F.3
  • 81
    • 35348907876 scopus 로고    scopus 로고
    • Dynamic integration of classifiers for handling concept drift
    • Jan.
    • A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, "Dynamic integration of classifiers for handling concept drift," Inform. Fusion, vol. 9, no. 1, pp. 56-68, Jan.
    • (2008) Inform. Fusion. , vol.9 , Issue.1 , pp. 56-68
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3    Puuronen, S.4
  • 82
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanisms, and architectures
    • S. Grossberg, "Nonlinear neural networks: Principles, mechanisms, and architectures," Neural Netw., vol. 1, no. 1, pp. 17-61
    • (1988) Neural Netw. , vol.1 , Issue.1 , pp. 17-61
    • Grossberg, S.1
  • 84
    • 84908475950 scopus 로고    scopus 로고
    • Domain adaptation bounds for multiple expert systems under concept drift
    • G. Ditzler, G. Rosen, and R. Polikar, "Domain adaptation bounds for multiple expert systems under concept drift," in Proc. Int. Joint Conf. Neural Networks, 2014, pp. 595-601.
    • (2014) Proc. Int. Joint Conf. Neural Networks , pp. 595-601
    • Ditzler, G.1    Rosen, G.2    Polikar, R.3
  • 85
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • May
    • L. L. Minku, A. P. White, and X. Yao, "The impact of diversity on online ensemble learning in the presence of concept drift," IEEE Trans. Knowledge Data Eng., vol. 22, no. 5, pp. 731-742, May
    • (2010) IEEE Trans. Knowledge Data Eng. , vol.22 , Issue.5 , pp. 731-742
    • Minku, L.L.1    White, A.P.2    Yao, X.3
  • 86
    • 84857738059 scopus 로고    scopus 로고
    • DDD: A new ensemble approach for dealing with concept drift
    • Apr.
    • L. L. Minku and X. Yao, "DDD: A new ensemble approach for dealing with concept drift," IEEE Trans. Knowledge Discovery Data Eng., vol. 24, no. 4, pp. 619-633, Apr.
    • (2012) IEEE Trans. Knowledge Discovery Data Eng. , vol.24 , Issue.4 , pp. 619-633
    • Minku, L.L.1    Yao, X.2
  • 90
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • Dec.
    • J. Kolter and M. Maloof, "Dynamic weighted majority: An ensemble method for drifting concepts," J. Mach. Learn. Res., vol. 8, pp. 2755-2790, Dec.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 2755-2790
    • Kolter, J.1    Maloof, M.2
  • 91
    • 84891166135 scopus 로고    scopus 로고
    • Reacting to different types of concept drift: The accuracy updated ensemble algorithm
    • Jan.
    • D. Brzezinski and J. Stephanowski, "Reacting to different types of concept drift: The accuracy updated ensemble algorithm," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 81-94, Jan.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.1 , pp. 81-94
    • Brzezinski, D.1    Stephanowski, J.2
  • 93
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Aug.
    • Y. Freund and R. Shapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, pp. 119-139, Aug.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Shapire, R.2
  • 94
    • 79959429637 scopus 로고    scopus 로고
    • MuSeRA: Multiple selectively recursive approach towards imbalanced stream data mining
    • S. Chen, H. He, K. Li, and S. Sesai, "MuSeRA: Multiple selectively recursive approach towards imbalanced stream data mining," in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 2857-
    • (2010) Proc. Int. Joint Conf. Neural Networks , pp. 2857-2864
    • Chen, S.1    He, H.2    Li, K.3    Sesai, S.4
  • 95
    • 70449436537 scopus 로고    scopus 로고
    • Incremental learning in nonstationary environments with controlled forgetting
    • R. Elwell and R. Polikar, "Incremental learning in nonstationary environments with controlled forgetting," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 771-778.
    • (2009) Proc. Int. Joint Conf. Neural Networks , pp. 771-778
    • Elwell, R.1    Polikar, R.2
  • 96
    • 84897541086 scopus 로고    scopus 로고
    • ELLA: An efficient lifelong learning algorithm
    • P. Ruvolo and E. Eaton, "ELLA: An efficient lifelong learning algorithm," in Proc. Int. Conf. Machine Learning, 2013, pp. 507-515.
    • (2013) Proc. Int. Conf. Machine Learning , pp. 507-515
    • Ruvolo, P.1    Eaton, E.2
  • 98
  • 100
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • June
    • N. V. Chawla, N. Japkowicz, and A. Kolcz, "Editorial: Special issue on learning from imbalanced data sets," SIGKDD Expl., vol. 6, no. 1, pp. 1-6, June
    • (2004) SIGKDD Expl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 101
    • 57049173376 scopus 로고    scopus 로고
    • Classifying data streams with skewed class distributions and concept drifts
    • Nov.-Dec.
