-
1
-
-
84908019121
-
Big data opportunities and challenges: Discussions from data analytics perspectives
-
Nov.
-
Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, "Big data opportunities and challenges: Discussions from data analytics perspectives," IEEE Comput. Intell. Mag., vol. 9, no. 4, pp. 62-74, Nov.
-
(2014)
IEEE Comput. Intell. Mag.
, vol.9
, Issue.4
, pp. 62-74
-
-
Zhou, Z.-H.1
Chawla, N.V.2
Jin, Y.3
Williams, G.J.4
-
2
-
-
84904605380
-
Computational intelligence challenges and applications on large-scale astronomical time series databases
-
Aug.
-
P. Huijse, P. A. Estevez, P. Protopapas, J. C. Principe, and P. Zegers, "Computational intelligence challenges and applications on large-scale astronomical time series databases," IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 27-39, Aug.
-
(2014)
IEEE Comput. Intell. Mag.
, vol.9
, Issue.3
, pp. 27-39
-
-
Huijse, P.1
Estevez, P.A.2
Protopapas, P.3
Principe, J.C.4
Zegers, P.5
-
3
-
-
84904651375
-
The emerging big dimensionality
-
Aug.
-
Y. Zhai, Y.-S. Ong, and I. W. Tsang, "The emerging big dimensionality," IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 14-26, Aug.
-
(2014)
IEEE Comput. Intell. Mag.
, vol.9
, Issue.3
, pp. 14-26
-
-
Zhai, Y.1
Ong, Y.-S.2
Tsang, I.W.3
-
4
-
-
84890419941
-
Data mining with big data
-
Jan.
-
X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, "Data mining with big data," IEEE Trans. Knowledge Data Eng., vol. 26, no. 1, pp. 97-107, Jan.
-
(2014)
IEEE Trans. Knowledge Data Eng.
, vol.26
, Issue.1
, pp. 97-107
-
-
Wu, X.1
Zhu, X.2
Wu, G.-Q.3
Ding, W.4
-
5
-
-
85052723106
-
-
National Research Council Washington, D.C.: National Academies Press
-
National Research Council, Frontiers in Massive Data Analysis. Washington, D.C.: National Academies Press
-
(2013)
Frontiers in Massive Data Analysis
-
-
-
6
-
-
77956258912
-
The problem of concept drift: Definitions and related work
-
Apr.
-
A. Tsymbal, "The problem of concept drift: Definitions and related work," Comput. Sci. Dept., Trinity College, Dublin, Ireland, Tech. Rep., Apr. 2004, vol. 106.
-
Comput. Sci. Dept., Trinity College, Dublin, Ireland, Tech. Rep.
, vol.106
-
-
Tsymbal, A.1
-
7
-
-
84901228061
-
A survey on concept drift adaptation
-
Apr.
-
J. Gama, I. Žliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A survey on concept drift adaptation," ACM Comput. Surv., vol. 46, no. 4, p. 44, Apr.
-
(2014)
ACM Comput. Surv.
, vol.46
, Issue.4
, pp. 44
-
-
Gama, J.1
Žliobaite, I.2
Bifet, A.3
Pechenizkiy, M.4
Bouchachia, A.5
-
8
-
-
0033279068
-
An adaptive algorithm for learning changes in user interests
-
D. H. Widyantoro, T. R. Iorger, and J. Yen, "An adaptive algorithm for learning changes in user interests," in Proc. 8th Conf. Information Knowledge Management, 1999, pp. 405-412.
-
(1999)
Proc. 8th Conf. Information Knowledge Management
, pp. 405-412
-
-
Widyantoro, D.H.1
Iorger, T.R.2
Yen, J.3
-
9
-
-
18744372436
-
Tracking changes in user interests with a few relevance judgments
-
D. H. Widyantoro, T. R. Ioerge, and J. Yen, "Tracking changes in user interests with a few relevance judgments," in Proc. ACM Int. Conf. Information Knowledge Management, 2003, pp. 548-551.
-
(2003)
Proc. ACM Int. Conf. Information Knowledge Management
, pp. 548-551
-
-
Widyantoro, D.H.1
Ioerge, T.R.2
Yen, J.3
-
10
-
-
80053634784
-
Incremental learning of concept drift in nonstationary environments
-
Oct.
-
R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary environments," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1517-1531, Oct.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.10
, pp. 1517-1531
-
-
Elwell, R.1
Polikar, R.2
-
12
-
-
84945279499
-
Quantifying the limited and gradual concept drift assumption
-
J. Sarnelle, A. Sanchez, R. Capo, J. Haas, and R. Polikar, "Quantifying the limited and gradual concept drift assumption," in Proc. Int. Joint Conf. Neural Networks
-
(2015)
Proc. Int. Joint Conf. Neural Networks
-
-
Sarnelle, J.1
Sanchez, A.2
Capo, R.3
Haas, J.4
Polikar, R.5
-
13
-
-
84942770326
-
Comparative study between incremental and ensemble learning on data streams: Case study
-
June
-
W. Zang, P. Zhang, C. Zhou, and L. Guo, "Comparative study between incremental and ensemble learning on data streams: Case study," J. Big Data, vol. 1, no. 5, pp. 1-16, June
-
(2014)
J. Big Data.
, vol.1
, Issue.5
, pp. 1-16
-
-
Zang, W.1
Zhang, P.2
Zhou, C.3
Guo, L.4
-
14
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks
-
Nov.
-
R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Trans. Syst. Man Cybern., vol. 31, no. 4, pp. 497-508, Nov.
-
(2001)
IEEE Trans. Syst. Man Cybern.
, vol.31
, Issue.4
, pp. 497-508
-
-
Polikar, R.1
Udpa, L.2
Udpa, S.S.3
Honavar, V.4
-
15
-
-
70350700681
-
New ensemble methods for evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda, "New ensemble methods for evolving data streams," in Proc. Knowledge Data Discovery, 2009, pp. 139-148.
