메뉴 건너뛰기




Volumn 57, Issue 1, 2013, Pages 377-391

Drift mining in data: A framework for addressing drift in classification

Author keywords

Concept drift; Drift mining; Verification latency

Indexed keywords

CERTAIN FACTOR; CLASS LABELS; CLASSIFICATION MODELS; CONCEPT DRIFTS; CONDITIONAL DISTRIBUTION; CREDIT SCORING; DATA SETS; EXPLANATORY VARIABLES; FAST ESTIMATION; JOINT DISTRIBUTIONS; LEAST SQUARE; MINING TECHNIQUES; MIXING PROPORTIONS; OPTIMAL DECISION BOUNDARY; TIME POINTS; TIME-PERIODS;

EID: 84865411615     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2012.07.007     Document Type: Article
Times cited : (43)

References (34)
  • 2
    • 80051665683 scopus 로고    scopus 로고
    • Class and subclass probability re-estimation to adapt classifiers in the presence of concept drift
    • R. Alaiz-Rodríguez, A. Guerrero-Curieses, and J. Cid-Sueiro Class and subclass probability re-estimation to adapt classifiers in the presence of concept drift Neurocomputing 74 16 2011 2614 2623
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2614-2623
    • Alaiz-Rodríguez, R.1    Guerrero-Curieses, A.2    Cid-Sueiro, J.3
  • 3
    • 84864049234 scopus 로고    scopus 로고
    • Analysis of representations for domain adaptation
    • B. Schölkopf, J.C. Platt, T. Hoffman, NIPS 2006 Advances in Neural Information Processing Systems MIT Press Vancouver, Canada
    • S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira Analysis of representations for domain adaptation B. Schölkopf, J.C. Platt, T. Hoffman, Proceedings of the 20th Annual Conference on Neural Information Processing Systems NIPS 2006 Advances in Neural Information Processing Systems vol. 20 2007 MIT Press Vancouver, Canada 137 144
    • (2007) Proceedings of the 20th Annual Conference on Neural Information Processing Systems , vol.20 VOL. , pp. 137-144
    • Ben-David, S.1    Blitzer, J.2    Crammer, K.3    Pereira, F.4
  • 5
    • 84874016332 scopus 로고    scopus 로고
    • An algorithm for anticipating future decision trees from concept-drifting data
    • M. Bramer, F. Coenen, M. Petridis, Research and Development in Intelligent Systems Springer London No. 7
    • M. Böttcher, M. Spott, and R. Kruse An algorithm for anticipating future decision trees from concept-drifting data M. Bramer, F. Coenen, M. Petridis, Proceedings of AI-2008 Research and Development in Intelligent Systems vol. 25 2009 Springer London 293 306 No. 7
    • (2009) Proceedings of AI-2008 , vol.25 VOL. , pp. 293-306
    • Böttcher, M.1    Spott, M.2    Kruse, R.3
  • 9
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • Z. Ghahramani, ICML 2007 ACM International Conference Proceedings Series
    • W. Dai, Q. Yang, G.-R. Xue, and Y. Yu Boosting for transfer learning Z. Ghahramani, Proceedings of the Twenty-Fourth International Conference ICML 2007 ACM International Conference Proceedings Series vol. 227 2007 193 200
    • (2007) Proceedings of the Twenty-Fourth International Conference , vol.227 VOL. , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.-R.3    Yu, Y.4
  • 11
    • 14844357975 scopus 로고    scopus 로고
    • The response to Webb and Ting's on the application of ROC analysis to predict class performance under varying class distributions
    • T. Fawcett, and P.A. Flach The response to Webb and Ting's on the application of ROC analysis to predict class performance under varying class distributions Machine Learning 58 1 2005 33 38
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 33-38
    • Fawcett, T.1    Flach, P.A.2
  • 12
    • 50549093309 scopus 로고    scopus 로고
    • Quantifying counts and costs via classification
    • G. Forman Quantifying counts and costs via classification Data Mining and Knowledge Discovery 17 2 2008 164 206