    • J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu, "Classifying data streams with skewed class distributions and concept drifts," IEEE Internet Comput., vol. 12, no. 6, pp. 37-49, Nov.-Dec.
    • (2008) IEEE Internet Comput. , vol.12 , Issue.6 , pp. 37-49
    • Gao, J.1    Ding, B.2    Fan, W.3    Han, J.4    Yu, P.S.5
  • 102
    • 70449102582 scopus 로고    scopus 로고
    • A general framework for mining conceptdrifting data streams with skewed distributions
    • J. Gao, W. Fan, J. Han, and P. S. Yu, "A general framework for mining conceptdrifting data streams with skewed distributions," in Proc. SIAM Int. Conf. Data Mining, 2007, pp. 203-208.
    • (2007) Proc. SIAM Int. Conf. Data Mining , pp. 203-208
    • Gao, J.1    Fan, W.2    Han, J.3    Yu, P.S.4
  • 103
    • 84936948351 scopus 로고    scopus 로고
    • Classifying imbalanced data streams via dynamic feature group weighting with importance sampling
    • K. Wu, A. Edwards, W. Fan, J. Gao, and K. Zhang, "Classifying imbalanced data streams via dynamic feature group weighting with importance sampling," in Proc. SIAM Int. Conf. Data Mining, 2014, pp. 722-730.
    • (2014) Proc. SIAM Int. Conf. Data Mining , pp. 722-730
    • Wu, K.1    Edwards, A.2    Fan, W.3    Gao, J.4    Zhang, K.5
  • 104
    • 70449457525 scopus 로고    scopus 로고
    • SERA: Selectively recursive approach towards nonstationary imbalanced stream data mining
    • 552-529
    • S. Chen and H. He, "SERA: Selectively recursive approach towards nonstationary imbalanced stream data mining," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 552-529.
    • (2009) Proc. Int. Joint Conf. Neural Networks
    • Chen, S.1    He, H.2
  • 105
    • 79952737601 scopus 로고    scopus 로고
    • Towards incremental learning of nonstationary imbalanced data stream: A multiple selectively recursive approach
    • Mar.
    • S. Chen and H. He, "Towards incremental learning of nonstationary imbalanced data stream: A multiple selectively recursive approach," Evolving Syst., vol. 2, no. 1, pp. 35-50, Mar.
    • (2011) Evolving Syst. , vol.2 , Issue.1 , pp. 35-50
    • Chen, S.1    He, H.2
  • 106
    • 84883308045 scopus 로고    scopus 로고
    • Incremental learning of concept drift from streaming imbalanced data
    • Oct.
    • G. Ditzler and R. Polikar, "Incremental learning of concept drift from streaming imbalanced data," IEEE Trans. Knowledge Data Eng., vol. 25, no. 10, pp. 2283-2301, Oct.
    • (2013) IEEE Trans. Knowledge Data Eng. , vol.25 , Issue.10 , pp. 2283-2301
    • Ditzler, G.1    Polikar, R.2
  • 107
    • 79959406717 scopus 로고    scopus 로고
    • An incremental learning framework for concept drift and class imbalance
    • 736-473
    • G. Ditzler and R. Polikar, "An incremental learning framework for concept drift and class imbalance," in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 736-473.
    • (2010) Proc. Int. Joint Conf. Neural Networks
    • Ditzler, G.1    Polikar, R.2
  • 108
    • 84878691303 scopus 로고    scopus 로고
    • Using class imbalance learning for software defect prediction
    • June
    • S. Wang and X. Yao, "Using class imbalance learning for software defect prediction," IEEE Trans. Reliab., vol. 62, no. 2, pp. 434-443, June
    • (2013) IEEE Trans. Reliab. , vol.62 , Issue.2 , pp. 434-443
    • Wang, S.1    Yao, X.2
  • 109
    • 84926617955 scopus 로고    scopus 로고
    • Resampling-based ensemble methods for online class imbalance learning
    • May
    • S. Wang, L. L. Minku, and X. Yao, "Resampling-based ensemble methods for online class imbalance learning," IEEE Trans. Knowledge Data Eng., vol. 27, no. 5, pp. 1356-1368, May
    • (2015) IEEE Trans. Knowledge Data Eng. , vol.27 , Issue.5 , pp. 1356-1368
    • Wang, S.1    Minku, L.L.2    Yao, X.3
  • 111
    • 79959443180 scopus 로고    scopus 로고
    • Incremental learning and model selection under virtual concept drifting environments
    • K. Yamauchi, "Incremental learning and model selection under virtual concept drifting environments," in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 1-8.
    • (2010) Proc. Int. Joint Conf. Neural Networks , pp. 1-8
    • Yamauchi, K.1
  • 116
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • F. Cao, M. Ester, W. Qian, and A. Zhou, "Density-based clustering over an evolving data stream with noise," in Proc. SIAM Conf. Data Mining, 2006, pp. 328-339.