-
(2009)
Proc. Knowledge Data Discovery
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavalda, R.5
-
17
-
-
84973857317
-
ART 2: Self-organization of stable category recognition codes for analog input patterns
-
Dec.
-
G. Carpenter and S. Grossberg, "ART 2: Self-organization of stable category recognition codes for analog input patterns," Appl. Opt., vol. 26, no. 23, pp. 4919-4930, Dec.
-
(1987)
Appl. Opt.
, vol.26
, Issue.23
, pp. 4919-4930
-
-
Carpenter, G.1
Grossberg, S.2
-
18
-
-
0742323983
-
A general framework for mining massive data streams
-
P. Domingos and G. Hulten, "A general framework for mining massive data streams," J. Comput. Graph. Stat., vol. 12, no. 4, pp. 945-949
-
(2003)
J. Comput. Graph. Stat.
, vol.12
, Issue.4
, pp. 945-949
-
-
Domingos, P.1
Hulten, G.2
-
19
-
-
84945313063
-
Improving adaptive bagging methods for evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, and R. Gavalda, "Improving adaptive bagging methods for evolving data streams," in Proc. 1st Asian Conf. Machine Learning: Advances Machine Learning, 2009, pp. 27-37.
-
(2009)
Proc. 1st Asian Conf. Machine Learning: Advances Machine Learning
, pp. 27-37
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Gavalda, R.4
-
21
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Apr.
-
G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr.
-
(1996)
Mach. Learn.
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
24
-
-
0026373254
-
ARTMAP: A self-organizing neural network architecture for fast supervised learning and pattern recognition
-
G. Carpenter, S. Grossberg, and J. Reynolds, "ARTMAP: A self-organizing neural network architecture for fast supervised learning and pattern recognition," in Proc. Int. Joint Conf. Neural Networks, 1991, pp. 863-868.
-
(1991)
Proc. Int. Joint Conf. Neural Networks
, pp. 863-868
-
-
Carpenter, G.1
Grossberg, S.2
Reynolds, J.3
-
25
-
-
0026923589
-
Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
-
Sept.
-
G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, and D. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 698-713, Sept.
-
(1992)
IEEE Trans. Neural Netw.
, vol.3
, Issue.5
, pp. 698-713
-
-
Carpenter, G.1
Grossberg, S.2
Markuzon, N.3
Reynolds, J.4
Rosen, D.5
-
26
-
-
35148838877
-
The weighted majority algorithm
-
Feb.
-
N. Littlestone and M. K. Warmuth, "The weighted majority algorithm," Inform. Comput., vol. 108, no. 2, pp. 212-261, Feb.
-
(1994)
Inform. Comput.
, vol.108
, Issue.2
, pp. 212-261
-
-
Littlestone, N.1
Warmuth, M.K.2
-
27
-
-
67149129014
-
-
Cambridge, MA: MIT Press
-
J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, Dataset Shift in Machine Learning. Cambridge, MA: MIT Press
-
(2009)
Dataset Shift in Machine Learning
-
-
Quiñonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.4
-
29
-
-
85161964516
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
Cambridge, MA: MIT Press
-
M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe, "Direct importance estimation with model selection and its application to covariate shift adaptation," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2008, pp. 1433-
-
(2008)
Advances in Neural Information Processing Systems
, pp. 1433-1440
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Buenau, P.V.4
Kawanabe, M.5
-
30
-
-
34249047899
-
Covariate shift adaptation by importance weighted cross validation
-
May
-
M. Sugiyama, M. Krauledat, and K. R. Müller, "Covariate shift adaptation by importance weighted cross validation," J. Mach. Learn. Res., vol. 8, pp. 985-1005, May
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 985-1005
-
-
Sugiyama, M.1
Krauledat, M.2
Müller, K.R.3
-
31
-
-
77956031473
-
A survey on transfer learning
-
Oct.
-
S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowledge Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct.
-
(2010)
IEEE Trans. Knowledge Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
32
-
-
70049090062
-
Domain adaptation with multiple sources
-
Cambridge, MA:MIT Press
-
Y. Mansour, M. Mohri, and A. Rostamizadeh, "Domain adaptation with multiple sources," in Advances Neural Information Processing Systems. Cambridge, MA: MIT Press, 2009, pp. 1041-
-
(2009)
Advances Neural Information Processing Systems
, pp. 1041-1048
-
-
Mansour, Y.1
Mohri, M.2
Rostamizadeh, A.3
-
33
-
-
84897573740
-
A theory of learning from different domains
-
May
-
S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, "A theory of learning from different domains," Mach. Learn., vol. 79, nos. 1-2, pp. 151-175, May
-
(2010)
Mach. Learn.
, vol.79
, Issue.1-2
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
34
-
-
70049090801
-
An empirical analysis of domain adaptation algorithms for genomic sequence analysis
-
G. Schweikert, C. Widmer, B. Schölkopf, and G. Rtsch, "An empirical analysis of domain adaptation algorithms for genomic sequence analysis," in Proc. Advances Neural Information Processing Systems, 2009, pp. 1433-
-
(2009)
Proc. Advances Neural Information Processing Systems
, pp. 1433-1440
-
-
Schweikert, G.1
Widmer, C.2
Schölkopf, B.3
Rtsch, G.4
-
35
-
-
1942483164
-
-
Ph.D. dissertation, Univ. California, Berkeley, CA
-
N. Oza, "On-line ensemble learning," Ph.D. dissertation, Univ. California, Berkeley, CA
-
(2001)
On-line Ensemble Learning
-
-
Oza, N.1
-
36
-
-
78650162978
-
Sentiment knowledge discovery in Twitter streaming data
-
A. Bifet and E. Frank, "Sentiment knowledge discovery in Twitter streaming data," in Proc. Int. Conf. Discovery Science, 2010, pp. 1-15.