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 164-206
    • Forman, G.1
  • 13
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • D.J. Hand Measuring classifier performance: a coherent alternative to the area under the ROC curve Machine Learning 77 1 2009 103 123
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 14
    • 84868363866 scopus 로고    scopus 로고
    • Density estimation: A comparison with a penalized mixture approach
    • in press
    • Kauermann, G.; Schellhase, C.; 2012. Density estimation: a comparison with a penalized mixture approach. Computational Statistics, in press (http://dx.doi.org/10.1007/s00180-011-0289-6).
    • (2012) Computational Statistics
    • Kauermann, G.1    Schellhase, C.2
  • 16
    • 80455127215 scopus 로고    scopus 로고
    • The algorithm APT to classify in concurrence of latency and drift
    • J. Gama, E. Bradley, J. Hollmén, Lecture Notes in Computer Science Springer Berlin, Heidelberg
    • G. Krempl The algorithm APT to classify in concurrence of latency and drift J. Gama, E. Bradley, J. Hollmén, Advances in Intelligent Data Analysis X Lecture Notes in Computer Science vol. 7014 2011 Springer Berlin, Heidelberg 222 233
    • (2011) Advances in Intelligent Data Analysis X , vol.7014 VOL. , pp. 222-233
    • Krempl, G.1
  • 17
    • 84857172795 scopus 로고    scopus 로고
    • Classification in the presence of drift and latency
    • M. Spiliopoulou, H. Wang, D.J. Cook, J. Pei, W. Wang, O.R. Zaïane, X. Wu, ICDMW IEEE Vancouver, BC, Canada
    • G. Krempl, and V. Hofer Classification in the presence of drift and latency M. Spiliopoulou, H. Wang, D.J. Cook, J. Pei, W. Wang, O.R. Zaïane, X. Wu, 2011 IEEE 11th International Conference on Data Mining Workshops ICDMW 2011 IEEE Vancouver, BC, Canada 596 603
    • (2011) 2011 IEEE 11th International Conference on Data Mining Workshops , pp. 596-603
    • Krempl, G.1    Hofer, V.2
  • 18
    • 70349310717 scopus 로고    scopus 로고
    • Classifier ensembles for detecting concept change in streaming data: Overview and perspectives
    • O. Okun, G. Valentini, SUEMA2008 Studies in Computational Intelligence Springer
    • L.I. Kuncheva Classifier ensembles for detecting concept change in streaming data: overview and perspectives O. Okun, G. Valentini, Proceedings of the Second Workshop on Supervised and Unsupervised Ensemble Methods and their Applications SUEMA2008 Studies in Computational Intelligence vol. 245 2008 Springer 5 10
    • (2008) Proceedings of the Second Workshop on Supervised and Unsupervised Ensemble Methods and Their Applications , vol.245 VOL. , pp. 5-10
    • Kuncheva, L.I.1
  • 19
    • 78649920891 scopus 로고    scopus 로고
    • Updating scorecards: Removing the mystique
    • L.C. Thomas, D.B. Edelman, J.N. Crook, Oxford University Press
    • A. Lucas Updating scorecards: removing the mystique L.C. Thomas, D.B. Edelman, J.N. Crook, Readings in Credit Scoring 2004 Oxford University Press 93 110
    • (2004) Readings in Credit Scoring , pp. 93-110
    • Lucas, A.1
  • 20
    • 78049404804 scopus 로고    scopus 로고
    • The impact of latency on online classification learning with concept drift
    • Y. Bi, M.-A. Williams, Lecture Notes in Computer Science Springer
    • G. Marrs, R. Hickey, and M. Black The impact of latency on online classification learning with concept drift Y. Bi, M.-A. Williams, Knowledge Science, Engineering and Management Lecture Notes in Computer Science vol. 6291 2010 Springer 459 469
    • (2010) Knowledge Science, Engineering and Management , vol.6291 VOL. , pp. 459-469
    • Marrs, G.1    Hickey, R.2    Black, M.3
  • 23
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
    • M. Saerens, P. Latinne, and C. Decaestecker Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure Neural Computing 14 2001 21 41