    • (2006) Proc. SIAM Conf. Data Mining , pp. 328-339
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 118
    • 79951740645 scopus 로고    scopus 로고
    • Classifier and cluster ensembles for mining concept drifting data streams
    • P. Zhang, X. Zhu, J. Tan, and L. Guo, "Classifier and cluster ensembles for mining concept drifting data streams," in Proc. Int. Conf. Data Mining, 2010, pp. 1175-
    • (2010) Proc. Int. Conf. Data Mining , pp. 1175-1180
    • Zhang, P.1    Zhu, X.2    Tan, J.3    Guo, L.4
  • 120
    • 80051665683 scopus 로고    scopus 로고
    • Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift
    • Sept.
    • R. Alaiz-Rodriguez, A. Guerrero-Curieses, and J. Cid-Sueiro, "Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift," Neurocomputing, vol. 74, no. 16, pp. 2614-2623, Sept.
    • (2011) Neurocomputing. , vol.74 , Issue.16 , pp. 2614-2623
    • Alaiz-Rodriguez, R.1    Guerrero-Curieses, A.2    Cid-Sueiro, J.3
  • 121
    • 84865411615 scopus 로고    scopus 로고
    • Drift mining in data: A framework for addressing drift in classification
    • Jan.
    • V. Hofer and G. Krempl, "Drift mining in data: A framework for addressing drift in classification," Comput. Stat. Data Anal., vol. 57, no. 1, pp. 377-391, Jan.
    • (2013) Comput. Stat. Data Anal. , vol.57 , Issue.1 , pp. 377-391
    • Hofer, V.1    Krempl, G.2
  • 122
    • 80455127215 scopus 로고    scopus 로고
    • The algorithm apt to classify in concurrence of latency and drift
    • G. Krempl, "The algorithm apt to classify in concurrence of latency and drift," Adv. Intell. Data Anal., vol. 7014, pp. 222-233
    • (2011) Adv. Intell. Data Anal. , vol.7014 , pp. 222-233
    • Krempl, G.1
  • 123
    • 84865066012 scopus 로고    scopus 로고
    • Semi-supervised learning in initially labeled non-stationary environments with gradual drift
    • K. Dyer and R. Polikar, "Semi-supervised learning in initially labeled non-stationary environments with gradual drift," in Proc. Int. Joint Conf. Neural Networks, 2012, pp. 1-9.
    • (2012) Proc. Int. Joint Conf. Neural Networks , pp. 1-9
    • Dyer, K.1    Polikar, R.2
  • 124
    • 84891150042 scopus 로고    scopus 로고
    • COMPOSE: A semi-supervised learning framework for initially labeled non-stationary streaming data
    • Jan.
    • K. B. Dyer, R. Capo, and R. Polikar, "COMPOSE: A semi-supervised learning framework for initially labeled non-stationary streaming data," IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 12-26, Jan.
    • (2013) IEEE Trans. Neural Networks Learn. Syst. , vol.25 , Issue.1 , pp. 12-26
    • Dyer, K.B.1    Capo, R.2    Polikar, R.3
  • 128
    • 84923923168 scopus 로고    scopus 로고
    • Samoa: Scalable advanced massive online analysis
    • Jan.
    • G. D. F. Morales and A. Bifet, "SAMOA: Scalable advanced massive online analysis," J. Mach. Learn. Res., vol. 16, pp. 149-153, Jan.
    • (2015) J. Mach. Learn. Res. , vol.16 , pp. 149-153
    • Morales, G.D.F.1    Bifet, A.2
  • 130
    • 33746060148 scopus 로고    scopus 로고
    • A comparison of ensemble and casebase maintenance techniques for handling concept drift in spam filtering
    • S. Delany, P. Cunningham, and A. Tsymbal, "A comparison of ensemble and casebase maintenance techniques for handling concept drift in spam filtering," in Proc. Int. Conf. Artificial Intelligence, 2006, pp. 340-345.
    • (2006) Proc. Int. Conf. Artificial Intelligence , pp. 340-345
    • Delany, S.1    Cunningham, P.2    Tsymbal, A.3
  • 133
    • 84870457493 scopus 로고    scopus 로고
    • Graph-based consensus maximization among multiple supervised and unsupervised models
    • Oct.
    • J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, "Graph-based consensus maximization among multiple supervised and unsupervised models," IEEE Trans. Knowledge Discovery Data Eng., vol. 25, no. 1, pp. 15-28, Oct.
    • (2011) IEEE Trans. Knowledge Discovery Data Eng. , vol.25 , Issue.1 , pp. 15-28
    • Gao, J.1    Liang, F.2    Fan, W.3    Sun, Y.4    Han, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.