-
(2010)
Proc. Int. Conf. Discovery Science
, pp. 1-15
-
-
Bifet, A.1
Frank, E.2
-
37
-
-
79957574938
-
Moving pictures of the human microbiome
-
J. G. Caporaso, C. L. Lauber, E. K. Costello, D. Berg-Lyons, A. Gonzalez, J. Stombaugh, D. Knights, P. Gajer, J. Ravel, N. Fierer, J. Gordon, and R. Knight, "Moving pictures of the human microbiome," Genome Biol., vol. 12, no. 5, p. R50
-
(2011)
Genome Biol.
, vol.12
, Issue.5
, pp. R50
-
-
Caporaso, J.G.1
Lauber, C.L.2
Costello, E.K.3
Berg-Lyons, D.4
Gonzalez, A.5
Stombaugh, J.6
Knights, D.7
Gajer, P.8
Ravel, J.9
Fierer, N.10
Gordon, J.11
Knight, R.12
-
38
-
-
84861967883
-
Predicting microbial distributions in space and time
-
N. Fierer and J. Ladau, "Predicting microbial distributions in space and time," Nature Methods, vol. 9, no. 6, pp. 549-551
-
(2012)
Nature Methods.
, vol.9
, Issue.6
, pp. 549-551
-
-
Fierer, N.1
Ladau, J.2
-
39
-
-
57749121230
-
Just-in-time adaptive classifiers-part II: Designing the classifier
-
Dec.
-
C. Alippi and M. Roveri, "Just-in-time adaptive classifiers-part II: Designing the classifier," IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2053-2064, Dec.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.12
, pp. 2053-2064
-
-
Alippi, C.1
Roveri, M.2
-
40
-
-
70449421606
-
Just in time classifiers: Managing the slow drift case
-
C. Alippi, G. Boracchi, and M. Roveri, "Just in time classifiers: Managing the slow drift case," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 114-120.
-
(2009)
Proc. Int. Joint Conf. Neural Networks
, pp. 114-120
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
41
-
-
33749618778
-
Learning with drift detection
-
J. Gama, P. Medas, G. Castillo, and P. Rodrigues, "Learning with drift detection," in Proc. Advances Artificial Intelligence-SBIA, 2004, pp. 286-295.
-
(2004)
Proc. Advances Artificial Intelligence-SBIA
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
43
-
-
84875892348
-
Just-in-time classifiers for recurrent concepts
-
Apr.
-
C. Alippi, G. Boracchi, and M. Roveri, "Just-in-time classifiers for recurrent concepts," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 620-634, Apr.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.4
, pp. 620-634
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
45
-
-
85123650840
-
Detecting change in data streams
-
D. Kifer, S. Ben-David, and J. Gehrke, "Detecting change in data streams," in Proc. 30th Int. Conf. Very Large Data Bases, 2004, vol. 30, pp. 180-191.
-
Proc. 30th Int. Conf. Very Large Data Bases
, vol.30
, pp. 180-191
-
-
Kifer, D.1
Ben-David, S.2
Gehrke, J.3
-
48
-
-
33750739280
-
Kalman filters and adaptive windows for learning in data streams
-
A. Bifet and R. Gavalda, "Kalman filters and adaptive windows for learning in data streams," in Proc. Int. Conf. Discovery Science, 2006, pp. 29-40.
-
(2006)
Proc. Int. Conf. Discovery Science
, pp. 29-40
-
-
Bifet, A.1
Gavalda, R.2
-
49
-
-
84945269322
-
An adaptive cusum-based test for signal change detection
-
C. Alippi and M. Roveri, "An adaptive cusum-based test for signal change detection," in Proc. Int. Symp. Circuits Systems, 2006, pp. 1-4.
-
(2006)
Proc. Int. Symp. Circuits Systems
, pp. 1-4
-
-
Alippi, C.1
Roveri, M.2
-
50
-
-
48949116228
-
Just-in-time adaptive classif iers-Part I: Detecting nonstationary changes
-
July
-
C. Alippi and M. Roveri, "Just-in-time adaptive classif iers-Part I: Detecting nonstationary changes," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1145-1153, July
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.7
, pp. 1145-1153
-
-
Alippi, C.1
Roveri, M.2
-
51
-
-
79959476657
-
Change detection tests using the ICI rule
-
C. Alippi, G. Boracchi, and M. Roveri, "Change detection tests using the ICI rule," in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 1-7.
-
(2010)
Proc. Int. Joint Conf. Neural Networks
, pp. 1-7
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
52
-
-
84865089248
-
Just-in-time ensemble of classifiers
-
C. Alippi, G. Boracchi, and M. Roveri, "Just-in-time ensemble of classifiers," in Proc. Int. Joint Conf. Neural Networks, 2012, pp. 1-8.
-
(2012)
Proc. Int. Joint Conf. Neural Networks
, pp. 1-8
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
53
-
-
43549086207
-
Real-time data mining of non-stationary data streams from sensor networks
-
July
-
L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, "Real-time data mining of non-stationary data streams from sensor networks," Inform. Fusion, vol. 9, no. 3, pp. 344-353, July
-
(2008)
Inform. Fusion.
, vol.9
, Issue.3
, pp. 344-353
-
-
Cohen, L.1
Avrahami-Bakish, G.2
Last, M.3
Kandel, A.4
Kipersztok, O.5
-
54
-
-
84919941067
-
Concept drift detection through resampling
-
M. Harel, K. Crammer, R. El-Yaniv, and S. Mannor, "Concept drift detection through resampling," in Proc. Int. 31st Conf. Machine Learning, 2014. pp. 1009-
-
(2014)
Proc. Int. 31st Conf. Machine Learning
, pp. 1009-1017
-
-
Harel, M.1
Crammer, K.2
El-Yaniv, R.3
Mannor, S.4
-
55
-
-
70449408148
-
Learning, detecting, understanding, and predicting concept changes
-
K. Nishida and K. Yamauchi, "Learning, detecting, understanding, and predicting concept changes," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 2280-
-
(2009)
Proc. Int. Joint Conf. Neural Networks
, pp. 2280-2287
-
-
Nishida, K.1
Yamauchi, K.2
-
56
-
-
38149105933
-
Early drift detection method
-
M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá, and R. Morales- Bueno, "Early drift detection method," in Proc. 4th Int. Workshop Knowledge Discovery from Data Streams, 2006, pp. 1-4.