    • (2001) Neural Computing , vol.14 , pp. 21-41
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 26
    • 0001237510 scopus 로고
    • Asymptotic results for goodness-of-fit statistics with unknown parameters
    • M.A. Stephens Asymptotic results for goodness-of-fit statistics with unknown parameters Annals of Statistics 4 2 1976 357 369
    • (1976) Annals of Statistics , vol.4 , Issue.2 , pp. 357-369
    • Stephens, M.A.1
  • 27
    • 80052700798 scopus 로고    scopus 로고
    • When training and test sets are different: Characterising learning transfer
    • MIT Press
    • A. Storkey When training and test sets are different: characterising learning transfer Dataset Shift in Machine Learning 2009 MIT Press 1 28
    • (2009) Dataset Shift in Machine Learning , pp. 1-28
    • Storkey, A.1
  • 28
    • 84877772474 scopus 로고    scopus 로고
    • An optimal reject rule for binary classifiers
    • F.J. Ferri, J.M. Inesta, A. Amin, P. Pudil, Lecture Notes in Computer Science Springer Heidelberg
    • F. Tortorella An optimal reject rule for binary classifiers F.J. Ferri, J.M. Inesta, A. Amin, P. Pudil, Advances in Pattern Recognition: Joint IAPR International Workshops, SSPR 2000 and SPR 2000 Lecture Notes in Computer Science vol. 1876 2000 Springer Heidelberg 611 620
    • (2000) Advances in Pattern Recognition: Joint IAPR International Workshops, SSPR 2000 and SPR 2000 , vol.1876 VOL. , pp. 611-620
    • Tortorella, F.1
  • 29
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work
    • Department of Computer Science. Trinity College Dublin
    • Tsymbal, A.; 2004. The problem of concept drift: definitions and related work. Tech. Rep.; Department of Computer Science. Trinity College Dublin.
    • (2004) Tech. Rep.
    • Tsymbal, A.1
  • 30
    • 80053042422 scopus 로고    scopus 로고
    • Agnostic domain adaptation
    • R. Mester, M. Felsberg, Lecture Notes in Computer Science
    • A. Vezhnevets, and J. Buhmann Agnostic domain adaptation R. Mester, M. Felsberg, Pattern Recognition - 33rd DAGM Symposium Lecture Notes in Computer Science 2011 376 385
    • (2011) Pattern Recognition - 33rd DAGM Symposium , pp. 376-385
    • Vezhnevets, A.1    Buhmann, J.2
  • 31
    • 0037598692 scopus 로고    scopus 로고
    • Local versus global models for classification problems: Fitting models where it matters
    • V. Vinciotti, and D.J. Hand Local versus global models for classification problems: fitting models where it matters The American Statistician 57 2 2003 124 131
    • (2003) The American Statistician , vol.57 , Issue.2 , pp. 124-131
    • Vinciotti, V.1    Hand, D.J.2
  • 32
    • 14844366200 scopus 로고    scopus 로고
    • On the application of ROC analysis to predict classification performance under varying class distributions
    • G.I. Webb, and K.M. Ting On the application of ROC analysis to predict classification performance under varying class distributions Machine Learning 58 2005 25 32
    • (2005) Machine Learning , vol.58 , pp. 25-32
    • Webb, G.I.1    Ting, K.M.2
  • 33
    • 79960376903 scopus 로고    scopus 로고
    • Transfer estimation of evolving class priors in data stream classification
    • Z. Zhang, and J. Zhou Transfer estimation of evolving class priors in data stream classification Pattern Recognition 43 2010 3151 3161
    • (2010) Pattern Recognition , vol.43 , pp. 3151-3161
    • Zhang, Z.1    Zhou, J.2
  • 34
    • 79951756430 scopus 로고    scopus 로고
    • Learning under concept drift: An overview
    • Vilnius University
    • Zliobaite I.; 2009. Learning under concept drift: an overview. Tech. Rep.; Vilnius University.
    • (2009) Tech. Rep.
    • Zliobaite, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.