메뉴 건너뛰기




Volumn 25, Issue 1, 2014, Pages 27-39

Active learning with drifting streaming data

Author keywords

Active learning; concept drift; data streams; user feedback

Indexed keywords

ACTIVE LEARNING; ACTIVE LEARNING STRATEGIES; CONCEPT DRIFTS; DATA STREAM; DECISION BOUNDARY; DYNAMIC ALLOCATIONS; PREDICTIVE MODELING; USER FEEDBACK;

EID: 84891134709     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2236570     Document Type: Article
Times cited : (339)

References (25)
  • 1
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • May
    • D. Cohn, L. Atlas, and R. Ladner, "Improving generalization with active learning," Mach. Learn., vol. 15, no. 2, pp. 201-221, May 1994.
    • (1994) Mach. Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 2
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr. 1996. (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1
  • 6
    • 14644423267 scopus 로고    scopus 로고
    • Relevant data expansion for learning concept drift from sparsely labeled data
    • DOI 10.1109/TKDE.2005.48
    • D.Widyantoro and J. Yen, "Relevant data expansion for learning concept drift from sparsely labeled data," IEEE Trans. Knowl. Data Eng., vol. 17, no. 3, pp. 401-412, Mar. 2005. (Pubitemid 40320171)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 401-412
    • Widyantoro, D.H.1    Yen, J.2
  • 7
    • 84867103709 scopus 로고    scopus 로고
    • Facing the reality of data stream classification: Coping with scarcity of labeled data
    • Oct.
    • M. Masud, C. Woolam, J. Gao, L. Khan, J. Han, K. Hamlen, and N. Oza, "Facing the reality of data stream classification: Coping with scarcity of labeled data," Knowl. Inf. Syst., vol. 33, no. 1, pp. 213-244, Oct. 2011.
    • (2011) Knowl. Inf. Syst. , vol.33 , Issue.1 , pp. 213-244
    • Masud, M.1    Woolam, C.2    Gao, J.3    Khan, L.4    Han, J.5    Hamlen, K.6    Oza, N.7
  • 8
    • 41649099657 scopus 로고    scopus 로고
    • An active learning system for mining timechanging data streams
    • Sep.
    • S. Huang and Y. Dong, "An active learning system for mining timechanging data streams," Intell. Data Anal., vol. 11, no. 4, pp. 401-419, Sep. 2007.
    • (2007) Intell. Data Anal. , vol.11 , Issue.4 , pp. 401-419
    • Huang, S.1    Dong, Y.2
  • 14
    • 77951189369 scopus 로고    scopus 로고
    • Mining data streams with labeled and unlabeled training examples
    • Dec.
    • P. Zhang, X. Zhu, and L. Guo, "Mining data streams with labeled and unlabeled training examples," in Proc. 9th IEEE Int. Conf. Data Mining, Dec. 2009, pp. 627-636.
    • (2009) Proc. 9th IEEE Int. Conf. Data Mining , pp. 627-636
    • Zhang, P.1    Zhu, X.2    Guo, L.3
  • 15
    • 84863283905 scopus 로고    scopus 로고
    • Mining recurring concept drifts with limited labeled streaming data
    • Feb.
    • P. Li, X. Wu, and X. Hu, "Mining recurring concept drifts with limited labeled streaming data," ACM Trans. Intell. Syst. Technol., vol. 3, no. 2, pp. 29-1-29-32, Feb. 2012.
    • (2012) ACM Trans. Intell. Syst. Technol. , vol.3 , Issue.2 , pp. 291-2932
    • Li, P.1    Wu, X.2    Hu, X.3
  • 16
    • 33745738567 scopus 로고    scopus 로고
    • Worst-case analysis of selective sampling for linear classification
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, "Worst-case analysis of selective sampling for linear classification," J. Mach. Learn. Res., vol. 7, no. 7, pp. 1205-1230, 2006. (Pubitemid 44015299)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1205-1230
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 18
    • 84873596567 scopus 로고    scopus 로고
    • Synthesis Lectures on Artificial Intelligence and Machine Learning). San Francisco: Morgan Claypool
    • B. Settles, Active Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning). San Francisco: Morgan Claypool, 2012.
    • (2012) Active Learning
    • Settles, B.1
  • 19
    • 0742273930 scopus 로고    scopus 로고
    • A review of trust region algorithms for optimization
    • Jun.
    • Y. Yuan, "A review of trust region algorithms for optimization," in Proc. 4th Int. Congr. Ind. Appl. Math., Jun. 1999, pp. 271-282.
    • (1999) Proc. 4th Int. Congr. Ind. Appl. Math. , pp. 271-282
    • Yuan, Y.1
  • 21
    • 0032139819 scopus 로고    scopus 로고
    • Extracting hidden context
    • DOI 10.1023/A:1007420529897
    • M. Harries, C. Sammut, and K. Horn, "Extracting hidden context," Mach. Learn., vol. 32, no. 2, pp. 101-126, 1998. (Pubitemid 40626077)
    • (1998) Machine Learning , vol.32 , Issue.2 , pp. 101-126
    • Harries, M.B.1    Sammut, C.2    Horn, K.3
  • 23
    • 79960103750 scopus 로고    scopus 로고
    • Learning model trees from evolving data streams
    • Jul.
    • E. Ikonomovska, J. Gama, and S. Dzeroski, "Learning model trees from evolving data streams," Data Mining Knowl. Discovery, vol. 23, no. 1, pp. 128-168, Jul. 2011.
    • (2011) Data Mining Knowl. Discovery , vol.23 , Issue.1 , pp. 128-168
    • Ikonomovska, E.1    Gama, J.2    Dzeroski, S.3
  • 24
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Apr.
    • D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, Apr. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.