-
(2006)
Proc. 4th Int. Workshop Knowledge Discovery from Data Streams
, pp. 1-4
-
-
Baena-García, M.1
Del Campo-Ávila, J.2
Fidalgo, R.3
Bifet, A.4
Gavaldá, R.5
Morales- Bueno, R.6
-
57
-
-
38149140915
-
Detecting concept drift using statistical testing
-
Berlin, Germany: Springer-Verlag
-
K. Nishida and K. Yamauchi, "Detecting concept drift using statistical testing," in Discovery Science. Berlin, Germany: Springer-Verlag, 2007, pp. 264-269.
-
(2007)
Discovery Science
, pp. 264-269
-
-
Nishida, K.1
Yamauchi, K.2
-
58
-
-
1642519908
-
The changepoint model for statistical process control
-
Oct.
-
D. M. Hawkins, Q. Peihua, and W. K. Chang, "The changepoint model for statistical process control," J. Qual. Technol., vol. 35, no. 4, pp. 355-366, Oct.
-
(2003)
J. Qual. Technol.
, vol.35
, Issue.4
, pp. 355-366
-
-
Hawkins, D.M.1
Peihua, Q.2
Chang, W.K.3
-
59
-
-
81555201641
-
Nonparametric monitoring of data streams for changes in location and scale
-
G. J. Ross, D. K. Tasoulis, and N. M. Adams, "Nonparametric monitoring of data streams for changes in location and scale," Technometrics, vol. 53, no. 4, pp. 379-389
-
(2011)
Technometrics.
, vol.53
, Issue.4
, pp. 379-389
-
-
Ross, G.J.1
Tasoulis, D.K.2
Adams, N.M.3
-
60
-
-
0000090155
-
Sequential tests of statistical hypotheses
-
June
-
A. Wald, "Sequential tests of statistical hypotheses," Ann. Math. Stat., vol. 16, no. 2, pp. 117-186, June
-
(1945)
Ann. Math. Stat.
, vol.16
, Issue.2
, pp. 117-186
-
-
Wald, A.1
-
62
-
-
84893630837
-
One pass concept change detection for data streams
-
Berlin, Germany: Springer-Verlag
-
S. Sakthithasan, R. Pears, and Y. S. Koh, "One pass concept change detection for data streams," in Advances in Knowledge Discovery and Data Mining, Berlin, Germany: Springer- Verlag, 2013, pp. 461-472.
-
(2013)
Advances in Knowledge Discovery and Data Mining
, pp. 461-472
-
-
Sakthithasan, S.1
Pears, R.2
Koh, Y.S.3
-
63
-
-
84910150798
-
Detecting concept change in dynamic data streams
-
Jan.
-
R. Pears, S. Sakthithasan, and Y. S. Koh, "Detecting concept change in dynamic data streams," Mach. Learn., vol. 97, no. 3, pp. 259-293, Jan.
-
(2014)
Mach. Learn.
, vol.97
, Issue.3
, pp. 259-293
-
-
Pears, R.1
Sakthithasan, S.2
Koh, Y.S.3
-
64
-
-
84922901306
-
Online and non-parametric drift detection methods based on hoeffdings bounds
-
Aug.
-
I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno, A. Ortiz- Díaz, and Y. Caballero-Mota, "Online and non-parametric drift detection methods based on hoeffdings bounds," IEEE Trans. Knowledge Data Eng., vol. 27, no. 3, pp. 810-823, Aug.
-
(2014)
IEEE Trans. Knowledge Data Eng.
, vol.27
, Issue.3
, pp. 810-823
-
-
Frías-Blanco, I.1
Del Campo-Ávila, J.2
Ramos-Jiménez, G.3
Morales-Bueno, R.4
Ortiz- Díaz, A.5
Caballero-Mota, Y.6
-
65
-
-
80051790497
-
A just-in-time adaptive classification system based on the intersection of confidence intervals rule
-
Oct.
-
C. Alippi, G. Boracchi, and M. Roveri, "A just-in-time adaptive classification system based on the intersection of confidence intervals rule," Neural Netw., vol. 24, no. 8, pp. 791-800, Oct.
-
(2011)
Neural Netw.
, vol.24
, Issue.8
, pp. 791-800
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
66
-
-
80054731733
-
A hierarchical, nonparametric, sequential change-detection test
-
C. Alippi, G. Boracchi, and M. Roveri, "A hierarchical, nonparametric, sequential change-detection test," in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 2889-
-
(2011)
Proc. Int. Joint Conf. Neural Networks
, pp. 2889-2896
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
67
-
-
84908480433
-
A cognitive monitoring system for contaminant detection in intelligent buildings
-
July
-
G. Boracchi, M. Michaelides, and M. Roveri, "A cognitive monitoring system for contaminant detection in intelligent buildings," in Proc. Int. Joint Conf. Neural Networks, July 2014, pp. 69-76.
-
(2014)
Proc. Int. Joint Conf. Neural Networks
, pp. 69-76
-
-
Boracchi, G.1
Michaelides, M.2
Roveri, M.3
-
68
-
-
80054760676
-
An effective just-in-time adaptive classifier for gradual concept drifts
-
C. Alippi, G. Boracchi, and M. Roveri, "An effective just-in-time adaptive classifier for gradual concept drifts," in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 1675-
-
(2011)
Proc. Int. Joint Conf. Neural Networks
, pp. 1675-1682
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
71
-
-
84883713774
-
Learning drifting concepts: Example selection vs example weighting
-
Aug.
-
R. Klinkenberg, "Learning drifting concepts: Example selection vs. example weighting," Intell. Data Anal., vol. 8, no. 3, pp. 281-300, Aug.
-
(2004)
Intell. Data Anal.
, vol.8
, Issue.3
, pp. 281-300
-
-
Klinkenberg, R.1
-
72
-
-
0022026217
-
Random sampling with a reservoir
-
Mar.
-
J. S. Vitter, "Random sampling with a reservoir," ACM Trans. Math. Softw., vol. 11, no. 1, pp. 37-57, Mar.
-
(1985)
ACM Trans. Math. Softw.
, vol.11
, Issue.1
, pp. 37-57
-
-
Vitter, J.S.1
-
73
-
-
84893850265
-
On biased reservoir sampling in the presence of stream evolution
-
C. C. Aggarwal, "On biased reservoir sampling in the presence of stream evolution," in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 607-618.
-
(2006)
Proc. 32nd Int. Conf. Very Large Data Bases
, pp. 607-618
-
-
Aggarwal, C.C.1
-
74
-
-
47349093896
-
A test paradigm for detecting changes in transactional data streams
-
Berlin, Germany: Springer-Verlag
-
W. Ng and M. Dash, "A test paradigm for detecting changes in transactional data streams," in Database Systems for Advanced Applications. Berlin, Germany: Springer-Verlag, 2008, pp. 204-219.
-
(2008)
Database Systems for Advanced Applications
, pp. 204-219
-
-
Ng, W.1
Dash, M.2
-
76
-
-
0035789299
-
Mining time-changing data streams
-
G. Hulten, L. Spencer, and P. Domingos, "Mining time-changing data streams," in Proc. Conf. Knowledge Discovery Data, 2001, pp. 97-106.
-
(2001)
Proc. Conf. Knowledge Discovery Data
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
77
-
-
70349145363
-
Ambiguous decision trees for mining concept-drifting data streams
-
Nov.
-
J. Liu, X. Li, and W. Zhong, "Ambiguous decision trees for mining concept-drifting data streams," Pattern Recognit. Lett., vol. 30, no. 15, pp. 1347-1355, Nov.
-
(2009)
Pattern Recognit. Lett.
, vol.30
, Issue.15
, pp. 1347-1355
-
-
Liu, J.1
Li, X.2
Zhong, W.3
-
78
-
-
50149120100
-
Info-fuzzy algorithms for mining dynamic data streams
-
Sept.
-
L. Cohen, G. Avrahami, M. Last, and A. Kandel, "Info-fuzzy algorithms for mining dynamic data streams," Appl. Soft Comput., vol. 8, no. 4, pp. 1283-1294, Sept.
-
(2008)
Appl. Soft Comput.
, vol.8
, Issue.4
, pp. 1283-1294
-
-
Cohen, L.1
Avrahami, G.2
Last, M.3
Kandel, A.4
-
79
-
-
43549086207
-
Real-time data mining of non-stationary data streams from sensor networks
-
July
-
L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, "Real-time data mining of non-stationary data streams from sensor networks," Inform. Fusion, vol. 9, no. 3, pp. 344-353, July
-
(2008)
Inform. Fusion.
, vol.9
, Issue.3
, pp. 344-353
-
-
Cohen, L.1
Avrahami-Bakish, G.2
Last, M.3
Kandel, A.4
Kipersztok, O.5
-
80
-
-
84878490532
-
Online sequential extreme learning machine in nonstationary environments
-
Sept.
-
Y. Ye, S. Squartini, and F. Piazza, "Online sequential extreme learning machine in nonstationary environments," Neurocomputing, vol. 116, pp. 94-101, Sept.
-
(2013)
Neurocomputing.
, vol.116
, pp. 94-101
-
-
Ye, Y.1
Squartini, S.2
Piazza, F.3
-
81
-
-
35348907876
-
Dynamic integration of classifiers for handling concept drift
-
Jan.
-
A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, "Dynamic integration of classifiers for handling concept drift," Inform. Fusion, vol. 9, no. 1, pp. 56-68, Jan.
-
(2008)
Inform. Fusion.
, vol.9
, Issue.1
, pp. 56-68
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
Puuronen, S.4
-
82
-
-
40649128119
-
Nonlinear neural networks: Principles, mechanisms, and architectures
-
S. Grossberg, "Nonlinear neural networks: Principles, mechanisms, and architectures," Neural Netw., vol. 1, no. 1, pp. 17-61
-
(1988)
Neural Netw.
, vol.1
, Issue.1
, pp. 17-61
-
-
Grossberg, S.1
-
83
-
-
84885030861
-
Discounted expert weighting for concept drift
-
G. Ditzler, G. Rosen, and R. Polikar, "Discounted expert weighting for concept drift," in Proc. IEEE Symp. Computational Intelligence Dynamic Uncertain Environments, 2013, pp. 61-67.
-
(2013)
Proc. IEEE Symp. Computational Intelligence Dynamic Uncertain Environments
, pp. 61-67
-
-
Ditzler, G.1
Rosen, G.2
Polikar, R.3
-
84
-
-
84908475950
-
Domain adaptation bounds for multiple expert systems under concept drift
-
G. Ditzler, G. Rosen, and R. Polikar, "Domain adaptation bounds for multiple expert systems under concept drift," in Proc. Int. Joint Conf. Neural Networks, 2014, pp. 595-601.
-
(2014)
Proc. Int. Joint Conf. Neural Networks
, pp. 595-601
-
-
Ditzler, G.1
Rosen, G.2
Polikar, R.3
-
85
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
May
-
L. L. Minku, A. P. White, and X. Yao, "The impact of diversity on online ensemble learning in the presence of concept drift," IEEE Trans. Knowledge Data Eng., vol. 22, no. 5, pp. 731-742, May
-
(2010)
IEEE Trans. Knowledge Data Eng.
, vol.22
, Issue.5
, pp. 731-742
-
-
Minku, L.L.1
White, A.P.2
Yao, X.3
-
86
-
-
84857738059
-
DDD: A new ensemble approach for dealing with concept drift
-
Apr.
-
L. L. Minku and X. Yao, "DDD: A new ensemble approach for dealing with concept drift," IEEE Trans. Knowledge Discovery Data Eng., vol. 24, no. 4, pp. 619-633, Apr.
-
(2012)
IEEE Trans. Knowledge Discovery Data Eng.
, vol.24
, Issue.4
, pp. 619-633
-
-
Minku, L.L.1
Yao, X.2
-
89
-
-
77952084155
-
Online nonstationary boosting
-
A. Pocock, P. Yiapanis, J. Singer, M. Lujan, and G. Brown, "Online nonstationary boosting," in Proc. Int. Workshop Multiple Classifier Systems, 2010, pp. 205-214.
-
(2010)
Proc. Int. Workshop Multiple Classifier Systems
, pp. 205-214
-
-
Pocock, A.1
Yiapanis, P.2
Singer, J.3
Lujan, M.4
Brown, G.5
-
90
-
-
37749050180
-
Dynamic weighted majority: An ensemble method for drifting concepts
-
Dec.
-
J. Kolter and M. Maloof, "Dynamic weighted majority: An ensemble method for drifting concepts," J. Mach. Learn. Res., vol. 8, pp. 2755-2790, Dec.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 2755-2790
-
-
Kolter, J.1
Maloof, M.2
-
91
-
-
84891166135
-
Reacting to different types of concept drift: The accuracy updated ensemble algorithm
-
Jan.
-
D. Brzezinski and J. Stephanowski, "Reacting to different types of concept drift: The accuracy updated ensemble algorithm," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 81-94, Jan.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, Issue.1
, pp. 81-94
-
-
Brzezinski, D.1
Stephanowski, J.2
-
92
-
-
78649394566
-
Classification using streaming random forests
-
Jan.
-
H. Abdulsalam, D. Skillicorn, and P. Martin, "Classification using streaming random forests," IEEE Trans. Knowledge Data Eng., vol. 23, no. 1, pp. 22-36, Jan.
-
(2011)
IEEE Trans. Knowledge Data Eng.
, vol.23
, Issue.1
, pp. 22-36
-
-
Abdulsalam, H.1
Skillicorn, D.2
Martin, P.3
-
93
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Aug.
-
Y. Freund and R. Shapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, pp. 119-139, Aug.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Shapire, R.2
-
94
-
-
79959429637
-
MuSeRA: Multiple selectively recursive approach towards imbalanced stream data mining
-
S. Chen, H. He, K. Li, and S. Sesai, "MuSeRA: Multiple selectively recursive approach towards imbalanced stream data mining," in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 2857-
-
(2010)
Proc. Int. Joint Conf. Neural Networks
, pp. 2857-2864
-
-
Chen, S.1
He, H.2
Li, K.3
Sesai, S.4
-
95
-
-
70449436537
-
Incremental learning in nonstationary environments with controlled forgetting
-
R. Elwell and R. Polikar, "Incremental learning in nonstationary environments with controlled forgetting," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 771-778.
-
(2009)
Proc. Int. Joint Conf. Neural Networks
, pp. 771-778
-
-
Elwell, R.1
Polikar, R.2
-
98
-
-
68549133155
-
Learning from imbalanced data
-
Sept.
-
H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Data Knowledge Discovery, vol. 12, no. 9, pp. 1263-1284, Sept.
-
(2009)
IEEE Trans. Data Knowledge Discovery.
, vol.12
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
99
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
June
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique," J. Artif. Intell. Res., vol. 16, pp. 321-357, June
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
100
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
June
-
N. V. Chawla, N. Japkowicz, and A. Kolcz, "Editorial: Special issue on learning from imbalanced data sets," SIGKDD Expl., vol. 6, no. 1, pp. 1-6, June
-
(2004)
SIGKDD Expl.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
101
-
-
57049173376
-
Classifying data streams with skewed class distributions and concept drifts
-
Nov.-Dec.
-
J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu, "Classifying data streams with skewed class distributions and concept drifts," IEEE Internet Comput., vol. 12, no. 6, pp. 37-49, Nov.-Dec.
-
(2008)
IEEE Internet Comput.
, vol.12
, Issue.6
, pp. 37-49
-
-
Gao, J.1
Ding, B.2
Fan, W.3
Han, J.4
Yu, P.S.5
-
102
-
-
70449102582
-
A general framework for mining conceptdrifting data streams with skewed distributions
-
J. Gao, W. Fan, J. Han, and P. S. Yu, "A general framework for mining conceptdrifting data streams with skewed distributions," in Proc. SIAM Int. Conf. Data Mining, 2007, pp. 203-208.
-
(2007)
Proc. SIAM Int. Conf. Data Mining
, pp. 203-208
-
-
Gao, J.1
Fan, W.2
Han, J.3
Yu, P.S.4
-
103
-
-
84936948351
-
Classifying imbalanced data streams via dynamic feature group weighting with importance sampling
-
K. Wu, A. Edwards, W. Fan, J. Gao, and K. Zhang, "Classifying imbalanced data streams via dynamic feature group weighting with importance sampling," in Proc. SIAM Int. Conf. Data Mining, 2014, pp. 722-730.
-
(2014)
Proc. SIAM Int. Conf. Data Mining
, pp. 722-730
-
-
Wu, K.1
Edwards, A.2
Fan, W.3
Gao, J.4
Zhang, K.5
-
104
-
-
70449457525
-
SERA: Selectively recursive approach towards nonstationary imbalanced stream data mining
-
552-529
-
S. Chen and H. He, "SERA: Selectively recursive approach towards nonstationary imbalanced stream data mining," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 552-529.
-
(2009)
Proc. Int. Joint Conf. Neural Networks
-
-
Chen, S.1
He, H.2
-
105
-
-
79952737601
-
Towards incremental learning of nonstationary imbalanced data stream: A multiple selectively recursive approach
-
Mar.
-
S. Chen and H. He, "Towards incremental learning of nonstationary imbalanced data stream: A multiple selectively recursive approach," Evolving Syst., vol. 2, no. 1, pp. 35-50, Mar.
-
(2011)
Evolving Syst.
, vol.2
, Issue.1
, pp. 35-50
-
-
Chen, S.1
He, H.2
-
106
-
-
84883308045
-
Incremental learning of concept drift from streaming imbalanced data
-
Oct.
-
G. Ditzler and R. Polikar, "Incremental learning of concept drift from streaming imbalanced data," IEEE Trans. Knowledge Data Eng., vol. 25, no. 10, pp. 2283-2301, Oct.
-
(2013)
IEEE Trans. Knowledge Data Eng.
, vol.25
, Issue.10
, pp. 2283-2301
-
-
Ditzler, G.1
Polikar, R.2
-
107
-
-
79959406717
-
An incremental learning framework for concept drift and class imbalance
-
736-473
-
G. Ditzler and R. Polikar, "An incremental learning framework for concept drift and class imbalance," in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 736-473.
-
(2010)
Proc. Int. Joint Conf. Neural Networks
-
-
Ditzler, G.1
Polikar, R.2
-
108
-
-
84878691303
-
Using class imbalance learning for software defect prediction
-
June
-
S. Wang and X. Yao, "Using class imbalance learning for software defect prediction," IEEE Trans. Reliab., vol. 62, no. 2, pp. 434-443, June
-
(2013)
IEEE Trans. Reliab.
, vol.62
, Issue.2
, pp. 434-443
-
-
Wang, S.1
Yao, X.2
-
109
-
-
84926617955
-
Resampling-based ensemble methods for online class imbalance learning
-
May
-
S. Wang, L. L. Minku, and X. Yao, "Resampling-based ensemble methods for online class imbalance learning," IEEE Trans. Knowledge Data Eng., vol. 27, no. 5, pp. 1356-1368, May
-
(2015)
IEEE Trans. Knowledge Data Eng.
, vol.27
, Issue.5
, pp. 1356-1368
-
-
Wang, S.1
Minku, L.L.2
Yao, X.3
-
110
-
-
83655189796
-
Dealing with concept drift and class imbalance in multi-label stream classification
-
E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas, "Dealing with concept drift and class imbalance in multi-label stream classification," in Proc. Int. Joint Conf. Artificial Intelligence, 2011, pp. 1583-
-
(2011)
Proc. Int. Joint Conf. Artificial Intelligence
, pp. 1583-1588
-
-
Xioufis, E.S.1
Spiliopoulou, M.2
Tsoumakas, G.3
Vlahavas, I.4
-
111
-
-
79959443180
-
Incremental learning and model selection under virtual concept drifting environments
-
K. Yamauchi, "Incremental learning and model selection under virtual concept drifting environments," in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 1-8.
-
(2010)
Proc. Int. Joint Conf. Neural Networks
, pp. 1-8
-
-
Yamauchi, K.1
-
112
-
-
84865066024
-
Transductive learning algorithms for nonstationary environments
-
G. Ditzler, G. Rosen, and R. Polikar, "Transductive learning algorithms for nonstationary environments," in Proc. Int. Joint Conf. Neural Networks, 2012, pp. 1-8.
-
(2012)
Proc. Int. Joint Conf. Neural Networks
, pp. 1-8
-
-
Ditzler, G.1
Rosen, G.2
Polikar, R.3
-
114
-
-
84879463278
-
StreamKM++: A clustering algorithms for data streams
-
M. Ackermann, C. Lammersen, M. Mrtens, C. Raupach, C. Sohlerand, and K. Swierkot, "StreamKM++: A clustering algorithms for data streams," in Proc. 12th Workshop Algorithm Engineering Experiments, 2010, pp. 1-31.
-
(2010)
Proc. 12th Workshop Algorithm Engineering Experiments
, pp. 1-31
-
-
Ackermann, M.1
Lammersen, C.2
Mrtens, M.3
Raupach, C.4
Sohlerand, C.5
Swierkot, K.6
-
115
-
-
85012236181
-
A framework for clustering evolving data streams
-
C. Aggarwal, J. Han, J. Wang, and P. Yu, "A framework for clustering evolving data streams," in Proc. 29th Int. Conf. Very Large Data Bases, 2003, pp. 81-92.
-
(2003)
Proc. 29th Int. Conf. Very Large Data Bases
, pp. 81-92
-
-
Aggarwal, C.1
Han, J.2
Wang, J.3
Yu, P.4
-
116
-
-
33745434639
-
Density-based clustering over an evolving data stream with noise
-
F. Cao, M. Ester, W. Qian, and A. Zhou, "Density-based clustering over an evolving data stream with noise," in Proc. SIAM Conf. Data Mining, 2006, pp. 328-339.
-
(2006)
Proc. SIAM Conf. Data Mining
, pp. 328-339
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
117
-
-
84891134709
-
Active learning with drifting streaming data
-
Jan.
-
I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, "Active learning with drifting streaming data," IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 27-39, Jan.
-
(2014)
IEEE Trans. Neural Networks Learn. Syst.
, vol.25
, Issue.1
, pp. 27-39
-
-
Zliobaite, I.1
Bifet, A.2
Pfahringer, B.3
Holmes, G.4
-
118
-
-
79951740645
-
Classifier and cluster ensembles for mining concept drifting data streams
-
P. Zhang, X. Zhu, J. Tan, and L. Guo, "Classifier and cluster ensembles for mining concept drifting data streams," in Proc. Int. Conf. Data Mining, 2010, pp. 1175-
-
(2010)
Proc. Int. Conf. Data Mining
, pp. 1175-1180
-
-
Zhang, P.1
Zhu, X.2
Tan, J.3
Guo, L.4
-
120
-
-
80051665683
-
Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift
-
Sept.
-
R. Alaiz-Rodriguez, A. Guerrero-Curieses, and J. Cid-Sueiro, "Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift," Neurocomputing, vol. 74, no. 16, pp. 2614-2623, Sept.
-
(2011)
Neurocomputing.
, vol.74
, Issue.16
, pp. 2614-2623
-
-
Alaiz-Rodriguez, R.1
Guerrero-Curieses, A.2
Cid-Sueiro, J.3
-
121
-
-
84865411615
-
Drift mining in data: A framework for addressing drift in classification
-
Jan.
-
V. Hofer and G. Krempl, "Drift mining in data: A framework for addressing drift in classification," Comput. Stat. Data Anal., vol. 57, no. 1, pp. 377-391, Jan.
-
(2013)
Comput. Stat. Data Anal.
, vol.57
, Issue.1
, pp. 377-391
-
-
Hofer, V.1
Krempl, G.2
-
122
-
-
80455127215
-
The algorithm apt to classify in concurrence of latency and drift
-
G. Krempl, "The algorithm apt to classify in concurrence of latency and drift," Adv. Intell. Data Anal., vol. 7014, pp. 222-233
-
(2011)
Adv. Intell. Data Anal.
, vol.7014
, pp. 222-233
-
-
Krempl, G.1
-
123
-
-
84865066012
-
Semi-supervised learning in initially labeled non-stationary environments with gradual drift
-
K. Dyer and R. Polikar, "Semi-supervised learning in initially labeled non-stationary environments with gradual drift," in Proc. Int. Joint Conf. Neural Networks, 2012, pp. 1-9.
-
(2012)
Proc. Int. Joint Conf. Neural Networks
, pp. 1-9
-
-
Dyer, K.1
Polikar, R.2
-
124
-
-
84891150042
-
COMPOSE: A semi-supervised learning framework for initially labeled non-stationary streaming data
-
Jan.
-
K. B. Dyer, R. Capo, and R. Polikar, "COMPOSE: A semi-supervised learning framework for initially labeled non-stationary streaming data," IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 12-26, Jan.
-
(2013)
IEEE Trans. Neural Networks Learn. Syst.
, vol.25
, Issue.1
, pp. 12-26
-
-
Dyer, K.B.1
Capo, R.2
Polikar, R.3
-
125
-
-
84893586535
-
Active learning in nonstationary environments
-
R. Capo, K. B. Dyer, and R. Polikar, "Active learning in nonstationary environments," in Proc. Int. Joint Conf. Neural Networks, 2013, pp. 1-8.
-
(2013)
Proc. Int. Joint Conf. Neural Networks
, pp. 1-8
-
-
Capo, R.1
Dyer, K.B.2
Polikar, R.3
-
126
-
-
80054731733
-
A hierarchical, nonparametric, sequential change-detection test
-
C. Alippi, G. Boracchi, and M. Roveri, "A hierarchical, nonparametric, sequential change-detection test," in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 2889-
-
(2011)
Proc. Int. Joint Conf. Neural Networks
, pp. 2889-2896
-
-
Alippi, C.1
Boracchi, G.2
Roveri, M.3
-
127
-
-
77953527363
-
MOA: Massive online analysis
-
Mar.
-
A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, "MOA: Massive online analysis," J. Mach. Learn. Res., vol. 11, pp. 1601-1604, Mar.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
128
-
-
84923923168
-
Samoa: Scalable advanced massive online analysis
-
Jan.
-
G. D. F. Morales and A. Bifet, "SAMOA: Scalable advanced massive online analysis," J. Mach. Learn. Res., vol. 16, pp. 149-153, Jan.
-
(2015)
J. Mach. Learn. Res.
, vol.16
, pp. 149-153
-
-
Morales, G.D.F.1
Bifet, A.2
-
130
-
-
33746060148
-
A comparison of ensemble and casebase maintenance techniques for handling concept drift in spam filtering
-
S. Delany, P. Cunningham, and A. Tsymbal, "A comparison of ensemble and casebase maintenance techniques for handling concept drift in spam filtering," in Proc. Int. Conf. Artificial Intelligence, 2006, pp. 340-345.
-
(2006)
Proc. Int. Conf. Artificial Intelligence
, pp. 340-345
-
-
Delany, S.1
Cunningham, P.2
Tsymbal, A.3
-
132
-
-
84863338443
-
Graph-based consensus maximization among multiple supervised and unsupervised models
-
J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, "Graph-based consensus maximization among multiple supervised and unsupervised models," in Proc. Advances Neural Information Processing Systems, 2009, pp. 585-593.
-
(2009)
Proc. Advances Neural Information Processing Systems
, pp. 585-593
-
-
Gao, J.1
Liang, F.2
Fan, W.3
Sun, Y.4
Han, J.5
-
133
-
-
84870457493
-
Graph-based consensus maximization among multiple supervised and unsupervised models
-
Oct.
-
J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, "Graph-based consensus maximization among multiple supervised and unsupervised models," IEEE Trans. Knowledge Discovery Data Eng., vol. 25, no. 1, pp. 15-28, Oct.
-
(2011)
IEEE Trans. Knowledge Discovery Data Eng.
, vol.25
, Issue.1
, pp. 15-28
-
-
Gao, J.1
Liang, F.2
Fan, W.3
Sun, Y.4
Han, J.5
-
134
-
-
84907021673
-
Class-distribution regularized consensus maximization for alleviating overfitting in model combination
-
S. Xie, J. Gao, W. Fan, D. Turaga, and P. S. Yu, "Class-distribution regularized consensus maximization for alleviating overfitting in model combination," in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2014, pp. 303-312.
-
(2014)
Proc. 20Th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining
, pp. 303-312
-
-
Xie, S.1
Gao, J.2
Fan, W.3
Turaga, D.4
Yu, P.S.5
|